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This study explored inviscid supersonic corner flows induced by three-dimensional symmetrical intersecting

compression wedges by introducing the spatial dimension reduction theoretical approach to transform the three-

dimensional steady shock/shock interaction problem into a two-dimensional pseudosteady problem; this method

allows not only wave configurations, which include regular reflection and Mach reflection, to be determined

accurately, but also flowfield characteristics, which include density, temperature, pressure, and total pressure

recovery coefficient near the regular reflection point (or in the vicinity of the Mach reflection triple point), as well as

the location and the strength of the Mach stem. Theoretical results were compared to numerical simulation

(performed by solving three-dimensional inviscid Euler equations with an non-oscillatory and non-free-parameters

dissipative finite difference scheme) and analyzed thoroughly. The effects of inflowMach number, sweep angle, and

wedge angle on flowfield parameters and wave configurations were also considered. The influence of sweep angle is

negligible, but the effects of Mach number and wedge angle are significant.

Nomenclature

i = incident wave
K = kink
Mm = Mach number of Mach stem
Ms1, Ms2 = components of inflow Mach number vector
M0 = inflow Mach number
m = Mach stem
m 0 = secondary Mach stem
R = reflection point
r = reflected wave
r 0 = secondary reflected wave
s = slipstream
s 0 = secondary slipstream
T = first triple point
T 0 = secondary triple point
β = shock angle in the x direction
βn = shock angle perpendicular to leading edge OA and

OC
θ = wedge angle
θv = angle between virtual wall and horizontal line
λ = sweep angle
ν = dihedral angle
χ = first triple point trajectory angle
χ 0 = second triple point trajectory angle
1 = incident waves
2 = reflected waves
3 = Mach stem
4 = slip lines
5 = spiral vortices
6 = secondary reflected waves

7 = contact discontinuity
8 = near-wall Mach shock

I. Introduction

I N AEROSPACE engineering, the effective design of modern
supersonic and hypersonic vehicles requires thorough under-

standing of the physical flowfield structure of corner flows. Corner
flows exist in fuselage wing junctions, rectangular inlet diffusers and
ducts, the intersection of several control surfaces, and turbomachine
blade–hub junctions; and three-dimensional shock/shock interaction
(SSI) often occurs in corner flows. This interaction produces complex
three-dimensional (3-D) shock-wave configurations, which lead to
total pressure loss. There already exists awealth of research regarding
two-dimensional (2-D) shock reflection and SSI theories.
The earliest research on shock-wave reflection can be traced back to

1878,whenMach first observed and recorded reflection phenomena of
shock waves and discovered two distinct shock-wave reflection
configurations: regular reflection (RR) and Mach reflection (MR) [1].
Von Neumann built analytical approaches for describing RR and the
MR wave configurations called two-shock theory for RR and three-
shock theory for MR, respectively [2,3]. Kawamura developed the
(p, θ) polar method (p is the flow static pressure, and θ is the flow
deflection angles), which has proven a highly effective tool for
analyzing shock reflection and interaction [4].
Ben-Dor systematically summarized the progress in 2-D shock-

wave reflection phenomena and related analytical theory, including
both steady shock reflection and pseudosteady shock reflection [5].
According to his research, possible shock reflection configurations of
2-D symmetric pseudosteady flows include regular reflection (RR)
and the direct-Mach reflection (DiMR) [6] (Fig. 1). DiMR can be
further divided into three types: single-Mach reflection (SMR);
transitional-Mach reflection (TMR), discovered by Smith [7]; and
double-Mach reflection (DMR) (Figs. 1b–1d). DMR can be further
divided into two types, depending on whether the trajectory angle of
the first triple point is larger or smaller than that of the second triple
point: positive-double Mach reflection (DMR+, χ > χ 0), and
negative double-Mach reflection (DMR-, χ < χ 0); these two types of
DMR were studied by Ben-Dor [8] as well and were named as such
by Lee and Glass [9].
As opposed to well-established theory regarding the 2-D shock

reflection problem, there has been little established theoretical work
on 3-D shock reflection and SSI problems, likely due to the
complexity of flow features of 3-D SSI, though 3-D is much more
common in practice than 2-D shock flow. Charwat and Redekeopp
studied 3-D shock-wave interactions as early as 1967, observing
entropy waves (slip lines) and reflected waves in experiments [10].
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Watson andWeinstein noted that the flowfield appears to be basically
conical, except for cases of serious viscous interaction effects [11].
Marconi used a second-order, finite differencemarching technique to
predict the inviscid supersonic/hypersonic flowfield of conical
internal corners [12], and several numerical and analytical studies on
corner flows formed by intersecting wedges have been conducted by
Goonko et al., who discussed the effects of angles of inclination,
sweep angles of the leading edges, dihedral angles, and corner ribs
[13,14]. Skews et al. [15], Naidoo [16], and Naidoo and Skews [17]
conducted extensive research on corner flows and discovered that the
flow is no longer self-similar if the sharp corner is replaced by a
camber.
Most of the previous research on 3-D shock reflection and SSI

were conducted experimentally and numerically; analytical study,
however, is generally lacking. In the present study, a classical
method called spatial dimension reduction was applied to 3-D SSI,
and numerical simulations were conducted to validate the analytical
results. The theoretical solutions agreed well with the numerical
results.
The configurations of 3-D SSI in supersonic 3-D steady flows are

studied both analytically and numerically in this study. The spatial
dimension reduction approach and the numerical methods used here
are presented in detail in Sec. II. In Sec. III, the theoretical solution to
the corner flow near the reflection point (or in the vicinity of the triple
point) is obtained using the proposed method, and key parameters
such as inflow Mach number, sweep angle, and wedge angle, plus

their effects on the flowfield and wave configuration, are discussed
analytically and numerically. Section IV provides a brief summary
and conclusions.

II. Spatial Dimension Reduction Approach and
Numerical Methods

The simplest 3-D steady SSI is induced by two intersecting
wedges in a supersonic flow, which can be found in the three-
dimensional hypersonic inlet of a scramjet engine. As shown in
Figs. 2 and 3, there are two symmetrical intersecting wedges with
specific geometric angles, and the angle between the two bottom
planes of the wedges is defined as ν. The two shock planes are
induced by the bottom wedge and the lateral wedge with sweep
angle λ and wedge angle θ.

A. Spatial Dimension Reduction Approach

For the 3-DSSI induced by the two intersectingwedges, numerical
simulations indicate that, in the direction of the intersecting line of
two planar shocks, the flow feature is self-similar, for either regular
interaction (RI) orMach interaction (MI) (Fig. 2) [13,14]. The basic
idea of spatial dimension reduction is that 3-D steady SSI can
be transformed into a 2-D moving SSI problem with time evolution
by reducing one characteristic spatial dimension to a temporal
dimension.

Fig. 1 Possible wave configurations of 2-D symmetric pseudosteady flows: a) RR, b) SMR, c) TMR, and d) DMR.

Fig. 2 Flow parameters induced by 3-D steady shock/shock interaction.
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As shown in Fig. 3a and 3b, the direction of the interacting line of
two shock planesOB is defined as the characteristic direction, and the
planes perpendicular to OB as characteristic planes. The velocities in
the flowfield canbe decomposed into two respective components in the
characteristic direction and in the characteristic planes. According to
the properties of oblique shock waves (and strict theoretical analysis
thereof), the velocity component in the characteristic direction remains
constant in the entire flowfield, which can be dissociated from other
velocity components or theoretical analyses. Thus, the spatial
dimension in the characteristic direction can be considered a temporal
dimension; the distance in the characteristic direction can be treated as
the product of time variation and the constant characteristic velocity.
The flowfields in different characteristic planes along the characteristic
direction can then be considered the movement of two-dimensional
shock waves that develops with time evolution, if the characteristic
planes are projected to the characteristic plane passing through the
original point O as shown in Fig. 2.
The spatial dimension reduction approach is applicable for RI and

MI (Figs. 2a, 2b, 3a and 3b).MS1 andMS2 are the components of the
inflowMach number vector normal to shock S1 and S2, respectively,
and can be calculated as follows:

MS1 � MS2 � M0 sin βn cos λ (1)

whereM0 is the inflowMach number, and βn represents the angle of
shock planes perpendicular to leading edges OA and OC.
The vector OB and angle η are obtained as follows:

OB � n2 × n1 (2)

cos η � cos�n2;n1� � cos�OA ×E;D × OC� (3)

where E is the vector in shock plane S1 normal to OA, andD is the
vector in shock plane S2 normal to OC.

The wave configurations of transformed 2-D SSI can then be
determined by shock-polar analysis (see Fig. 4a) because a problem
of 2-D moving SSI can be solved analytically [18]. Generally, the
type of RI must first be defined using the dimension reduction
approach; for the RI configuration, the trajectory of the interaction
point is defined here as a virtual wall, and the moving reference
frame is set on the intersection point. The problem can then be
transformed into a 2-D steady shock-wave interaction problem, as
shown in Fig. 4b.
The angle of the virtual wall θν and the angles between shock

waves and virtual walls α1 and α2 can be calculated as follows:

θν �
π

2
− arctan

�
MS2 sin η

MS1 �MS2 cos η

�
(4)

α1 � η −
π

2
� θη; α2 �

π

2
− θη (5)

Figure 5a shows a schematic illustration of the p, θ polar solution
near the RI reflected point. After the compression of incident waves
I1 and I2, the flow state is raised from state 0 to states 1 and 2,
respectively. The reflected shock polars R1 and R2 interact at
two points, where the intersecting points indicate that pressure
and angle conditions are matched behind two reflected waves,
which are divided by a slip line (Fig. 4b). If the principle of minimal
entropy generation is assumed, a lower point with lower pressure is
possible; therefore, all the parameters in all regions can be solved
theoretically.
As shown later, an example of numerical simulation was made to

validate the theoretical results. Parameters were selected asM0 � 5,
ν � 90 deg, λ � 3 deg, and θ � 3 deg. The theoretical analysis in
Fig. 3a agrees well with the numerical results shown in Fig. 5b.
If the two reflected shock waves R1 and R2 do not intersect but do

intersect with I1 and I2, respectively, an MI will appear (Fig. 6a). A

Fig. 3 Schematic illustration of wave configurations over two intersecting wedges.

Fig. 4 Solution to 2-D moving shock/shock interaction.
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schematic illustration of an MI is shown in Fig. 7a, where a Mach
stem grows with the propagation of two moving shock waves.
Because the solution to anMI is more difficult than one for an RI, the
problem cannot be solved using a single reference frame
transformation. One effective approach is to find a virtual wall in
the flowfield and solve the problem of shock reflection on both sides
of the virtual wall. The virtual wall is defined as a line perpendicular
to the Mach stem; then, frames of reference can be attached to triple
points T1 and T2, respectively (Fig. 7b).
A simple solution to the problem of 2-D moving SSI can be

established based on shock dynamics. The Mach stem strength Mm

and angle θν between the virtual wall and the horizontal line can be
acquired by solving the problem of Mach reflection at both sides of
the virtual wall [18,19].
Mm and θν can be calculated with the following equations [18,20]:

tanθν�
�
Mm

Ms2

� �1−�Ms2∕Mm�2�1∕2f1− �f�Mm�∕f�Ms2��1∕2g
1��f�Mm�Mm∕f�Ms2�Ms2�

(6)

and

tan�π − η − θν�

�
�
Mm

Ms1

� �1 − �Ms1∕Mm�2�1∕2f1 − �f�Mm�∕f�Ms1��1∕2g
1� �f�Mm�Mm∕f�Ms1�Ms1�

(7)

where

f�M� � exp

�
−
Z

2MdM

�M2 − 1�K�M�
�

(8)

Here, K�M� is a slowly varying function expressed as follows:

K�M�2�2μ� 1�M−2�−1
�
1� 2

γ � 1

1 − μ2

μ

�−1
(9)

where

μ �
� �γ − 1�M2 � 2

2γM2 − �γ − 1�
�

represents the Mach number for the propagation of a moving shock
relative to the flowfield behind it.

Fig. 5 Shock polars of RI configuration and numerical validation: a) (p, θ) polars of RI, and b) numerical simulation example.

Fig. 6 Shock polars of MI configuration and numerical validation: a) (p, θ) polars for MI, and b) numerical simulation example.
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The angles between the triple-point trajectories and the virtual
walls γ1 and γ2 are expressed as follows:

γ1 � arctan

�
Mm � sec�η� θν�Ms2

− tan�η� θν�Mm

�
(10)

γ2 � arctan

�
Mm − sec θνMs2

tan θνMm

�
(11)

A numerical example of a 3-D steady MI is presented in Fig. 7b.
The selected parameters are M0 � 5, ν � 90 deg, λ � 5 deg, and
θ � 10 deg, and the numerical result is shown in Fig. 5b. The 3-D
shock interaction configuration is MI, consistent with the theoretical
analysis (Fig. 5a).
Finally, the values of all zones should be correlated to the 3-D

steady flow (Fig. 2). State parameters, such as temperature, pressure,
density, and total pressure recovery coefficient, are identical to those
of the 2-D pseudosteady flow. The velocities and Mach number,
however, should be composed with the decomposed constant
velocity and Mach number vectors obtained previously (Fig. 3). The
corner flow properties of 3-D steady SSI can be analyzed
theoretically using this procedure.

B. Numerical Methods

The viscosity effects are negligible in 3-D SSI, and so governing
equations are simplified to three-dimensional Euler equations as
follows:

∂U
∂t

� ∂F
∂x

� ∂G
∂y

� ∂H
∂z

� 0 (12)

whereU,F, andG denote the state variables and fluxes in the x, y, and
z directions, respectively:

U �

0
BBBBBBB@

ρ

ρu

ρv

ρw

ρE

1
CCCCCCCA
; F �

0
BBBBBBB@

ρu

ρu2 � p

ρuv

ρuw

�ρE� p�u

1
CCCCCCCA
; G �

0
BBBBBBB@

ρv

ρuv

ρv2 � p

ρvw

�ρE� p�v

1
CCCCCCCA
;

H �

0
BBBBBBB@

ρw

ρuw

ρvw

ρw2 � p

�ρE� p�w

1
CCCCCCCA

(13)

For the perfect gas, E represents the total internal energy per unit
mass:

E � p

�γ − 1�ρ�
1

2
�u2 � v2 � w2� (14)

The discretization of the governing equations is

�
∂U
∂t

�
n

i;j;k

� 1

Δx
�Fn

i�1
2
;j;k

− Fn
i−1

2
;j;k

� � 1

Δy
�Gn

i;j�1
2
;k
− Gn

i;j−1
2
;k
�

� 1

Δz
�Hn

i;j;k�1
2

−Hn
i;j;k−1

2

� � 0 (15)

where the second-order NND scheme is applied for the convective
terms F, G, and H, and the minmod function is the limiter. The
computational mesh uses the orthogonalized uniform structured
mesh. Because the mesh quantity is excessively large with a grid
system of 200 × 200 × 120, Message Passing Interface (MPI)
parallel programs were used in the code. Mesh independence tests
were performed to ensure that all the results produced are
independent of the type of mesh chosen for numerical simulations.
The inlet of the computational zone is given by fixed inflow, the far-
field is a nonreflecting boundary, and the walls are solid slipping.
Computations were conducted on an eight-core computer (Dell Inc.).

III. Results and Discussion

Figure 8 presents the comparison between analytical results and
numerical results as well as experimental results ofWest andKorkegi

Fig. 8 Analytical results vs experimental and numerical results of
sectional flowfield (M0 � 3, ν � 90 deg, λ � 0 deg, θ � 9.5 deg).

Fig. 7 Solution to 2-D moving shock/shock interaction.
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in 1972 [21]. The coordinates x and z are scaled with y so that they
become conical, self-similar variables. z0 and x0 represent the
distances of the bottom wedge and the top wedge. The error bars are
experimental results ofWest andKorkegi in 1972. It can be seen from
the figure that the theoretical results of the location of incident waves
and Mach stem agree well with the experimental and numerical
results. CFD is the abbreviation of Computational Fluid Dynamics.
For the strength ofMach stem, the theoretical solution isMm � 1.84,
and the numerical solution is about Mm � 1.82.
In this section, key parameters’ effects on the flowfield and wave

configurations will be discussed analytically and numerically.

A. Inflow Mach Number Effects

The effects of theMach number are illustrated here using examples
of a corner flow with parameters M0 � 3 ∼ 7, ν � 90 deg,
λ � 0 deg, and θ � 10 deg. Shock-polar analysis on cross sections
implies that the wave configurations at M0 ≤ 10, ν � 90 deg,
λ � 0 deg, and θ � 10 deg cannot be an RI because the shock
polars of reflected shock waves never intersect each other, in

accordance with numerical simulation results. For cases with smaller
Mach numbers,wave configurations are characterized byweak shock
interaction, which is similar to the von Neumann reflection of weak
shock waves in two-dimensional pseudosteady flows.
Figure 9a–9c shows the pressure, density, and temperature in zones

1, 3, and 5 with different inflow Mach numbers. As shown in Fig. 9,
state 0 represents dimensionless units of inflow pressure, density, and
temperature. As the inflow Mach number M0 increases, pressure,
density, and temperature of zones 1–5 and Mach stem strength
increase monotonously, and the total pressure recovery coefficient
decreases gradually (Fig. 9a–9e). Because zones 3 and 5 are only
divided by slip faces, they have the same pressure (Fig. 9a). As
indicated in Figs. 9b and 9c, the density behind the Mach stem is
lower than that behind the reflected waves, whereas the temperature
behind the Mach stem is higher than that behind the reflected shock
waves. The total pressure loss is more serious behind the Mach stem
than that behind the reflected shock waves (Fig. 9d) because the
entropy production passing through the incident shock waves and
reflected shock waves is smaller than that passing through the
Mach stem.

Fig. 9 Parameter variations of flowfield with inflow Mach number: a) pressure, b) density, c) temperature, d) total pressure recovery coefficient, and
e) Mach stem strength.
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The numerical results of corner flows in Mach number range from
3 ≤ M0 < 6with ν � 90 deg, λ � 0 deg, and θ � 10 deg showing
that the wave configuration is a single Mach interaction (SMI). Clear
reflected shock waves, Mach stem, and slip lines can be observed
for SMI (Figs. 10a and 10b).When the inflowMach number is raised
to 6, a transitional Mach interaction (TMI) occurs. The contact
discontinuity originating from the triple points rolls up into spiral
vortexes, and the reflected waves near the wedge become more
concave in shape (Fig. 10c). The bending of the reflected shock wave
occurs due to the action of compression waves from the wall. When
M0 � 7, the reflected waves cause a near-wall shock wave and
secondary reflected shockwave, and it forms a DMI (see Fig. 10d). If
the Mach number is increased to 8 or much larger, the wave
configurations change into multishock Mach interactions, and the
near-wall flow becomes more complicated.
The trajectory of the three-shock points of the Mach stem can be

solved using the spatial dimension reduction approach. If the Mach
stem is assumed as a straight face, the theoretical results agree well
with the numerical results (Figs. 10a–10d).

B. Effects of Sweep Angle and Wedge Angle

Numerical and analytical results of corner flows with variation in
sweep angle are shown in Figs. 11 and 12, where the flow conditions
were selected as M0 � 5, ν � 90 deg, θ � 10 deg, and
λ � 2 ∼ 15 deg. The theoretical solutions to flowfield parameters
with variations in wedge angle are presented in Fig. 13, where
M0 � 5, ν � 90 deg, θ � 4 ∼ 35 deg, and λ � 0 deg. Shock-
polar analysis and numerical simulations show that the shock interac-

tion types in the aforementioned conditions are Mach interactions
(Figs. 11 and 14).
As λ increases, the pressure, density, and temperature in zones 1, 3,

and 5 and the strength of theMach stemdecrease slightly,whereas the
total pressure recovery coefficient slowly increases (Fig. 12a–12e).
The total pressure recovery coefficients behind the incident waves
and behind the reflected waves are almost identical (Fig. 12d)

Fig. 10 Numerical wave configurations on cross section with ν � 90 deg, λ � 0 deg, θ � 10 deg and theoretical results of Mach stem: a) SMI at
M0 � 4, b) SMI atM0 � 5, c) TMI atM0 � 6, and d) DMI at M0 � 7.

Fig. 11 Corner flow patterns of MI on cross section with M0 � 5,
ν � 90 deg, θ � 10 deg, SMI at λ � 5, 10, 15 deg; 0: wall, 1: incident
waves, 2: reflected waves, 3: Mach stem, 4: slip lines.
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because the reflected wave is too weak to cause significant total
pressure loss.
The numerical results in Fig. 11 show where wave configurations

vary slightly as sweep angle increases. The boundary of the flowfield
drops, the incident waves approach the axis, and theMach stem nears
the corner rib as the sweep angle increases; however, the reflected
waves coincide fairly well with each other according to the numerical
results (Fig. 11). It should be noted that, with the previous analysis,
the effects of the sweep angle on thewave configuration and flowfield
could be negligible.
For a largewedge angle (atM0 � 5, ν � 90 deg, and λ � 0 deg),

shock waves over the wedges detach from the wedge; cases such as
this are not considered here. Compared to variations in sweep angle,
the impact of varying wedge angle on flowfield parameters and wave
configuration is quite considerable (Figs. 13 and 14). As shown in the

Fig. 13, the pressure, density, temperature, andMach stem strength in
zones 1, 3, and 5 increase sharply as wedge angle increases, whereas
the total pressure recovery coefficient decreases with the increase of
wedge angle. At a 25 deg wedge angle, the pressure in zone 5 behind
the Mach stem is about 14.2 times as much as that in zone 1, the
temperature is about 4.2 times as much as that in zone 1, and the total
pressure behind the Mach stem is only about 20% that of the
incoming flow (Fig. 13).
Numerical simulations show that wave configurations growmore

complicated with larger wedge angle. The larger thewedge angle is,
the narrower the distance between the wall and the waves is,
influencing the corner flow on the waves. Under conditions where
M0 � 5, ν � 90 deg, λ � 0 deg, and θ � 10 deg, the shock
interaction configuration is SMI (see Fig. 10b). Once the wedge
angle is increased to θ � 15 deg or θ � 20 deg, the shock

Fig. 12 Results of flowfield parameter variations with sweep angle: a) pressure, b) density, c) temperature, d) total pressure recovery coefficient, and
e) Mach stem strength.
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interaction configuration is a DMI (Fig. 14a and 14b). If the wedge
angle is increased further, the interactions are DMI or multishock
Mach interactions.

IV. Conclusions

This study compared numerical simulations to an analytical
solution to the problem of 3-D SSI over 3-D symmetric intersecting
wedges. First, a novel method of spatial dimension reduction and the
traditional numericalmethodwere introduced; after working through
the analytical method, results confirmed that the wave configuration
can be effectively determined in agreement with the numerical
results. Flowfield parameters were then obtained using the proposed
approach, followed by both analytical and numerical analysis of the

impact of key parameters on the flowfield and wave configurations.
The most notable conclusions of this study can be summarized as
follows.
1) 3-D wave configurations can be determined using the spatial

dimension reduction approach, including both RI and MI. The RI
flowfield near the reflection point and the MI in the vicinity of the
triple point can be successfully obtained analytically.
2) For theMI configuration, the density, pressure, and temperature

behind shock waves, as well as the Mach stem number, increase
monotonously as Mach number increases, decrease slowly as sweep
angle increases, and increase dramatically as wedge angle increases.
The total pressure recovery coefficient decreases sharply as Mach
number increases, increases slowly as sweep angle increases, and
drops quickly as wedge angle increases. The effects of wedge angle

Fig. 13 Flowfield parameter variationswithwedge angle: a) pressure, b) density, c) temperature, d) total pressure recovery coefficient, and e)Mach stem
strength.
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on flowfield parameters are more pronounced than the effects of
sweep angle.
3) Numerical simulations results show that larger Mach number

and wedge angle lead to more complicated wave configurations.
When Mach number and wedge angle are sufficiently large, the
interaction type can be either double or multishock interaction. The
influence of sweep angle on wave configuration is negligible.
4)As inflowMach number, sweep angle, andwedge anglevary, 3-D

steady shock interactions exhibit complex shock interaction configu-
rations such asRI, SMI, andDMI.All thewave configurations in a 3-D
steady SSI have corresponding wave configurations observed in the
2-D pseudosteady flows, such as RR, SMR, TMR, and DMR.
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