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The reflection and transmission of a plane wave through a microstructured slab sandwiched by two half-
spaces are studied in this paper. First, the wave propagation in a micro-structured solid of the dipolar
gradient elasticity is formulated. Then, the reflection and transmission properties of a plane wave
through a micro-structured slab sandwiched by two half-spaces are considered. The nontraditional
interfacial conditions by requiring the auxiliary monopolar tractions, the auxiliary dipolar tractions, the
displacements and the normal derivative of displacements continuous across the two interfaces are used
to determine the amplitude ratio. The energy fluxes carried by various waves and the reflection and
transmission coefficients in terms of energy flux ratio with respect to incident wave are calculated
numerically. Based on these numerical results, the microstructure effects on the reflection and trans-
mission waves for the incident P wave and incident SH wave with different wavelength are discussed. In
particular, the influences of three characteristic lengths, namely, the incident wavelength, the thickness
of slab and the characteristic length of microstructure, on the reflection and transmission waves are
analyzed. It is found that the microstructure effect results in the appearance of evanescent wave mode.
The reflection and transmission coefficients are evidently dependent upon the microstructure parame-
ters and become more pronounced when the incident wavelength is close to the characteristic length of
microstructure.

© 2015 Elsevier Masson SAS. All rights reserved.
1. Introduction

It is known that the classical elastic theory do not suffice for an
accurate and detailed description of corresponding mechanical
behavior in the range of micro and nano-scales. The main cause is
the absence of an internal length, characteristic of the underlying
microstructure, from the constitutive equation in the classical
elastic theory, and therefore the notable size effects observed
experimentally with newly developed probes such as nano-
indenters and atomic force microscopes could not be captured
(see Fleck et al., 1994; St€olken and Evans, 1998; Chong and Lam,
1999; McFarland and Colton, 2005). In the problem of wave
propagation, the classical elastic theory is also believed to be
inadequate for a material possessing microstructure, in particular,
when the wavelength of an incident wave is comparable to the
echanics, University of Sci-

served.
length of the material microstructure. In order to take the
microstructure effects into consideration, the generalized con-
tinuum theories, for example, the couple stress theory (Mindlin
and Tiersten, 1962, Toupin, 1962), the micromorphic theory
(Eringen, 1964), the micropolar theory (Eringen, 1966), micro-
stretch theory (Eringen, 1990) and the nonlocal theory (Eringen,
2001), were proposed successively. Because the freedom degree
of the material particle increases in these generalized continuum
theories, the modes of vibration of material particle become more
complicated and therefore create many new wave modes which
cannot be observed in the classical elastic solids. Parfitt and
Eringen (1969) and Tomar and Gogna (1995) have shown that
there are four basic waves travelling at four distinct phase
velocities in an infinite micropolar solid. They are the longitudinal
displacement wave (LD), the longitudinal microrotation wave
(LR), the transverse displacement wave (TD) and the transverse
microrotation wave (TR). Mindlin (1964) proposed a linear elastic
theory of solid with microstructure where macromotion and
micromotion coexist and showed that there are four micro-
vibration modes. The coupling between the macro-vibration and
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the micro-vibration leads to twelve kinds of wave modes. Eight of
them are the dispersive. Too many motion freedoms and material
parameters make the application of these microstructure elastic
theories restricted. In contrast, the gradient elastic theory has less
material parameters and therefore attracted wide attentions in
the last two decades. Askes and Aifantis (2011) gave a compre-
hensive and detailed review of various gradient elasticity formats
including the multi-scale format and the mono-scale format, the
stress gradient format and the strain gradient format, the stable
strain gradient format and the unstable strain gradient format and
so on. However, many of these gradient elasticity theories are out
of the context of the rigorous theories of Toupin (1962) and
Mindlin (1964). Georgiadis et al. (2004) initially derived the
dipolar gradient elasticity with consideration of surface energy.
Only two microstructure parameters are included in this gradient
theory and three extra surface parameters are added when the
surface energy effect is considered. This gradient theory predicts
the dispersive properties of Rayleigh surface wave propagating
along the surface of half-space. Gourgiotis et al. (2013) further
studied the reflection problem of plane waves on a plane
boundary of half-space governed by the gradient elasticity. Their
investigations showed that there are only four wave modes in the
gradient elastic solid considered. Two of them are P wave (the
dilatational or longitudinal wave) and SV wave (the distortional or
transverse wave); other two of them are the evanescent waves
which reduce to the P type and S type surfacewaves at a boundary.
These waves are all dispersive. Arkadi and Mihhail (2013) also
studied the influences of material microstructure on the reflection
of thermoelastic wave based on the gradient elasticity. Compared
with the reflection and transmission through an interface, the
reflection and transmission problem through a slab will concern
two interfaces and a geometrical characteristic length, namely,
the thickness of slab. Giacomo and Angelo (2008, 2012) studied
the wave propagation through an elastic slab and a viscoelastic
slab, respectively. Tolokonnikov (1998) studied the wave propa-
gation through an inhomogeneous anisotropic slab. Larin and
Tolokonnikov (2006) further studied the wave propagation
through a non-uniform thermoelastic slab. In particular, if the slab
is a solid with microstructure, then, there are two external char-
acteristic lengths and one internal characteristic length to be
considered. Although the reflection and transmission through a
slab characteristic of the classical elasticity had been studied, the
study on thewave propagation through a slabwithmicrostructure
is less reported. Recently, Hsia and Su (2008) studied the wave
propagation through a microporous slab characteristic of micro-
polar elasticity. Khurana and Tomar (2009) studied the wave
propagation through a chiral slab characteristic of non-
centrosymmetry. The effects of chirality parameters on the
reflection and transmission were discussed. However, only the
displacement amplitude ratios were calculated while the energy
flux densities carried by various waves were not calculated. And
therefore the numerical results are obtained without validation by
the energy flux conservation.

In this paper, the reflection and transmission of in-plane and
out-of-plane elastic waves through a slab sandwiched between two
elastic or gradient elastic half-spaces are studied. The slab is char-
acteristic of the dipolar gradient elasticity. The dipolar gradient
elastic theory is derived from the linear elastic theory of micro-
structured solids proposed by Mindlin based on some hypothesis.
The non-traditional interfacial conditions at two interfaces are used
to determine the displacement amplitude ratios of various reflec-
tion and transmissionwaves with respect to the incident wave. The
energy fluxes carried by various waves are calculated and used to
validate the numerical results. The influences of the microstructure
parameters on the reflection and transmission waves with
consideration of three characteristic lengths, namely, the incident
wavelength, the thickness of slab and the characteristic length of
microstructure, are discussed based on the numerical results.
2. Simplified formulation of dipolar gradient elasticity

According to the Mindlin's elastic theory of solids with micro-
structure, the strain energy density can be expressed as

W ¼ 1
2
cijklεijεkl þ

1
2
bijklgijgkl þ

1
2
aijklmncijkclmn þ dijklmgijcklm

þ fijklmcijkεlm þ gijklgijεkl;

(1)

where cijkl, bijkl, aijklmn, dijklm, fijklm and gijkl are the components of
elastic tensor. εij, gij(¼uj,i � jij) and cijk(¼jjk,i) are the macro-strain
of macro-medium, relative deformation (the difference between
the macro-displacement gradient and the micro-deformation) and
the micro-deformation gradient (the macro-gradient of the micro-
deformation), respectively. If the relative deformation is ignored,
namely, gij ¼ 0, then, the strain energy density function is simpli-
fied as

W ¼ 1
2
cijklεijεkl þ

1
2
aijklmncijkclmn þ fijklmcijkεlm: (2)

It means that the strain energy density is dependent of the
strain not only but also the strain gradient. Even for isotropic and
centrosymmetric medium, there are too many material constants
involved. A phenomenological simplified version is given as
following.

W ¼
�
1
2
lεiiεjj þ mεijεij

�
þ
�
1
2
lcεii;kεjj;k þ mcεij;kεji;k;

�
(3)

where the first term is the contribution from the strains; the second
term is the contribution from the strain gradient. This form of strain
energy density without consideration of surface effects is first given
by Georgiadis et al. (2004). Define

tij ¼
vW
vεij

¼ �
ldijεpp þ 2mεij

�
; (4a)

mkij ¼
vW
vckij

¼ c
�
ldijεpp;k þ 2mεij;k

�
; (4b)

where l and m are the classic lame constants; c is a microstructure
parameter with dimension of m2; tij is the Cauchy stress or
monopolar stress while mijk is the dipolar stress with the di-
mensions of Nm�1. The monopolar stress and the dipolar stress are
corresponding with the notion of monopolar force and the dipolar
force, respectively. The monopolar forces are the classical forces
and the dipolar forces are the anti-parallel forces acting between
the micro-media contained in the continuum with microstructure.
It is noted that there are a microstructure parameter c involved in
the constitutive equations. Therefore, the microstructure effects
can be captured to a certain extent.

The kinetic energy density includes two terms. One involves the
velocity, and the other term involves the velocity gradient

T ¼ 1
2
r _uj _uj þ

1
6
rd2 _uk;j _uk;j: (5)

where r is the mass density and d is the characteristic length of
microstructure.
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The work done by the external forces is

W1 ¼
Z
V

FkukdV þ
Z
S

PkukdSþ
Z
S

RkDukdS; (6)

where Fk is the body force. Pk is the monopolar traction. Rk is the
dipolar tractions.

Hamilton variational principle requires

d

Zt1
t0

Z
V

ðT �WÞdVdt þ
Zt1
t0

Z
S

dW1dSdt ¼ 0; (7)

which leads to the motion equation and the boundary condition

�
tjk � mijk;i

�
;j
þ Fk ¼ r€uk �

rd2

3
€uk;jj; in V (8)

Pk ¼ nj
�
tjk � mijk;i

�
� Dj

�
nimijk

�
þ ðDlnlÞninjmijk

þ rd2

3
nj€uk;j; on surface (9)

Rk ¼ ninjmijk; on surface (10)

where nj is the normal of the boundary of solid. Dj ¼ (djl�njnl)vl,
D ¼ nlvl.

3. Reflection and transmission through a microstructured
slab

Inserting Eqs. (3) and (4) into Eq. (8) and ignoring the volume
force leads to the equation of motion in terms of displacement.

�
1� cV2

�h
ðlþ mÞVV$uþ mV2u

i
¼ r€u� rd2

3
V2€u; (11)

where V2 is the Laplace operator. Eq. (11) reduces to Navier equa-
tion in the classical elastic theory when the microstructure
parameter c and d are taken to be zero. It is noted that the micro-
structure parameter c and d appear in the equation. It means that
the microstructure effects will influence the wave propagation
modes in the solid.

In the case of in-plane incident wave (P or SV wave), the
application of Helmholtz vector decomposition

uðx; yÞ ¼ uxðx; yÞex þ uyðx; yÞey ¼ V4ðx; yÞ þ V� jðx; yÞez;
(12)

leads to�
V2 þ s2p

��
V2 � t2p

�
4 ¼ 0; (13a)

�
V2 þ s2s

��
V2 � t2s

�
j ¼ 0; (13b)

Eq. (13) means that there are two travelling waves of wave
number sp and ss and two evanescent waves with imaginary
wavenumber or attenuation factor tp and ts. In the reflection and
transmission problem, the apparent wave number of all waves
(incident waves, reflection waves and transmission waves) should
be equal. Let us consider the solutions of form

4ðx; y; tÞ ¼ e4ðyÞexp½iðxx� utÞ�; (14a)
jðx; y; tÞ ¼ ejðyÞexp½iðxx� utÞ�; (14b)

Inserting Eq. (14) into Eq. (13) leads to�
d2

dy2
þ b2p

��
d2

dy2
� g2p

�e4ðyÞ ¼ 0; (15a)

�
d2

dy2
þ b2s

��
d2

dy2
� g2s

�ejðyÞ ¼ 0; (15b)

where

b2p ¼ s2p � x2; g2p ¼ t2p þ x2; b2s ¼ s2s � x2; g2s ¼ t2s þ x2; sp

¼
�
1
2c

	
Dp � ð1� aÞ
�1

2

;

tp ¼
�
1
2c

	
Dp þ ð1� aÞ
�1

2

; ss ¼
�
1
2c

½Ds � ð1�mÞ�
�1

2

; ts

¼
�
1
2c

½Ds þ ð1�mÞ�
�1

2

;

a ¼ u2d2

3V2
p
; m ¼ u2d2

3V2
s
; Dp ¼

"
ð1� aÞ2 þ 4cu2

V2
p

#1
2

; Ds

¼
"
ð1�mÞ2 þ 4cu2

V2
s

#1
2

;

V2
p ¼ lþ 2m

r
; V2

s ¼ m

r
:

It is noted that both g2
p and g2

s always are real values greater than
zero.Whereas b2p and b2s may have real values greater than, equal to,
or less than zero. In the case of b2p >0 and b2s >0,

4 ¼ A1 exp
	
i
�
xx� bpy� ut

�
þ A2 exp
	
i
�
xxþ bpy� ut

�

þ C1 exp

	þ gpyþ iðxx� utÞ
þ C2 exp
	� gpy

þ iðxx� utÞ
;
(16a)

j ¼ B1 exp½iðxx� bsy� utÞ� þ B2 exp½iðxxþ bsy� utÞ� þ D1 exp½
þ gsyþ iðxx� utÞ� þ D2 exp½ � gsyþ iðxx� utÞ�:

(16b)

Consider an incident plane P or SV wave from medium1
propagates obliquely toward a slab (of a thickness h) sandwiched
by two half-planes, see Fig. 1. The two half-planes are indicated by
medium 1 and medium 3, respectively. The slab is indicated by
medium 2 which is a homogenous medium of different
microstructured from medium 1 and medium3. Their material
constants are (vi,mi,ri,ci,di) (i ¼ 1,2,3), respectively. According to Eq.
(16), the incident waves, the reflection waves and the trans-
mission waves can be expressed as (the time factor exp(�iut) is
suppressed for brevity)

41 ¼ A0 exp
	
isp1ðsin q1xþ cos q1yÞ



; (17a)

j1 ¼ B0 exp½iss1ðsin q2xþ cos q2yÞ�; (17b)

for incident P wave and SV wave.



Fig. 1. Reflection and transmission through a microstructured slab sandwiched by two elastic or gradient elastic half-spaces.
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41 ¼A1 exp
	
isp1ðsin q1x�cos q1yÞ


þC1 exp
�
isp1 sin q1xþgp1y

�
;

(18a)

j1 ¼B1 exp½iss1ðsin q2x�cos q2yÞ�þD1 expðiss1 sin q2xþgs1yÞ;
(18b)

for the reflection P wave, SV wave and two surface waves.

43 ¼A3 exp
	
isp3ðsin q3xþcos q3yÞ


þC3 exp
�
isp3 sin q3x�gp3y

�
;

(19a)

j3 ¼B3 exp½iss3ðsin q4xþcos q4yÞ�þD3 expðiss3 sin q4x�gs3yÞ;
(19b)

for the transmission P wave, SV wave and two surface waves.
In the medium 2, there are two sets of waves. One of them is the

transmission waves at the interface between medium 1 and me-
dium2 and the other is the reflection waves at the interface be-
tween medium 2 and medium 3. These waves can be expressed as

42 ¼ Aþ
2 exp

	
isp2

�
sin qpxþ cos qpy

�
þ Cþ
2 exp

�
isp2 sin qpx

� gp2y
�þ A�

2 exp
	
isp2

�
sin qpx� cos qpy

�

þ C�

2 exp
�
isp2 sin qpxþ gp2y

�
;

(20a)

j2 ¼ Bþ2 exp½iss2ðsin qsxþ cos qsyÞ� þ Dþ
2 expðiss2 sin qsx

� gs2yÞ þ B�2 exp½iss2ðsin qsx� cos qsyÞ�
þ D�

2 expðiss2 sin qsxþ gs2yÞ;
(20b)

where Aj
i and Bji represent the amplitudes of bulk waves and Cj

i and
Dj
i represent the amplitudes of the evanescent waves. The subscript

i¼ 0 indicates the incident wave and i¼ 1,2,3 indicates thewaves in
the medium 1, medium 2 and medium3, respectively. The
superscript j ¼ þ on the propagating waves indicates the forward
propagating waves which propagate toward to the interface
between medium 2 and medium 3; and j ¼ � represent the back-
ward propagating waves which propagate toward to the interface
between medium 2 and medium1. There are also two sets of
evanescent waves in the medium 2. Both of them propagate along
positive x direction. One set of them propagates near top boundary
and the other propagates near the low boundary. In order to
distinguish these two sets of evanescent waves, we still use (þ) sign
and (�) sign. Therefore, (þ) sign and (�) sign on the evanescent
waves only represent that they are associated with the forward and
backward propagating wave, respectively. These amplitudes should
be determined by the continuous conditions at two interfaces.
Different from the classical elastic solid, the continuous conditions
of displacement components and traction components are replaced
by�
uð1Þi � uð2Þi

����
y¼0

¼ 0;
�
nyu

ð1Þ
i;y � nyu

ð2Þ
i;y

�
y¼0

¼ 0; ði ¼ x; yÞ
(21a,b)

�
Pð1Þi � Pð2Þi

����
y¼0

¼ 0;
�
Rð1Þi � Rð2Þi

����
y¼0

¼ 0: (21c,d)

�
uð2Þi � uð3Þi

����
y¼h

¼ 0;
�
nyu

ð2Þ
i;y � nyu

ð3Þ
i;y

����
y¼h

¼ 0; (22a,b)

�
Pð2Þi � Pð3Þi

����
y¼h

¼ 0;
�
Rð2Þi � Rð3Þi

����
y¼h

¼ 0: (22c,d)

where

Px ¼ 2m
�
1� cV2

�
εyx � c

	ðlþ 2mÞεxx;x þ lεyy;x


y þ

rd2

3
€ux;y

Py ¼
�
1� cV2

�	ðlþ 2mÞεyy þ lεxx

� 2mcεxy;xy þ rd2

3
€uy;y
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Rx ¼ 2mcεyx;y; Ry ¼ c
	ðlþ 2mÞεyy þ lεxx



;y;

The interfacial conditions Eqs. (21) and (22) mean that the
displacement, the normal derivative of displacement, the monop-
olar traction and the dipolar tractions are continuous across each
interface. The interface conditions require that the apparent
wavenumbers are same for incident wave, reflection and trans-
mission waves. This gives the relation between incident angle,
reflection angles and transmission angles.

sp1 sin q1 ¼ ss1 sin q2 ¼ sp3 sin q3 ¼ ss3 sin q4 ¼ sp2 sin qp

¼ ss2 sin qs:

When medium 1 and medium 3 are the classical elastic solids,
the interface conditions reduces to

�
uð1Þi � uð2Þi

����
y¼0

¼ 0
�
Pð2Þi �t

ð1Þ
ij nj

����
y¼0

¼ 0
�
Rð2Þi

����
y¼0

¼ 0
�
i ¼ x; y

�
(23a,b,c)

�
uð2Þi � uð3Þi

����
y¼h

¼ 0;
�
Pð2Þi � t

ð3Þ
ij nj

����
y¼h

¼ 0;
�
Rð2Þi

����
y¼h

¼ 0:

(24a,b,c)

It should be pointed out that letting the normal derivatives of
the displacements to be zero (nyu

ð2Þ
i;y ¼ 0) instead of the dipolar

tractions Rð2Þi ¼ 0 in Eqs. (23) and (24) is also possible option.
Because the normal derivatives of the displacements and the
dipolar tractions are both related to the microstructure effects, the
two sets of interface conditions reflect two kinds of different
microstructure of interfaces, in fact.

Eqs. (21) and (22) can be rewritten in the matrix form

Ax ¼ B; (25)

where

x ¼
�
A1;C1;B1;D1;A

þ
2 ;C

þ
2 ;A

�
2 ;C

�
2 ;B

þ
2 ;D

þ
2 ;B

�
2 ;D

�
2 ;A3;C3;B3;D3

�
�
.
A0:

In the case of out-of plane incident wave (SH wave), inserting
u ¼ uz(x,y)ez directly into Eq. (11) leads to

�
V2 þ s2sh

��
V2 � t2sh

�
u ¼ 0 (26)

where

ssh ¼
�
1
2c

½Ds � ð1�mÞ�
�1

2

; tsh ¼
�
1
2c

½Ds þ ð1�mÞ�
�1

2

; m

¼ u2d2

3V2
s
; Ds ¼

"
ð1�mÞ2 þ 4cu2

V2
s

#1
2

:

Eq. (26) implies that there are a SH bulk wave and a SH type
surface wave (called SSH wave for brevity) in a gradient elastic
medium. Accordingly, the displacement field in the medium 1,
medium 2 and medium 3 can be expressed as
uð1Þ ¼ H0 exp½issh1ðsin q1xþ cos q1yÞ� þ H1 exp½issh1ðsin q1x

� cos q1yÞ� þ F1 expðgsh1yþ issh1 sin q1xÞ;
(27a)

uð2Þ ¼ Hþ
2 exp½issh2ðsin qsxþ cos qsyÞ� þ Fþ2 expð � gsh2y

þ issh2 sin qsxÞ þ H�
2 exp½issh2ðsin qsx� cos qsyÞ�

þ F�2 expðgsh2yþ issh2 sin qsxÞ;
(27b)

uð3Þ ¼ H3 exp½issh3ðsin q2xþ cos q2yÞ� þ F3 expð � gsh3y

þ issh3 sin q2xÞ: (27c)

where H0, H1, H2 and H3 are the amplitudes of bulk waves; F1, F2 and
F3 are the amplitudes of surface waves (called SSH wave for brev-
ity). The interface conditions can be expressed as�
uð1Þz � uð2Þz

����
y¼0

¼ 0;
�
nyu

ð1Þ
z;y � nyu

ð2Þ
z;y

����
y¼0

¼ 0; (28a,b)

�
Pð1Þz � Pð2Þz

����
y¼0

¼ 0;
�
Rð1Þz � Rð2Þz

����
y¼0

¼ 0: (28c,d)

�
uð2Þz � uð3Þz

����
y¼h

¼ 0;
�
nyu

ð2Þ
z;y � nyu

ð3Þ
z;y

����
y¼h

¼ 0; (29a,b)

�
Pð2Þz � Pð3Þz

����
y¼h

¼ 0;
�
Rð2Þz � Rð3Þz

����
y¼h

¼ 0: (29c,d)

where

Pz ¼ 2m
h
εyz � c

�
V2

εyz þ εxz;xy

�i
þ rd2

3
€uz;y Rz ¼ 2mcεyz;y:

These interface conditions can also be rewritten into matrix
form, as Eq. (25).

The explicit expression of the elements of matrix A and B in the
case of incident P wave are listed in the appendix a and that in the
case of incident SH wave are not given here for brevity but can be
obtained similarly. It is noted that the matrix A is of dimension
16 � 16 in the case of incident P wave and 8 � 8 in the case of
incident SH wave. When the two half-spaces are both classic elastic
media, the matrix A is of dimension 12� 12 in the case of incident P
wave and 6� 6 in the case of incident SHwave. The amplitude ratio
x for various incident waves can be obtained by solving Eq. (25).

It is known that the amplitude ratio x is dependent upon the
material constants of three media (ni,mi,ri,ci,di) and the incident
wave parameters (A0,l,u,q). In order to simplify the analysis, it is
assumed that medium 1 and medium 3 are identical in this paper.
Thus, the dependence of reflection and transmission upon the
material constants and incident wave parameters may be
expressed as

ðAi;Bi;Ci;DiÞ ¼ f ðn1;m1; r1; c1; d1; n2;m2; r2; c2; d2;A0; l;u; q; hÞ:
(30)

Choose (r2,d2,u) as the basic physical quantities, then, the
nondimensional form of Eq. (30) is

ðAi; Bi;Ci;DiÞ=A0 ¼ f
�
n1;a1;d; v2;m; r;a2; l; q; h

�
; (31)

where vi is the Poisson ratio of material, l is the incident wave-
length (not confused with the Lame constants). Besides,
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a1 ¼
ffiffiffiffiffi
c1

p
d1

; d ¼ d1
d2

; m ¼ m1
m2

; r ¼ r1
r2
; a2 ¼

ffiffiffiffiffi
c2

p
d2

; l ¼ l

d2
; h ¼ h

l
:

Although the amplitude ratios of reflection and transmission
waves can be obtained from Eq. (25), the propagation process
through a slab and the formation of resulting reflection and
transmission waves are concealed by Eq. (25). In order to present a
clearer physical picture of wave propagation through a slab and of
the formation of resulting reflection and transmission waves, we
appeal to the multiply reflection and transmission approach.

In the case of incident SH wave, there is no mode conversion.
Therefore, the reflection and transmission SH waves can be ob-
tained by

HR ¼ R12H
I þ T21R23T12H

Iexp
�
i2kshy h

�
þ T21R23R21R23T12H

Iexp
�
i4kshy h

�
þ/; (32a)

HT ¼ T23T12H
Iexp

�
ikshy h

�
þ T23R21R23T12H

Iexp
�
i3kshy h

�
þ T23R21R23R21R23T12H

Iexp
�
i5kshy h

�
þ/; (32b)

where HR,HT and HI are the amplitude of reflection, transmission
and incident waves, respectively, namely, H1, H3 andH0 in Eq. (27).
Rij and Tij are the reflection and transmission coefficients (namely,
HR ¼ RHI and HT ¼ THI) at the interface between medium i and
medium j when incident wave is from medium i. kshy is the pro-
jection of wave vector along y axis. The first term in the right side of
Eq. (32a) stands for the first reflection wave at interface 1(between
medium 1 and medium 2). The second term stands for the second
reflection wave which propagates from the interface 1 to the
interface 2 (between medium 2 and medium 3) and is reflected at
the interface 2 and then return to the interface 1 and is transmitted
at the interface 1. The total phase shift is expði2kshy hÞ during the
travel process. Third term stands for the third reflection wave
which travels through a slab for two rounds and is eventually
transmitted at the interface 1. Each terms in right side of Eq. (32b)
can be understand similarly. The first transmission wave propa-
gates through a slab for one way. The second transmission wave
propagates through a slab for one round and half and so on. The
multiply reflection and transmission process is shown in Fig. 2.
After preforming the summation of infinite series, Eq. (35) can be
rewritten as

HR ¼
0@R12 þ

T21R23T12exp
�
i2kshy h

�
1� R23R21exp

�
i2kshy h

�
1AHI; (33a)

HT ¼
T23T12exp

�
ikshy h

�
1� R21R23exp

�
i2kshy h

�HI: (33b)

In the case of incident P or incident SV wave, there is mode
conversion. The multiply reflection and transmission process is far
more complicated and matrix formulation is necessary. Let
aI ¼ (A0,B0)T, aR ¼ (A1,B1)T and aT ¼ (A3,B3)T stand for the incident
waves, the reflection waves and the transmission waves, respec-
tively. Rij and Tij are the reflection and transmissionmatrix (aR¼ RaI

and aT ¼ TaI) of the interface between medium i and medium j
when incident wave is from medium i. Then, the resulting reflec-
tion and transmission waves can be expressed as
aR ¼ R12aI þ T21LR23LT12aI þ T21LR23LR21LR23LT12aI

þ/;

(34a)

aT ¼ T23LT12a
I þ T23LR21LR23LT12a

I

þ T23LR21LR23LR21LR23LT12a
I þ/; (34b)

where

L ¼
0@ exp

�
ikpyh

�
0

0 exp
�
iksyh

�1A
is the phase shift matrix of waves propagating between the

interface 1 and the interface 2. kpy and ksy are the projections of wave
vectors of P wave and SV waves along along y axis, respectively.
After preforming the summation of infinite series of matrix, Eq. (34)
can be rewritten as

aR ¼
h
R12 þ T21ðI�LR23LR21Þ�1

LR23LT12
i
aI; (35a)

aT ¼ T23ðI�LR21LR23Þ�1
LT12a

I: (35b)

Eqs. (33) and (35) implies that the reflection and transmission
coefficients may be a period function of the nondimensional
thickness kyh.
4. Energy flux of reflection and transmission and the energy
conservation

Energy flux density of a plane wave along the propagation di-
rection n can be obtained by,

qðn; tÞ ¼ �PiðnÞ _ui � RiðnÞnj _ui;j; (36)

where the first term represents the contribution from monopolar
tractions and second term the contribution from dipolar tractions.
Due to the time dependence of energy flux, the average energy flux
over one period, namely, qðnÞ ¼ 1

T

Z T

0
qðn; tÞdt is more interesting

and can be calculated by

qp0 ¼ 1
2
us3p1

h
ðl1 þ 2m1Þ � m1m1 þ 2c1ðl1 þ 2m1Þs2p1

i
A0A

*
0

(37a)

qs0 ¼ 1
2
us3s1m1

�
1�m1 þ 2c1s

2
s1

�
B0B

*
0 (37b)

qsh0 ¼ 1
2
ussh1m1

�
1�m1 þ 2c1s

2
sh1

�
H0H

*
0 (37c)

for incident P wave, SV wave and SH wave, respectively.

qpi ¼ 1
2
us3pi

h
ðli þ 2miÞ � mimi þ 2ciðli þ 2miÞs2pi

i
AiA

*
i ði ¼ 1;3Þ

(38a)

qsi ¼
1
2
us3simi

�
1�mi þ 2cis

2
si

�
BiB

*
i (38b)
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qshi ¼ 1
2
usshimi

�
1�mi þ 2cis

2
shi

�
HiH

*
i (38c)

for reflection waves (i ¼ 1) and transmission waves (i ¼ 3).

qp
±

2 ¼ 1
2
us3p2

h
ðl2 þ 2m2Þ � m2m2 þ 2c2ðl2 þ 2m2Þs2p2

i
A±
2A

±*
2 ;

(39a)

qs
±

2 ¼ 1
2
us3s2m2

�
1�m2 þ 2c2s

2
s2

�
B±2B

±*
2 ; (39b)

qsh
±

2 ¼ 1
2
ussh2m2

�
1�m2 þ 2c2s

2
sh2

�
H±
2H

±*
2 ; (39c)

for the forward and the backward propagating waves in the slab.

In Eqs. (37)e(39), li þ 2mi ¼ 2ð1�viÞ
1�2vi

mi. Symbol * indicates the com-

plex conjugate quantity.
For the SP and SS surface waves, because the displacement

distribution on thewavefront of surfacewaves is not homogeneous,
the value of energy flux density on the wavefront is thus position-
dependent and decreases gradually with the increase of jyj. Here, a
unit area is taken to be lz � ly ¼ gp � 1/gp or lz � ly ¼ gs � 1/gs near
the surface, Then, the energy fluxes through the prescribed unit
area are

qspi ¼ 1
2
Muxi

�
CiC

*
i

�
Jspi exp

�
±2ngpih

�
; (40a)
E1 ¼ qp1 cos q1 þ qs1 cos q2 þ qpþ2 cos qp þ qsþ2 cos qs � qp�2 cos qp � qs�2 cos qs
qp0 cos q1

¼ 1 (41)
qssi ¼ 1
2
Muxi

�
DiD

*
i

�
Jssi expð±2ngsihÞ; (40b)
E2 ¼ �qpþ2 cos qp � qsþ2 cos qs þ qp�2 cos qp þ qs�2 cos qs þ qp3 cos q3 þ qs3 cos q4
qp0 cos q1

¼ 0 (42)
qshi ¼ 1
2
Muzshi

�
FiF

*
i

�
Jshi expð±2ngshihÞ; (40c)

where n ¼ 0 for the surface waves at interface between medium 1
and medium 2; n ¼ 1 for the surface wave at interface between
medium 2 and medium 3; Eq. (40) takes the plus sign when i ¼ 2
and the minus sign when i ¼ 3. Besides,

M ¼ 1� expð � 2Þ
2

;

Jspi ¼ lit
2
pi � 2mi

�
t2pi þ x2i

�
þ mimi

�
t2pi þ 2x2i

�
þ 2cit

2
pi

h
lix

2
i

þ 2mi
�
t2pi þ 2x2i

�i
;

Jssi ¼ mi

h
�
�
3t2si þ 4x2i

�
þmi

�
t2si þ 2x2i

�
þ 2cit

2
si

�
2t2si þ 3x2i

�i
:

Jshi ¼ mi

�
mi � 1þ 2cit

2
shi

�
:

Define the reflection and transmission coefficients as the energy
flux ratios along the propagation directions of various reflection
waves and transmission waves with respect to incident waves,
namely, qp1ðnP1Þ=qp0ðn0Þ, qs1ðns1Þ=qp0ðn0Þ, qsp1 ðnÞ=qp0ðn0Þ and

qss1 ðnÞ=qp0ðn0Þ for the reflection coefficients, qp3ðnP3Þ=qp0ðn0Þ,
qs3ðns3Þ=qp0ðn0Þ, qsp3 ðnÞ=qp0ðn0Þ and qss3 ðnÞ=qp0ðn0Þ for the trans-

mission coefficients and qp
±

2 ðnp± Þ=qp0ðn0Þ, qs
±

2 ðns± Þ=qp0ðn0Þ,
qsp

±

2 ðnsp± ÞðnÞ=qp0ðn0Þ and qss
±

2 ðnss± Þ=qp0ðn0Þ for the coefficients of
forward and backward waves in the medium 2 in the case of inci-

dent P wave. In the case of incident SH wave, qsh1 ðnsh1Þ=qsh0 ðn0Þ, and
qssh1 ðnÞ=qsh0 ðn0Þ for the reflection coefficients, qsh3 ðnsh3Þ=qsh0 ðn0Þ, and
qssh3 ðnÞ=qsh0 ðn0Þ for the transmission coefficients and

qsh
±

2 ðnsh± Þ=qsh0 ðn0Þ and qssh
±

2 ðnÞ=qsh0 ðn0Þ for the coefficients of for-
ward and backward waves in the medium 2. Consider that the
energy flux vectors of various surface waves are along the interface,
the energy conservation requires that the normal input energy flux
is equal to the normal output energy flux through a thin layer with
an infinitesimal thickness at y ¼ 0, namely,
Similarly, the energy conservation through a thin layer at y ¼ h
requires
Combining Eqs. (41) and (42) leads to

E ¼ E1 þ E2 ¼ qp1 cos q1 þ qs1 cos q2 þ qp3 cos q3 þ qs3 cos q4
qp0 cos q1

¼ 1

(43)

for the incident P wave. In the case of incident SH wave, Eq. (44)
is replaced by

E ¼ E1 þ E2 ¼ qsh1 cos q1 þ qsh3 cos q3
qsh0 cos q1

¼ 1 (44)

Eqs. (43) and (44) mean that the normal input energy flux is
equal to the normal output energy flux through a slab with a finite



Fig. 2. Sketch of multiply reflection and transmission of bulk waves.
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thickness when no energy is absorbed and created in the slab and
can be used to validate the numerical results.

5. Numerical examples and discussion

In the numerical examples, the main concerns are focused on
the influences of the microstructure parameter c and d, and the
thickness h of slab on the reflection and transmission coefficients.
The Poisson's ratio of medium 1 and medium 2 is taken to be
n1 ¼ n2 ¼ 1/3. The density ratio and the shear modulus ratio of them
are assumed to be rð¼ r1=r2Þ ¼ 1:2 and mð¼ m1=m2Þ ¼ 1:8, respec-
tively. Two half-spaces characteristic of the classical elasticity and
the gradient elasticity are both considered. The reflection and
transmission coefficients in terms of energy flux ratio in two cases
of incident waves, namely, in-plane P wave and the out-of-plane SH
wave, are both calculated.

5.1. Incident P wave case

Fig. 3 shows the dependence of reflection and transmission
coefficients on the nondimensional thickness h/l in the case of
elastic half-spaces and incident longitudinal wave. It is observed
that the reflection and transmission coefficients are all the periodic
function of the nondimensional thickness h/l. At certain thickness,
the reflection P wave or SV wave may disappear, and the trans-
missions waves reach their peak values. But the transmission P
wave and transmission SV wave cannot reach their peaks at same
time, in general. Moreover, the fluctuant periods of reflection and
transmission coefficients are different for longitudinal wave and
transverse wave and are dependent of the incident angles. These
observations are consistent with Eqs. (36) and (38) obtained from
the multiple reflection/transmission approach. It is also noted that
the transmission P wave is always nonzero but the transmission SV
wavemaybe zero at certain thickness in the case of incident P wave.
On the other hand, Fig. 3 can be understood the dependence of
reflection and transmission coefficients on the incident wavelength
for a fixed thickness of slab. The periodical fluctuant phenomena
reflect the selective nature of the sandwich structure to incident
waves. These observations mean that the sandwich structure can
be used as a filter.

Fig. 4 shows the dependence of reflection and transmission
coefficients on the nondimensional wavelength l ¼ l=d in the case
of elastic half-spaces and incident P wave. It is observed that the
reflection and transmission coefficients are asymptotic to that of
classic elastic slab with the increasing of incident wavelength. This
means that the effects of microstructure are evident only when the
incident wavelength is comparable to the characteristic length of
microstructure and can be ignoredwhen the incident wavelength is
far larger than the microstructure length. These observations are
completely consistent with that reported by Gourgiotis et al. (2013).
Moreover, it is observed that the reflection coefficients of both P
wave and SV wave decrease when the nondimensional wavelength
increases. This means that the incident wave with longer wave-
length can propagate through the slab easier. Compared with the
reflection coefficients obtained by Gourgiotis et al. (2013) for the
free surface (see Fig. 2 in Gourgiotis et al. (2013)), the reflection of P
wave always weaken when the incident wavelength increases.
However, the reflection of SV wave weaken in the slab situation
while reinforce in the free surface situation. This difference can be
understood by considering the restriction of energy conservation in
the free surface situation.

Fig. 5 shows the dependence of reflection and transmission on
the microstructure parameter a2 ¼ ffiffiffiffiffi

c2
p

=d2 in the case of elastic
half-spaces and incident P wave. It is observed that the reflection
and transmission SV wave are suppressed with the increasing of
microstructure parameter a2. In other word, the increasing of
microstructure parameter a2 does not help to the mode conversion.
It is also noted that the transmission P wave increases while the
reflection P wave decreases as the microstructure parameter a2
increasing. This implies that the larger microstructure parameter a2
makes the incident P wave propagating through a gradient elastic
slab more easily. Moreover, the influences of microstructure
parameter a2 are more evident on the surface waves in the gradient
elastic slab than on the bulk waves. The amplitudes of surface
waves increase monotonously as the microstructure parameter a

increasing. By compared with numerical results obtained by
Gourgiotis et al. (2013) for the free surface (see Fig. 4 in Gourgiotis
et al. (2013)), a similar phenomenon is observed, namely, the in-
crease of the microstructure parameter a2 results in the decrease of
reflection of P wave.

From the numerical results obtained from a gradient elastic slab
sandwiched by two classic elastic half-spaces, the influences of the
microstructure parameter of slab on the reflection and trans-
mission waves can be discussed. In order to further study the in-
fluences of microstructure parameter ratio, the reflection and
transmission coefficients through a slab sandwiched by two
gradient elastic half-spaces are also calculated. Fig. 6 shows the
dependence of reflection and transmission on the microstructure



Fig. 3. The dependence of reflection and transmission on the dimensional thickness h/l in the case of elastic half-spaces and incident Longitudinal wave (a2 ¼ 1, l ¼ 10).
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parameter ratio d ¼ d1=d2 in the case of incident P wave. It is
observed that the reflection and transmission SV waves are more
sensitive to themicrostructure parameter ratio d than the reflection
and transmission P waves. The increasing of the microstructure
parameter ratio d makes the reflection SV wave increasing while
the transmission SV wave decreasing. The influence on the P wave
is opposite to the influences on the SV wave. However, the micro-
structure parameter ratio d has same influences on both SP type
and SS type surface waves. The increasing of the microstructure
parameter ratio d makes the reflection and transmission surface
waves, both of SP type and SS type, decreasing monotonously.

5.2. Incident SH wave case

Fig. 7 shows the dependence of reflection and transmission
coefficients in two elastic half-spaces on the nondimensional
wavelength l ¼ l=d2. Similar to the incident P wave case, the
reflection and transmission coefficients are asymptotic to that of
elastic slab as the incident wavelength increasing. The micro-
structure effects cannot be ignored only when the incident wave-
length is comparable to the microstructure length.

Fig. 8 shows the dependence of reflection and transmission
coefficients in two elastic half-spaces on the nondimensional
thickness h/l. The periodic dependence of reflection and trans-
mission coefficients on the thickness of slab is also observed as in
the case of incident P wave. The periodical dependences on the
thickness of slab can be explained by the constructive and
destructive interfering among the multiple reflection waves
(transmission waves). The phase shift among the multiple reflec-
tion waves (transmission waves) is exp(inkyh) which result in the
periodical dependence of reflection and transmission coefficients
on the thickness of slab or the incident wavelength. The periodic
dependence of reflection and transmission P and SV waves on the
thickness of slab can be explained similarly.

Fig. 9 show the dependence of reflection and transmission co-
efficients on the microstructure parameter a2 ¼ ffiffiffiffiffi

c2
p

=d2 in the case
of two elastic half-spaces. It is observed that the increasing of the
microstructure parameter a2 makes the reflection coefficient
decreasing and the transmission coefficient increasing. It is also
noted that there is a critical angle qcr z 60� where the reflection SH
wave disappears and the total transmission phenomenon takes
place.

Fig. 10 shows the dependence of reflection and transmission
coefficients on the microstructure parameter ratio d ¼ d1=d2 in the
case of two gradient elastic half-spaces. It is observed that the
reflection and transmission surface waves (SSH) are more sensitive
to the microstructure parameter ratio d than the reflection and
transmission bulk waves and decrease monotonously with the
increasing of d as in the case of incident P wave. However, the in-
fluences of d on the reflection bulk wave and transmission bulk
wave are opposite, namely, the reflection bulk wave decreasing
while the transmission bulk wave increasing as the microstructure
parameter ratio d increasing. This means that the larger micro-
structure parameter dmakes the SH wave propagating through the
slab more easy.

5.3. Verification of energy conservation

The reflection and transmission coefficients are defined by the
energy flux ratio of reflection and transmission waves with respect



Fig. 4. The dependence of reflection and transmission on the nondimensional wavelength l ¼ l=d2 in the case of elastic half-spaces and incident Longitudinal wave (a2 ¼ 0.1,
h ¼ 0:2).
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to the incident wave in present work. The advantage of such defi-
nition is that the energy conservation can be easily checked and
thus facilitates the validation of the numerical results. Fig. 11 shows
energy conservation curves at different incident wavelength in the
case of incident P wave and SH wave, respectively, for a slab
sandwiched by two gradient elastic half-spaces. It is observed that
energy conservation is satisfied approximately with an acceptable
error in total range of incident angles. The numerical error is
maximal at normal incident case and decrease gradually as the
incident angle increasing.
6. Conclusions

When the elastic waves propagate through a slab sandwiched
by two elastic or gradient elastic half-spaces, the reflection and
transmission problem is far more complicated than the reflection
and transmission at bi-materials interface. There are two interfaces
and three characteristic lengths, namely, the incident wavelength,
the geometrical thickness of slab and the microstructure length of
gradient elastic solid. The dependence of reflection and trans-
mission waves on these characteristic lengths and the microstruc-
ture parameters of slab are main concerns of present work. The
reflection and transmission coefficients in terms of energy flux ratio
are calculated for a gradient elastic slab under an incident P wave or
an incident SH wave. From the numerical results, the following
conclusions can be drawn.

1) The reflection and transmission coefficients are the periodical
function of the thickness of slab for an incident wave with fixed
wavelength. At certain specific thickness, the reflection SH
wave, reflection Pwave or reflection SVwavemay disappear. But
the reflection P wave and the reflection SV wave cannot disap-
pear at same time. For a slab with fixed thickness, the reflection
and transmission coefficients are also periodical functions of the
incident wavelength. Some incident waves with certain fre-
quency can propagate through the slab easily while other of
incident waves cannot. The selective nature of the slab to the
incident waves makes the sandwiched structure a frequency
filter.

2) Themicrostructure parameters havemore evident influences on
the surface waves than on the bulk waves. The amplitude of
surface waves, including SP type, SS type and SSH type, increase
monotonously as the microstructure parameter increasing.
Moreover, in the case of incident P wave, the microstructure
effects do not help the mode conversion.

3) The microstructure effects make the bulk waves dispersive
and the surface waves appearing. The reflection and trans-
mission coefficients of bulk waves through a gradient elastic
slab thus deviate from that of classic elastic slab. The deviation
cannot be ignored only when the incident wavelength is
comparable to the microstructure length and decreases grad-
ually as the incident wavelength increasing. In other word, the
reflection and transmission coefficients are asymptotic to
that of classic elastic slab as the incident wavelength
increasing.

4) The microstructure characteristic length ratio of the half-space
to that of slab has more evident influence on the SV wave
than on the P wave. In general, the reflection coefficient in-
creases while the transmission coefficient decreases for SVwave



Fig. 5. The dependence of reflection and transmission on the microstructure parameter a2 ¼ ffiffiffiffiffi
c2

p
=d2 in the case of elastic half-spaces and incident Longitudinal wave (l ¼ 10,

h ¼ 0:2).
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Fig. 6. The dependence of reflection and transmission on the microstructure parameter ratio d ¼ d1=d2 in the case of gradient elastic half-spaces and incident P wave (a1 ¼ 0.1,
l ¼ 10, h ¼ 0:2, c ¼ c1=c2 ¼ 1:1).
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Fig. 7. The dependence of reflection and transmission on the nondimensional wavelength l ¼ l=d2 in the case of elastic half-spaces and incident SH wave (a2 ¼ 0.1, h ¼ 0:2).

Fig. 8. The dependence of reflection and transmission on the dimensional thickness h/l in the case of elastic half-spaces and incident SH wave (a2 ¼ 0.1, l ¼ 8).

Fig. 9. The dependence of reflection and transmission on the microstructure parameter a2 ¼ ffiffiffiffiffi
c2

p
=d2 in the case of elastic half-spaces and incident SH wave (l ¼ 7, h ¼ 0:2).
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Fig. 10. The dependence of reflection and transmission on the microstructure parameter ratio d ¼ d1=d2 in the case of gradient elastic half-spaces and incident SH wave (a1 ¼ 0.1,
l ¼ 10, h ¼ 0:2, c ¼ c1=c2 ¼ 1:1).

Fig. 11. Validation of energy conservation in the case of incident P wave and SH wave for a slab sandwiched by two gradient elastic half-spaces. (a) for incident P wave(a2 ¼ 0.1,
h ¼ 0:2); (b) for incident SH wave (a2 ¼ 0.1, h ¼ 0:2).
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as the characteristic length ratio increasing. The changes of the
reflection coefficients and transmission coefficient of P wave
and SH wave are opposite to that of SV waves. In contrast, the
reflection and transmission surface waves are more sensitive to
the characteristic length ratio and decrease monotonously as
the characteristic length ratio increasing.
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Appendix A

The explicit expression of matrix A ¼ ðai;jÞ16�16 and
B ¼ ðbi;jÞ16�1 in Eq. (28) are given here when the medium 1, me-
dium 2 and medium 3 are all dipolar gradient elasticity. The
counterpart when the medium 1 and medium 3 are the classical
elasticity is not given for brevity but can be obtained from the
present formulation by corresponding modification. Moreover, the
explicit expression of matrix A and B for incident SH wave are also
not provided here for brevity.

a1;1 ¼ a1;2 ¼ x1; a1;3 ¼ �bs1; a1;4 ¼ �igs1; a1;5 ¼ a1;6 ¼ a1;7
¼ a1;8 ¼ �x2; �a1;9 ¼ a1;11 ¼ bs2;

�a1;10 ¼ a1;12 ¼ igs2; a2;1 ¼ �bp1; a2;2 ¼ �igp1; a2;3 ¼ a2;4

¼ �z1; �a2;5 ¼ a2;7 ¼ bp2;

�a2;6 ¼ a2;8 ¼ igp2; a2;9 ¼ a2;10 ¼ a2;11 ¼ a2;12 ¼ z2; a3;1

¼ x1bp1; a3;2 ¼ ix1gp1; a3;3 ¼ �b2s1;

a3;4 ¼ g2s1; a3;5 ¼ �a3;7 ¼ x2bp2; a3;6 ¼ �a3;8 ¼ ix2gp2; a3;9

¼ a3;11 ¼ b2s2; a3;10 ¼ a3;12 ¼ �g2s2;

a4;1 ¼ �b2p1; a4;2 ¼ g2p1; a4;3 ¼ �z1bs1; a4;4 ¼ �iz1gs1; a4;5

¼ a4;7 ¼ b2p2; a4;6 ¼ a4;8 ¼ �g2p2;

�a4;9 ¼ a4;11 ¼ z2bs2; �a4;10 ¼ a4;12 ¼ iz2gs2;

a5;1 ¼ m1

h
2x1bp1 þ 2c1x1bp1

�
2s2p1 þ x21

�
�m1x1bp1

i
;

a5;2 ¼ m1

h
2x1gp1i� 2c1x1gp1

�
2t2p1 � x21

�
i�m1x1gp1i

i
;

a5;3 ¼ m1

h�
z21 � b2s1

�
� c1

�
b4s1 � z41 þ 2z21b

2
s1

�
þm1b

2
s1

i
;

a5;4 ¼ m1

h�
z21 þ g2s1

�
� c1

�
g4s1 � z41 � 2z21g

2
s1

�
�m1g

2
s1

i
;

a5;5 ¼ �m2

h
� 2x2bp2 � 2c2x2bp2

�
2s2p2 þ x22

�
þm2x2bp2

i
;

a5;6 ¼ �m2

h
� 2x2gp2iþ 2c2x2gp2

�
2t2p2 � x22

�
iþm2x2gp2i

i
;

a5;7 ¼ �m2

h
2x2bp2 þ 2c2x2bp2

�
2s2p2 þ x22

�
�m2x2bp2

i
;

a5;8 ¼ �m2

h
2x2gp2i� 2c2x2gp2

�
2t2p2 � x22

�
i�m2x2gp2i

i
;

a5;9 ¼ �m2

h�
z22 � b2s2

�
� c2

�
b4s2 � z42 þ 2z22b

2
s2

�
þm2b

2
s2

i
;

a5;10 ¼ �m2

h�
z22 þ g2s2

�
� c2

�
g4s2 � z42 � 2z22g

2
s2

�
�m2g

2
s2

i
;

a5;11 ¼ �m2

h�
z22 � b2s2

�
� c2

�
b4s2 � z42 þ 2z22b

2
s2

�
þm2b

2
s2

i
;

a5;12 ¼ �m2

h�
z22 þ g2s2

�
� c2

�
g4s2 � z42 � 2z22g

2
s2

�
�m2g

2
s2

i
;

a6;1 ¼ m1

h
� 2

�
s2p1 þ b2p1

�
� 2c1

�
x41 þ 4x21b

2
p1 þ 2b4p1

�
þm1b

2
p1

i
;

a6;2 ¼ m1

h
2
�
2t2p1 þ x2p1

�
� 2c1

�
x41 � 4x21g

2
p1 þ 2g4p1

�
�m1g

2
p1

i
;

a6;3 ¼ m1

h
� 2z1bs1 � c1z1bs1

�
s2s1 þ 2z21

�
þm1z1bs1

i
;

a6;4 ¼ m1

h
� 2z1gs1iþ c1z1gs1

�
t2s1 � 2z21

�
iþm1z1gs1i

i
;

a6;5 ¼ �m2

h
� 2

�
s2p2 þ b2p2

�
� 2c2

�
x42 þ 4x22b

2
p2 þ 2b4p2

�
þm2b

2
p2

i
;

a6;6 ¼ �m2

h
2
�
2t2p2 þ x2p2

�
� 2c2

�
x42 � 4x22g

2
p2 þ 2g4p2

�
�m2g

2
p2

i
;

a6;7 ¼ �m2

h
� 2

�
s2p2 þ b2p2

�
� 2c2

�
x42 þ 4x22b

2
p2 þ 2b4p2

�
þm2b

2
p2

i
;

a6;8 ¼ �m2

h
2
�
2t2p2 þ x2p2

�
� 2c2

�
x42 � 4x22g

2
p2 þ 2g4p2

�
�m2g

2
p2

i
;

a6;9 ¼ �m2

h
2z2bs2 þ c2z2bs2

�
s2s2 þ 2z22

�
�m2z2bs2

i
;

a6;10 ¼ �m2

h
2z2gs2i� c2z2gs2

�
t2s2 � 2z22

�
i�m2z2gs2i

i
;

a6;11 ¼ �m2

h
� 2z2bs2 � c2z2bs2

�
s2s2 þ 2z22

�
þm2z2bs2

i
;

a6;12 ¼ �m2

h
� 2z2gs2iþ c2z2gs2

�
t2s2 � 2z22

�
iþm2z2gs2i

i
;

a7;1 ¼ �2c1x1b
2
p1im1; a7;2 ¼ 2c1x1g

2
p1im1; a7;3

¼ �c1bs1i
�
z21 � b2s1

�
m1; a7;4 ¼ c1gs1

�
z21 þ g2s1

�
m1;

a7;5 ¼ 2c2ix2b
2
p2m2; a7;6 ¼ �2c2x2g

2
p2im2; a7;7

¼ 2c2x2b
2
p2im2; a7;8 ¼ �2c2x2g

2
p2im2;

a7;9 ¼ �c2bs2i
�
z22 � b2s2

�
m2; a7;10 ¼ c2gs2

�
z22 þ g2s2

�
m2;

a7;11 ¼ c2bs2i
�
z22 � b2s2

�
m2; a7;12 ¼ �c2gs2

�
z22 þ g2s2

�
m2;

a8;1 ¼ 2c1bp1im1
�
s2p1 þ b2p1

�
; a8;2 ¼ 2m1c1gp1

�
2t2p1 þ x2p1

�
;
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a8;3 ¼ 2m1c1b
2
s1iz1; a8;4 ¼ �2c1m1z1g

2
s1i; a8;5

¼ 2m2c2bp2i
�
s2p2 þ b2p2

�
;

a8;6 ¼ 2m2c2gp2
�
2t2p2 þ x2p2

�
; a8;7

¼ �2m2c2bp2i
�
s2p2 þ b2p2

�
; a8;8 ¼ �2m2c2gp2

�
2t2p2 þ x2p2

�
;

a8;9 ¼ �2m2c2b
2
s2iz2; a8;10 ¼ 2m2c2g

2
s2z2i; a8;11

¼ 2m2c2b
2
s2iz2; a8;12 ¼ 2m2c2g

2
s2z2i;

q1 ¼ exp
�
ibp2h

�
; q2 ¼ exp

��gp2h
�
; q3 ¼ exp

�� ibp2h
�
; q4

¼ exp
�
gp2h

�
;

q5 ¼ expðibs2hÞ; q6 ¼ expð�gs2hÞ; q7 ¼ expð � ibs2hÞ; q8
¼ expðgs2hÞ;

p1 ¼ exp
�
ibp3h

�
; p2 ¼ exp

��gp3h
�
; p3 ¼ expðibs3hÞ; p4

¼ expð�gs3hÞ;

a9;5 ¼ a1;5q1; a9;6 ¼ a1;6q2; a9;7 ¼ a1;7q3; a9;8 ¼ a1;8q4; a9;9

¼ a1;9q5; a9;10 ¼ a1;10q6; a9;11 ¼ a1;11q7;

a9;12 ¼ a1;12q8; a9;13 ¼ x3p1; a9;14 ¼ x3p2; a9;15 ¼ bs3p3; a9;16

¼ igs3p4; a10;5 ¼ a2;5q1;

a10;6 ¼ a2;6q2; a10;7 ¼ a2;7q3; a10;8 ¼ a2;8q4; a10;9
¼ a2;9q5; a10;10 ¼ a2;10q6; a10;11 ¼ a2;11q7;

a10;12 ¼ a2;12q8; a10;13 ¼ bp3p1; a10;14 ¼ igp3p2; a10;15

¼ �z3p3; a10;16 ¼ �z3p4; a11;5 ¼ a3;5q1;

a11;6 ¼ a3;6q2; a11;7 ¼ a3;7q3; a11;8 ¼ a3;8q4; a11;9

¼ a3;9q5; a11;10 ¼ a3;10q6; a11;11 ¼ a3;11q7;

a11;12 ¼ a3;12q8; a11;13 ¼ �x3bp3p1; a11;14 ¼ �ix3gp3p2; a11;15

¼ �b2s3p3; a11;16 ¼ g2s3p4;

a12;5 ¼ a4;5q1; a12;6 ¼ a4;6q2; a12;7 ¼ a4;7q3; a12;8
¼ a4;8q4; a12;9 ¼ a4;9q5; a12;10 ¼ a4;10q6;

a12;11 ¼ a4;11q7; a12;12 ¼ a4;12q8; a12;13 ¼ �b2p3p1; a12;14

¼ g2p3p2; a12;15 ¼ z3bs3p3;

a12;16 ¼ iz3gs3p4; a13;5 ¼ a5;5q1; a13;6 ¼ a5;6q2; a13;7

¼ a5;7q3; a13;8 ¼ a5;8q4; a13;9 ¼ a5;9q5;

a13;10 ¼ a5;10q6; a13;11 ¼ a5;11q7; a13;12 ¼ a5;12q8;
a13;13 ¼ m3

h
� 2x3bp3 � 2c3x3bp3

�
2s2p3 þ x23

�
þm3x3bp3

i
p1;

a13;14 ¼ m3

h
� 2x3gp3iþ 2c3x3gp3

�
2t2p3 � x23

�
iþm3x3gp3i

i
p2;

a13;15 ¼ m3

h�
z23 � b2s3

�
� c3

�
b4s3 � z43 þ 2z23b

2
s3

�
þm3b

2
s3

i
p3;

a13;16 ¼ m3

h�
z23 þ g2s3

�
� c3

�
g4s3 � z43 � 2z23g

2
s3

�
�m3g

2
s3

i
p4;

a14;5 ¼ a6;5q1; a14;6 ¼ a6;6q2; a14;7 ¼ a6;7q3; a14;8
¼ a6;8q4; a14;9 ¼ a6;9q5; a14;10 ¼ a6;10q6;

a14;11 ¼ a6;11q7; a14;12 ¼ a14;12q8;

a14;13 ¼ m3

h
� 2

�
s2p3 þ b2p3

�
� 2c3

�
x43 þ 4x23b

2
p3 þ 2b4p3

�
þm3b

2
p3

i
p1;

a14;14 ¼ m3

h
2
�
2t2p3 þ x2p3

�
� 2c3

�
x43 � 4x23g

2
p3 þ 2g4p3

�
�m3g

2
p3

i
p2;

a14;15 ¼ m3

h
2z3bs3 þ c3z3bs3

�
s2s3 þ 2z23

�
�m3z3bs3

i
p3;

a14;16 ¼ m3

h
2z3gs3i� c3z3gs3

�
t2s3 � 2z23

�
i�m3z3gs3i

i
p4;

a15;5 ¼ a7;5q1; a15;6 ¼ a7;6q2; a15;7 ¼ a7;7q3; a15;8
¼ a7;8q4; a15;9 ¼ a7;9q5; a15;10 ¼ a7;10q6;

a15;13 ¼ �2im3c3b
2
p3x3p1; a15;14 ¼ 2m3c3g

2
p3x3ip2;

a15;15 ¼ m3c3bs3i
�
z23 � b2s3

�
p3; a15;16 ¼ �m3c3gs3

�
z23 þ g2s3

�
p4;

a16;5 ¼ a8;5q1; a16;6 ¼ a8;6q2; a16;7 ¼ a8;7q3; a16;8
¼ a7;8q4; a16;9 ¼ a8;9q5; a16;10 ¼ a8;10q6;

a15;11 ¼ a7;11q7; a15;12 ¼ a7;12q8; a16;11 ¼ a8;11q7; a16;12
¼ a8;12q8;

a16;13 ¼ �2m3c3bp3i
�
s2p3 þ b2p3

�
p1; a16;14

¼ �2m3c3gp3
�
2t2p3 þ x2p3

�
p2;

a16;15 ¼ 2m3c3b
2
s3z3ip3; a16;16 ¼ �2c3m3z3g

2
s3ip4;

aij ¼ 0 ði ¼ 1;/;8; ; j ¼ 13;/;16Þ and ði ¼ 9;/;16; j

¼ 1;/;4Þ

b11 ¼ �x1; b21 ¼ �bp1; b31 ¼ x1bp1; b41 ¼ b2p1;
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b51 ¼ �m1

h
� 2x1bp1 � 2c1x1bp1

�
2s2p1 þ x21

�
þm1x1bp1

i
;

b61 ¼ �m1

h
� 2

�
s2p1 þ b2p1

�
� 2c1

�
x41 þ 4x21b

2
p1 þ 2b4p1

�
þm1b

2
p1

i
;

b71 ¼ 2c1x1b
2
p1im1; b81 ¼ 2m1c1bs1iz1

�
s2p1 þ b2p1

�
; bl1

¼ 0 ðl ¼ 9;/;16Þ

where

x1 ¼ sp1 sin q1; bp1 ¼ sp1 cos q1; z1 ¼ ss1 sin q2; bs1

¼ ss1 cos q2;

x2 ¼ sp2 sin qp; bp2 ¼ sp2 cos qp; z2 ¼ ss2 sin qs; bs2

¼ ss2 cos qs;

x3 ¼ sp3 sin q3; bp3 ¼ sp3 cos q3; z3 ¼ ss3 sin q4; bs3

¼ ss3 cos q4:
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