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Solutal Convection of Liquid Al-3.5wt%Li during Its Upward Solidification *
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The onset of solutal convection during the directional solidification of Bridgman type of liquid Al-3.5wt%Li is
studied. Based on the analysis of a liquid-inhomogeneous-porous-double-layer system, a bimodal feature of neutral
stability curve is found. The pulling rate is ascertained as the governing parameter for the mode transition, i.e.,
it determines whether the microstructure in the mushy layer is related to convection after the system destabilizes.
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During alloy solidification, there always exists a
mushy layer sandwiched between pure liquid and solid
phases as shown in Fig. 1(a). Liquid saturates the pore
of the mushy layer whose porosity is always spatially
varying. Hence, for a theoretical analysis, it is rea-
sonable to simplify the mushy layer system as an in-
homogeneous porous layer, as shown in Fig. 1(b). As
discussed by Drevet et al.[1] for solidification experi-

ments on Al-3.5wt%Li alloy in a furnace of Bridgman
type, liquid fraction in a mushy layer, i.e., porosity
𝜑 of the porous layer, is in general characterized by
a sharp decrease at small distances from tips while 𝜑
has less change going deeper in the mushy layer. This
feature is conveniently embodied by the shape of den-
drites as shown in Fig. 1(c).
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Fig. 1. Upward alloy solidification with rejection of a light solute: (a) general systematical configuration, (b) the
simplified model for theoretical analysis, and (c) the scheme of dendrites in the mushy layer.

If the alloy has a light solute (like Al-3.5wt%Li)
and is solidified vertically upward by freezing from
the bottom as shown in Fig. 1(b), an unstable ver-
tically distributed solute gradient is formed, and the
compositional buoyancy convection is able to be stim-
ulated. Of course, in the meantime there also exists
a temperature gradient which could stabilize the sys-
tem, but the effect is too weak to be considered. The
main reason is the fact that the thermal diffusivity 𝜅l

(=3.6 × 10−5m2/s) is much greater than the solutal
diffusivity 𝐷l (=1.9 × 10−8m2/s). Hence, the solute
gradient is much stronger, and it could be seen as the
predominant factor affecting hydrodynamic instability
of the system for the sake of simplicity.

Therefore, we study the solutal convection in a

liquid-inhomogeneous-porous-double-layer system af-
ter its destabilization. To understand the flow during
solidification, the inhomogeneous profile of porosity
in the mushy layer is centrally focused on, which is of
vital importance for the crystal growth process.

As shown in Fig. 1(b), Cartesian coordinates are
introduced with its origin at the fluid-porous inter-
face and the 𝑧-axis, which is the normal vector of the
boundary walls, is opposite to the direction of gravi-
tational acceleration. The thickness of the liquid layer
𝐻l equals to that of the concentration boundary layer,
𝛿C,

[2] i.e., 𝐻l = 𝐷l/𝑉 , where 𝑉 is the pulling rate in
the Bridgman experiment equivalent to the velocity
of the solidification front. The solute distribution is
simplified to a linear function of 𝑧. The upper bound-
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ary is modeled as a non-deformable bound without
the surface tension effect, and the solute concentra-
tion there equals to the alloy’s original concentration
𝐶0. The solid phase is modeled as a rigid plate. At the
mush–solid interface, the temperature is at the solidus
on the phase diagram corresponding to 𝐶0, thus the
solute concentration on the solid side is 𝐶0, and 𝐶0/𝑘
(𝑘 is the segregation coefficient) in the interstitial melt
on the mush side. This is valid when 𝐶0 is sufficiently
small. At the tip of dendrites (liquid–mush interface),
the concentration 𝐶t equals to 𝐶0/𝑘 + 𝐺T/𝑚 · 𝐻m,
where 𝐺T is the thermal gradient (weak and constant)
and 𝑚 is the slope of liquidus, and 𝐻m is the thick-
ness of the mushy layer (denoted by subscript 𝑚) and
is determined according to the work of Hennenberg et

al.[3] as

𝐻m =
𝐷l

𝑉

(︁ 𝑉

𝑉c
− 1

)︁
, (1)

where 𝑉c is the critical pulling rate for the morpho-
logical instability at the planar solidification front. At
the tip of dendrites, the local porosity 𝜑0 is related to
the cell tip radius 𝑟t and the primary dendrite spac-
ing 𝜆1 as shown in Fig. 1(c). According to the previous
discussion,[5] 𝑟t can be obtained by applying the result
of the solute flux balance equation at the dendritic tip,

𝑟2t =
𝛾𝑇M

𝜎*𝐿v

{︁
(𝑘−1)𝐶0

𝑘
𝑉
𝐷l

𝑚+𝐺T

[︁
(𝑘−1) 𝑉

𝑉c
−𝑘

]︁}︁ ,
(2)

where 𝐿v is the latent heat per unit volume, 𝛾 is the
interfacial energy, 𝑇M is the melting temperature, and
𝜎* is a constant of about 0.02. Moreover, 𝜆1 is gener-
ally proportional to 𝑉 − 1

4 as[4]

𝜆1 = 𝐴*𝐺
− 1

2

T 𝑉 − 1
4 , (3)

with the dimensional constant 𝐴* obtained from the
experimental data in the study of Drevet et al.,[1] con-
firmed to be 6.11 × 10−4 with 𝜆1, 𝑉 and 𝐺T being in
units of m, m/s and K/m, respectively. Then

𝜑0 =
𝜋𝜆2

1 − 𝜋(Λ𝜆1)2

𝜋𝜆2
1

= 1 − Λ
2
,

Λ =
2

1 +
√︁

1 + 4𝜆1

𝜋𝑟t

, (4)

where the relative width Λ is deduced from the geo-
metrical relation.[5]

In the present system, 𝐶0 = 3.5wt%, 𝐺T =
70K/cm and 𝑘 = 0.55. Then, at the bottom bound-
ary, 𝐶0/𝑘 = 6.36wt%. The profile of porosity 𝜑(𝑧m)
is a linear single-valued function of 𝑧m, where 𝑧m ∈
[−1, 0] and 𝜑(0) = 𝜑0. The porosity at the bottom
of the mushy layer is constantly set to be 0.01, i.e.,
a sufficiently small but finite value for mathematical
solvability.

For the liquid layer, the conservation of mass,
momentum and salinity[7] with the Boussinesq
approximation[8] are expressed as follows:

∇ · 𝑣l = 0, (5)

𝜕𝑣l

𝜕𝑡
+ (𝑣l · ∇)𝑣l = − 1

𝜌0
∇𝑝l + 𝜈l∇2𝑣l

+ [1 − 𝛽S(𝐶l − 𝐶0)]𝑔, (6)

𝜕𝐶l

𝜕𝑡
+ 𝑣l · ∇𝐶l =𝐷l∇2𝐶l, (7)

where 𝛽S is the solute volume expansion coefficient.
Likewise, the controlling equations for the porous
layer[9] are

∇ · 𝑣m = 0, (8)

1

𝜑

𝜕𝑣m

𝜕𝑡
= − 1

𝜌0𝜑
∇(𝜑𝑝m) − 𝜈l

𝐾
𝑣m

+ [1 − 𝛽S(𝐶ml − 𝐶0)]𝑔, (9)

𝜑
𝜕𝐶ml

𝜕𝑡
+ 𝑣m · ∇𝐶ml = ∇ · (𝐷m∇𝐶ml), (10)

where Eq. (9) is Darcy’s law with the Boussinesq
approximation[8] and the nonlinear convective accel-
eration is ignored.[9] Variables with subscript ml are
aimed at the interstitial liquid in the pore of the mushy
layer. The permeability 𝐾 is defined by the Carman–
Kozeny relation[6]

𝐾 =
(Λ𝜆1)2

172.8

𝜑3

(1 − 𝜑)2
, (11)

where𝐾 is an increasing function of 𝜑. The basic state
is motionless and purely diffusive, thus the whole sys-
tem should obey the principle of solute flux continuity,
i.e.,

𝐷l
∆𝐶l

𝐻l
= −𝐷m

𝑑𝐶ml

𝑑𝑧
= −𝐵*. (12)

That is,

∆𝐶ml = −𝐵*
∫︁ 0

−𝐻m

1

𝐷m
𝑑𝑧,

∆𝐶l + ∆𝐶m =
𝐶0

𝑘
− 𝐶0.

The perturbations of velocity, pressure and con-
centration are imposed. The pressure and horizontal
components of velocity are eliminated and the solutal
diffusion in the solid phase is ignored. For rendering
these equations dimensionless, in the liquid layer the
concentration is scaled by ∆𝐶l𝜈l/𝐷l, the length by
𝐻l, the time by 𝐻2

l /𝐷l, and the velocity by 𝜈l/𝐻l. In
the mushy layer, they are ∆𝐶ml𝜈l/𝐷m0, 𝐻m, 𝐻

2
m/𝐷m0

and 𝜈l/𝐻m, respectively. Here 𝐷m0 is the solutal dif-
fusivity at the liquid–mush interface. Then the lin-
earized perturbation equations in dimensionless form
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are

1

𝑆𝑐l

𝜕

𝜕𝑡l
∇2

l 𝑤l = ∇4
l 𝑤l + 𝑅𝑎sl

𝜕2𝐶l

𝜕𝑥2
l

, (13)

𝜕𝐶l

𝜕𝑡l
= 𝑤l + ∇2

l 𝐶l, (14)

1

𝜑𝑆𝑐m

𝜕

𝜕𝑡m
∇2

m𝑤m = − 1

𝛿20
𝑓1(𝑧m)

(︁
∇2

m𝑤m

+
1

𝜑

𝑑𝜑

𝑑𝑧m

𝜕𝑤m

𝜕𝑧m

)︁
+

𝑅𝑎sm
𝛿20

𝜕2𝐶ml

𝜕𝑥2
m

+
1

𝛿20
𝑓1(𝑧m)𝑓2(𝑧m)

𝜕𝑤m

𝜕𝑧m
, (15)

𝜑
𝜕𝐶ml

𝜕𝑡m
= 𝑌 𝑓3(𝑧m)−1𝑤m

+ 𝑓3(𝑧m)∇2
m𝐶ml + 𝑓4(𝑧m)

𝜕𝐶ml

𝜕𝑧m
. (16)

The corresponding boundary conditions are:
At 𝑧m = −1,

𝑤m = 0, 𝐶ml = 0. (17)

At 𝑧l = 𝑧m = 0,

𝑤l = ℎ𝑤m, 𝑌 ℎ𝐶l = 𝑋2
D𝐶ml, 𝑌

𝜕𝐶l

𝜕𝑧l
= 𝑋D

𝜕𝐶ml

𝜕𝑧m
,
(18)

𝜕2𝑤l

𝜕𝑧2l
− 𝛼

ℎ

𝛿0

𝜕𝑤l

𝜕𝑧l
+ 𝛼

ℎ3

𝛿0

𝜕𝑤m

𝜕𝑧m
= 0, (19)

1

𝑆𝑐l

𝜕

𝜕𝑡l

𝜕𝑤l

𝜕𝑧l
− ℎ4

𝜑0𝑆𝑐m

𝜕

𝜕𝑡m

𝜕𝑤m

𝜕𝑧m

=
𝜕

𝜕𝑧l
∇2

l 𝑤l +
ℎ4

𝛿20

𝜕𝑤m

𝜕𝑧m
. (20)

At 𝑧l = 1,

𝑤l = 0,
𝜕𝐶l

𝜕𝑧l
= 0,

𝜕2𝑤l

𝜕𝑧2l
= 0. (21)

Relevant parameters and functions[10] are defined
as

𝑆𝑐m =
𝜈l

𝐷m0
= 𝑆𝑐l ·𝑋D, 𝑆𝑐l =

𝜈l
𝐷l

, 𝑋D =
𝐷l

𝐷m0
,

𝑌 =
𝐻m

𝐷m0

∫︀ 0

−𝐻m
𝐷−1

m 𝑑𝑧
, 𝛿0 =

√︀
𝐾(𝜑0)

𝐻m
,

𝑅𝑎sl = − 𝛽S𝑔∆𝐶l𝐻
3
l

𝜈l𝐷l
,

𝑅𝑎sm = − 𝑔𝛽S∆𝐶ml𝐻m𝐾(𝜑0)

𝜈l𝐷m0
,

𝑓1(𝑧m) =
𝐾(𝜑0)

𝐾(𝜑(𝑧m))
, 𝑓2(𝑧m) =

1

𝐾(𝑧m)

𝑑𝐾(𝑧m)

𝑑𝑧m
,

𝑓3(𝑧m) =
𝐷m

𝐷m0
, 𝑓4(𝑧m) =

1

𝐷m0

𝑑𝐷m

𝑑𝑧m
,

and the Beaver–Joseph coefficient 𝛼[11] is set to be
0.1. The normal mode technique is applied, and the

Chebyshev-tau method[12] is utilized to solve the prob-
lem.

Similar to our previous works,[10,13] the solutal
hydrodynamic instability in directional solidification
with a dendritic mushy zone is discussed by using the
two classical parameters, Rayleigh number 𝑅𝑎 and
wavenumber 𝑎,

𝑅𝑎 =𝑅𝑎sl

(︁
1 +

𝑋D

𝑌 ℎ

)︁2(︁
1 +

1

ℎ

)︁2

, (22)

𝑎 = 𝑎l

(︁
1 +

1

ℎ

)︁
. (23)

The neutral stability curves and the amplitudes
of velocity and concentration under different pulling
rates are illustrated in Fig. 2.
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Fig. 2. (a) Neutral stability curves, one of which is es-
pecially thickened for attracting attention corresponding
to the critical case that 𝑉 = 13.17𝑉c. (b) Amplitudes of
velocity 𝑊l,m. (c) Amplitudes of concentration 𝑆l,m. (d)
Relationship between 𝐾 and the normalized 𝑉 . The am-
plitudes are renormalized in the scale of the liquid layer:
𝑊l = 𝑊mℎ and 𝑆l = 𝑆m𝑋2

D(𝑌 ℎ)−1. The domain of the
liquid layer is magnified to be [0,1].

In Fig. 2(a), the location of the whole curve
shifts upwards as 𝑉 increases. It implies a more
difficult stimulation of natural convection under a
higher pulling rate. This could be explained through
Fig. 2(d) where 𝐾(𝜑0) decreases with 𝑉 . Since 𝜑 and
𝐾 at the bottom of the mushy layer are set to be
constant, the general permeability of the mushy layer
is hereby inversely proportional to 𝑉 . Consequently,
the system becomes more stable under a higher pulling
rate.

Another important piece of information from
Fig. 2(a) is the transition of the instability mode. Dur-
ing the increase of the pulling rate, a bimodal fea-
ture with two local minima on the neutral instabil-
ity curve gradually appears, and the wavenumber to
the most unstable mode 𝑎c changes at the same time.
When 𝑉 = 10𝑉c, 𝑎c ≈ 11.7, which corresponds to the
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boundary-layer mode as pointed out by Worster.[15]

In other words, once the system destabilizes, the con-
vection takes place only in the liquid layer (Fig. 1(a))
with almost no influence on the interstitial liquid in
the mushy layer. However, as 𝑉 exceeds 15𝑉c, 20𝑉c, or
even larger, 𝑎c becomes 2.1, 1.9 or smaller, thus the in-
terstitial liquid in the mushy layer is also triggered and
links the liquid layer to convect systematically. This
is the so-called mushy-layer mode.[15] The threshold
pulling rate of mode transition in the present system
is estimated to be 13.17𝑉c through compared values of
the two local minima on a group of neutral stability
curves with varying 𝑉 . In the experiments of Drevet
et al.,[1] the maximum pulling rate 𝑉 = 12.2µm/s,
and it is merely twice the 𝑉c = 6.46µm/s. Obviously,
it is much less than the threshold value for the mode
transition. Therefore, it is believed that only the liq-
uid layer destabilizes during these experiments.

From Fig. 2(b), it can be seen that in the cases
of the boundary-layer mode instability, the interstitial
liquid in the mushy layer basically remains stagnant,
thus the morphology and growth of microstructure,
such as dendrites and arms, are only under a diffu-
sive condition without influence of convection. Con-
versely, if the instability convection is triggered in the
mushy-layer mode, the interstitial liquid flows right
after destabilization, and the evolving microstructure
is surely placed in a convective-diffusive condition. Of
course, it mainly occurs in the top half of the mushy
layer where the permeability is sufficiently large. Go-
ing deeper in the mushy layer, the decreasing porosity
makes the convection harder, thus the bottom half of
the mushy layer still remains in a pure diffusive situ-
ation.

The amplitudes of concentration as shown in
Fig. 2(c) behave in a general tendency the same as
velocity. However, even in the cases of the boundary-
layer mode, the solute perturbation penetrates into
the mushy layer much deeper. Furthermore, if the
mushy-layer mode is stimulated, the concentration
amplitudes seem to be irrelevant with the inhomo-
geneous feature of porosity distribution. The main
reason is the large ratio between viscosity and solute
diffusivity, i.e., the large Schmidt number 𝑆𝑐. The in-
fluence of permeability imposed on interstitial liquid is
through the viscous resistance by solid dendrite array
constituting the mushy layer, and is mainly embodied
when convection occurs. For diffusion of solute, effects
from permeability are always quite weak. That is why
solute is less coupled with the permeability distribu-
tion than the viscosity.

It is notable that, in experimental situations, the
depth of liquid zone is always much larger than 𝛿C.
The convection hereby naturally decays to be negligi-
ble, and is not restricted to vanish at the outer limit
of the boundary layer. In other words, the actual con-
straint at the top of the solutal boundary (Fig. 1(a)) is
much weaker than our model, thus the penetration of
convection into the mushy layer might be even more
difficult in experimental cases.

In summary, we have found a simplified model
for understanding and describing the destabilization
of liquid Al-3.5wt%Li during its upward solidifica-
tion process. Analysis and all the determined results
are based on a major precondition that the porosity
distribution in the mushy layer is completely decou-
pled with local temperature and concentration. The
present work is only an approximation of 𝜅 ≪ 𝐷, and
the stabilizing effect of temperature gradient is also ig-
nored. As a consequence, for a better comprehension
of the system, we need a further work on the double-
diffusive model where the thermal effect is considered
at the same time. In addition, dynamical coupling
among 𝜑, 𝑇m and 𝐶ml in actuality exists, thus the
phase change and the effect of the moving solidifica-
tion front should also be taken into account.

References

[1] Drevet B, Nguyen-Thi H, Camel D, Billia B and Dupouy
M D 2000 J. Cryst. Growth 218 419

[2] Davis S 2001 Theory Solidification (Cambridge: Cambridge
University Press) p 47

[3] Hennenberg M and Billia B 1991 J. Phys. I France 1 79
[4] Hunt J D 1979 Solidification and Casting of Metals (Lon-

don: Metals Society) p 3
[5] Billia B and Trivedi R 1993 Handbook of Crystal Growth

(Amsterdam: Elsevier) chap 14
[6] Combarnous M A and Bories S A 1975 Adv. Hydrosci. 10

231
[7] Colinet P, Legros J C and Velarde M G 2001 Nonlinear

Dynamics of Surface-Tension-Driven Instabilities (Berlin:
Wiley-VCH)

[8] Boussinesq J V 1897 Théorie de l’écoulmnent tourbillon-

nant et tumultuex des liquides dans les lits rectilignes à

grande section (Paris: Gauthier-Villars) p 1
[9] Nield D A and Bejan A 1998 Convection Porous Media 2nd

edn (New York: Springer-Verlag)
[10] Zhao S C, Liu Q S, Nguyen-Thi H and Billia B 2011 Chin.

Phys. Lett. 28 024702
[11] Beavers G S and Joseph D D 1967 J. Fluid Mech. 30 197
[12] Orszag S A 1971 J. Fluid Mech. 50 689
[13] Zhao S C, Liu Q S, Liu R, Nguyen-Thi H and Billia B 2010

Int. J. Heat Mass Transfer 53 2951
[14] Chen F and Chen C F 1988 J. Heat Transfer 110 403
[15] Worster M G 1992 NATO ASI Ser. E 219 113

064701-4

Chin. Phys. Lett.
References

Chin. Phys. Lett.
References

Chin. Phys. Lett.
References

Reference Title:
Ref

Reference Title:
Ref

Reference Title:
Ref

Reference Title:
Ref

Reference Title:
Ref

Reference Title:
Ref

Reference Title:
Ref

Reference Title:
Ref

Reference Title:
Ref

http://cpl.iphy.ac.cn
http://dx.doi.org/10.1016/S0022-0248(00)00567-4
http://dx.doi.org/10.1051/jp1:1991116
http://dx.doi.org/10.1016/B978-0-12-021810-3.50008-4
http://dx.doi.org/10.1016/B978-0-12-021810-3.50008-4
http://dx.doi.org/10.1088/0256-307X/28/2/024702
http://dx.doi.org/10.1088/0256-307X/28/2/024702
http://dx.doi.org/10.1017/S0022112067001375
http://dx.doi.org/10.1017/S0022112071002842
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.04.003
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.04.003
http://dx.doi.org/10.1115/1.3250499
http://dx.doi.org/10.1007/978-94-011-2809-4_20

	Title
	Fig. 1
	Eq. (1)
	Eq. (2)
	Eq. (3)
	Eq. (4)
	Eq. (5)
	Eq. (6)
	Eq. (7)
	Eq. (8)
	Eq. (9)
	Eq. (10)
	Eq. (11)
	Eq. (12)
	Eq. (13)
	Eq. (14)
	Eq. (15)
	Eq. (16)
	Eq. (17)
	Eq. (18)
	Eq. (19)
	Eq. (20)
	Eq. (21)
	Eq. (22)
	Eq. (23)
	Fig. 2
	References

