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ABSTRACT
As a type of shock-capturing scheme, the traditional Roe scheme fails in large eddy simulation (LES)
because it cannot reproduce important turbulent characteristics, such as the famous k−5/3 spectral
law, as a consequence of the large numerical dissipation. In this work, the Roe scheme is divided
into five parts, namely, ξ , δUp, δpp, δUu, and δpu, which denote basic upwind dissipation, pressure
difference-driven modification of interface fluxes, pressure difference-driven modification of pres-
sure, velocity difference-driven modification of interface fluxes, and velocity difference-driven mod-
ification of pressure, respectively. Then, the role of each part in the LES of homogeneous decaying
turbulence with a low Mach number is investigated. Results show that the parts δUu, δpp, and δUp
have little effect on LES. Such minimal effect is integral to computational stability, especially for δUp.
The large numerical dissipation is due to ξ and δpu, each of which features a larger dissipation than
the sub-grid scale model. On the basis of these conditions, an improved all-speed Roe scheme for
LES is proposed. This scheme can provide satisfactory LES results even for coarse grid resolutions
with usually adopted second-order reconstructions for the finite volume method.

1. Introduction

Large eddy simulation (LES) has become increasingly
important in the unsteady turbulence computation of
incompressible and compressible flows. It achieves satis-
factory development, especially for incompressible flows.
As one of the most important achievements of computa-
tional fluid dynamics (CFD), the shock-capturing scheme
is generally adopted for compressible flow computation.
Therefore, the role of intrinsic numerical dissipation
in the shock-capturing scheme needs to be identified
for LES.

In recent years there are several state-of the-art arti-
cles for the error analyses of implicit LES computations
with shock-capturing schemes, such as the monograph
of Grinstein, Margolin, and Rider (2007), and journal
papers of San and Kara (2014, 2015), which address dissi-
pation mechanism of shock-capturing schemes for two-
dimensional decaying turbulence characteristics. The
classical Roe scheme, as one of the most popular shock-
capturing schemes, has also been investigated for the LES
of homogeneous decaying turbulence (HDT) with a low
Mach number (Garnier et al. 1999; Thornber, Mosedale,
and Drikakis 2007). However, the result of this scheme is

CONTACT Xue-song Li xs-li@mail.tsinghua.edu.cn

disappointing because it cannot reproduce many impor-
tant turbulent characteristics. For example, the popular
k−5/3 spectral sub-ranges in the self-similar decay stage
of the Roe scheme for LES can only be produced in a
very narrow range of wave numbers. In fact, in a range
of high wave numbers, the numerical slope of the kinetic
energy spectrum reaches approximately –5, which is sig-
nificantly greater than –5/3 of all the schemes (Garnier
et al. 1999; Thornber, Mosedale, and Drikakis 2007),
including the fifth-order (Garnier et al. 1999) and ninth-
order (Thornber, Mosedale, and Drikakis 2007) schemes.
Such difference indicates that the physical sub-grid scale
(SGS) dissipation is fully immersed by the numerical dis-
sipation and cannot satisfy one of the following condi-
tions for a scheme for LES (Garnier et al. 1999):

(1) Numerical dissipation is significantly lower than
physical SGS dissipation (condition (C1)).

(2) Numerical dissipation is able tomimic the features
of an SGS model (condition (C2)).

Notably, the shock-capturing scheme itself cannot
be directly used for incompressible flow not only in
LES but also in the general computation even for
Euler flows; its direct use produces unphysical results
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2 X.-S. LI AND X. LI

(Guillard and Viozat 1999; Turkel 1999). The traditional
curing method is a preconditioning technology, based
on which many improved schemes have been devel-
oped; however, schemes such as the preconditioned Roe
(Weiss and Smith 1995; Huang 2007), AUSM (Advection
Upstream Splitting Method)-type (Liou 2006; Shima and
Kitamura 2011), and HLL (Harten -Lax -van Leer)-type
(Park, Lee, andKwon 2006; Luo and Baum2005) schemes
suffer from several limitations. These defects are identi-
fied (Li andGu2013) as the non-physical behaviour prob-
lem, the global cut-off problem, and the checkerboard
problem.

The non-physical behaviour problem means that at a
lowMachnumber speed, the physical pressure scaleswith
the square of the Mach number, i.e., p(x, t ) = P0(t ) +
M2

∗p2(x, t ); however, the pressure fluctuation solution
of the shock-capturing scheme scales with the Mach
number, i.e., p(x, t ) = P0(t ) + M∗p1(x, t ), where x and
t denote space and time, respectively. Therefore, the
direct use of the shock-capturing scheme for LES is
inappropriate.

Under the global cut-off problem, the localMachnum-
ber is replacedwith the global referenceMach number for
almost all improved shock-capturing schemes by the tra-
ditional preconditioning technology. The problem lim-
its the accurate simulation of mixed flows with low and
highMach numbers. For example, for a flow regionwhere
shock waves coexist with incompressible flows such as
the boundary layer, the calculation of the incompressible
region cannot benefit from preconditioning because of
the global cut-off problem. The process, in turn, suffers
from the non-physical behaviour problem. Therefore, the
use of the traditional preconditioned scheme for LES is
inappropriate.

The checkerboard problem refers to the classical prob-
lem of pressure–velocity decoupling, which indicates
a pressure solution with checkerboard oscillation for
incompressible flows. The scheme for low Mach num-
ber flows must feature a mechanism for suppressing
the checkerboard problem; otherwise, the computation
becomes unstable and divergent. Therefore, the suppres-
sion mechanism should also be investigated for LES
because it cannot be avoided.

The three problems may all be due to the construc-
tion of the numerical dissipation of the scheme; they are
addressed on the basis of three general rules (Li and Gu
2013). These rules increase the possibility of obtaining
an LES scheme that satisfies condition (C1) or condition
(C2) by modifying the shock-capturing scheme. How-
ever, according to the general premise of these three gen-
eral rules, a method that satisfies LES should still be iden-
tified. In this work, we investigate the role of each term
of the numerical dissipation of the Roe scheme for LES

and then propose an improved Roe scheme that satisfies
condition (C2).

The outline of this paper is as follows. Section 2
presents the governing equations and the different forms
of the Roe scheme. Section 3 discusses the effect of each
part of the Roe scheme in LES. Section 4 proposes an
improved all-speed Roe scheme for LES that satisfies con-
dition (C2). Finally, Section 5 closes the paper with some
concluding remarks.

2. Governing equations and the Roe scheme

2.1. Governing equations

The governing three-dimensional Navier–Stokes equa-
tions can be written as follows:

∂Q
∂t

+ ∂F
∂x

+ ∂G
∂y

+ ∂H
∂z

= ∂Fv

∂x
+ ∂Gv

∂y
+ ∂Hv

∂z
, (1)

where Q =

⎡
⎢⎢⎢⎣

ρ

ρu
ρv
ρw
ρE

⎤
⎥⎥⎥⎦ is the vector of conservation variables;

F =

⎡
⎢⎢⎢⎣

ρu
ρu2 + p
ρuv
ρuw
u(ρE + p)

⎤
⎥⎥⎥⎦, G =

⎡
⎢⎢⎢⎣

ρv
ρuv
ρv2 + p
ρvw
v(ρE + p)

⎤
⎥⎥⎥⎦, and H =

⎡
⎢⎢⎢⎣

ρw
ρuw
ρvw
ρw2 + p
w(ρE + p)

⎤
⎥⎥⎥⎦ are the

vectors of Euler fluxes; Fv , Gv , and Hv are the vectors of
the viscous fluxes, the details of which are not presented
here for simplicity; ρ is fluid density; p is pressure; E is the
total energy; and u, v, w are the velocity components in
the Cartesian coordinates (x, y, z), respectively.

2.2. Original form of the Roe scheme

The classical Roe scheme can be expressed as the follow-
ing general sum form of a central term and a numerical
dissipation term:

F̃ = F̃ c + F̃d, (2)

where F̃ c is the central term and F̃d is the numerical dis-
sipation term.

F̃ c, 1/2 = 1
2

(
F̄L + F̄R

)
, (3)

F̄ = U

⎡
⎢⎢⎢⎢⎣

ρ

ρu
ρv

ρw

ρH

⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎣
0
nxp
nyp
nz p
0

⎤
⎥⎥⎥⎥⎦ , (4)

F̃d, 1/2 = −1
2
R1/2�1/2

(
R1/2

)−1
(QR − QL) , (5)
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R =

⎡
⎢⎢⎢⎢⎣

nx ny nz 1 1
nxu nyu − nz nzu + ny u − nxc u + nxc

nxv + nz nyv nzv − nx v − nyc v + nyc
nxw − ny nyw + nx nzw w − nzc w + nzc

nzv − nyw + V 2
M
2 nx nxw − nzu + V 2

M
2 ny nyu − nxv + V 2

M
2 nz H − cU H + cU

⎤
⎥⎥⎥⎥⎦ , (6)

�Roe =

⎡
⎢⎢⎢⎢⎣

|U |
|U |

|U |
|U − c|

|U + c|

⎤
⎥⎥⎥⎥⎦ , (7)

where c is the speed of sound;V 2
M = u2 + v2 + w2;U =

nxu + nyv + nzw is the normal velocity on the cell inter-
face; His the total enthalpy; and nx, ny, and nz are the
components of the face-normal vector.

2.3. Scalar form of the Roe scheme

Following Weiss and Smith (1995), the numerical dissi-
pation term of the Roe scheme in Section 2.2 can also be
rewritten in the following scalar form:

F̃d = −1
2

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ξ

⎡
⎢⎢⎢⎢⎣

�ρ

� (ρu)

� (ρv )

� (ρw)

� (ρE)

⎤
⎥⎥⎥⎥⎦ + δp

⎡
⎢⎢⎢⎢⎣
0
nx
ny
nz
U

⎤
⎥⎥⎥⎥⎦ + δU

⎡
⎢⎢⎢⎢⎣

ρ

ρu
ρv

ρw

ρH

⎤
⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

(8)
Equation (8) can be regarded as the uniform frame-

work for the shock-capturing scheme (Li 2014), and the
three terms on the right side have explicit physical mean-
ings: the first term denotes basic upwind dissipation and
can be regarded as low Mach-number Roe scheme for
LES (Li, Xu, and Gu 2008), the second term denotes a
modification of the interface pressure, and the third term
denotes a modification of the interface fluxes. Li (2014)
proposes the following equations, which are strictly equal
to the vector form in Section 2.2:

ξ = |U | , (9)

δp = −|U − c| − |U + c|
2

cβ

+
[
|U | − |U − c| + |U + c|

2

]
[U�ρ − � (ρU )] ,

(10)

δU = 1
ρ

( |U − c| + |U + c|
2

− |U |
)

β

+ |U − c| − |U + c|
2ρc

[U�ρ − � (ρU )] ,

(11)

where

β = γ − 1
c2

[
V 2
M

2
�ρ − u� (ρu) − v� (ρv )

− w� (ρw) + � (ρE)

]
(12)

and γ is the ratio of the specific heat values.
With the assumption

� (ρφ) = ρ�φ + φ�ρ, (13)

where φ represents one of the fluid variables, the follow-
ing equations can be obtained:

β = �p
c2

andU�ρ − � (ρU ) = −ρ�U. (14)

Further, the terms δU and δp can be subdivided as the
sub-terms driven by pressure difference �p and velocity
difference �U .

δU = δUp + δUu, (15)
δp = δpp + δpu. (16)

δpp = −|U − c| − |U + c|
2

�p
c

, (17)

δpu = −
[
|U | − |U − c| + |U + c|

2

]
ρ�U, (18)

δUp =
( |U − c| + |U + c|

2
− |U |

)
�p
ρc2

, (19)

δUu = −|U − c| − |U + c|
2c

�U. (20)
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4 X.-S. LI AND X. LI

That is, δUp, δUu and δpp, δpu denote the pressure
difference-driven and velocity difference-driven modifi-
cations on the interface velocity and pressure, respec-
tively.

For the low Mach number flows, Equations (17)–(20)
can be simplified as follows:

δpp = U
c

�p, (21)

δpu = (c − |U |) ρ�U, (22)

δUp = (c − |U |) �p
ρc2

, (23)

δUu = U
c

�U. (24)

As demonstrated by Li (2013, 2014), the non-physical
behaviour problem is due to δpu and the checkerboard
problem is due to δUp. The Roe scheme has an inher-
ent mechanism of suppressing the checkerboard problem
because δUp plays a role similar to that of the momentum
interpolation method (Li and Gu 2010); however, it fails
to resolve the non-physical behaviour problem because
the coefficient of the velocity difference dissipation term
�U in δpu is too large with the order ofO(c). δUu and δpp
seem trivial for the lowMach number flows because they
have little effect on numerical results (Li and Gu 2013).

The above discussions indicate that the numerical dis-
sipation of the Roe scheme can be divided into five parts,
namely, ξ , δUp, δUu, δpp, and δpu. These parts have dif-
ferent effects on computation and can be modified inde-
pendently according to specific requirements. This divi-
sion provides a new way to develop LES schemes. More-
over, this approach is different from the traditional way
of increasing the order of schemes and appears to be
important, especially under the current condition of the
finite volumemethod in which the traditional high-order
approach is difficult to employ in LES (Garnier et al. 1999;
Thornber, Mosedale, and Drikakis 2007). Therefore, in
the following section, the roles of the five parts in the LES
of HDT are investigated.

3. Mechanism of the Roe scheme for the
LES of HDT

3.1. Numerical method

To understand the effect of the five parts of the Roe
scheme on LES, nine cases are designed and presented in
Table 1. In Table 1, the numbers refer to the coefficients
of the five parts of the Roe scheme and the Smagorin-
sky model (denoted as SMA), which is the classical SGS

Table . Nine cases.

Smagorinsky
ξ δUp δUu δpp δpu model (SMA)

Case  (Cen-SMA)      
Case  (Cen)      
Case  (Roe)      
Case  (ξ )      
Case  (δUp)      
Case  (δUu)      
Case  (δpp)      
Case  (δpu)      
Case  (0.5ξ ) .     

model of LES.

μSMA = ρC2
s �

2
√
2Si jSi j, (25)

where Si j = 1
2
(

∂ui
∂x j

+ ∂uj

∂xi

)
, the filterwidth� is equal to the

cell size, and the Smagorinsky constantCS is set to 0.2.
Therefore, Case 1 (denoted as Cen-SMA for clarity)

entails a normal LES process, in which the SMA and a
centre scheme are adopted, i.e.,

F̃d = 0. (26)

In Case 2 (denoted as Cen), only the centre scheme
without the SGS model is adopted to understand the
behaviour of the scheme itself. Case 3 (denoted as Roe)
is simply the Roe scheme because of the adoption of all
five parts. In Cases 4–8 (denoted as ξ , δUp, δUu, δpp, and
δpu), only one part of the Roe scheme is adopted to inves-
tigate the role of each part. To mimic the Smagorinsky
model, only ξ with a coefficient of 0.5 is adopted in Case
9 (denoted as 0.5ξ ), i.e.,

F̃d = 0.5ζ�Q = 0.5 |U |�Q, (27)

which represents only half of the numerical dissipation of
the common basic upwind dissipation in this case.

For the high-order accuracy of space discretisation,
there are many reconstruction methods such as the
monotone upstream-centred schemes for conservation
laws (MUSCL) (Van Leer 1979; Leng et al. 2012), the
weighted essentially nonoscillatory scheme (WENO) (Su,
Sasaki, and Nakahashi 2013a, 2013b), and the discon-
tinuous Galerkin method (DG) (Ren et al. 2015; Ren
and Gu 2016). In this paper, the finite volume second-
order-accuracyMUSCLwith a three-order interpolation,
i.e., the MUSCL4 reconstruction (Garnier et al. 1999), is
adopted because it is widely used and is accurate enough
compared with other higher-order methods (Garnier
et al. 1999; Thornber, Mosedale, and Drikakis 2007). The
limiter for shock is not used because it is not necessary
for low Mach number flows. The finite volume method,
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Figure . Kinetic energy spectra for Cases , , , , and  at the
 grid.

Figure . Kinetic energy spectra for Cases , , , , and  at the
 grid.

and not the finite difference method, is adopted, such as
that in reference Thornber, Mosedale, and Drikakis 2007.
In this way, the conclusions can be easily extended to the
practical CFD computation of engineering problems. For
time discretisation, the four-stage Runge–Kutta scheme is
adopted.

3.2. LES of homogeneous decaying turbulence

The initial condition for the HDT is set as that in refer-
ences Samtaney, Pullin, and Kosovic (2001) and Li, Fu,
and Ma (2002). The velocity is initially divergence free
and is given from the initial energy spectrum E(k) =
Ak4 exp(−2k2/k20) with random phase and k0 = 2. All
thermodynamic quantities (pressure, density, and tem-
perature) are initially constant. The initial root-mean-
square Mach number is 0.2. The spatial mesh resolutions
are 323, 643, and 1283. The 1283 grid can obtain satisfac-
tory results, and the 323 and 643 grids are important in
complex practical flows in engineering problems because

Figure . Kinetic energy spectra for Cases , , , , and  at the
 grid.

Figure . Kinetic energy spectra for Cases , , , , and  at the
 grid.

with limited computational resources, the mesh resolu-
tion is usually only equivalent to 323 ∼ 643 or lower in
practice. All simulations for all mesh resolutions are per-
formed up to a period of t = 5, which corresponds to
approximately seven large-eddy-turnover times because
the initial large-eddy-turnover time is approximately
0.71. The definition of large-eddy-turnover time can be
found in reference Samtaney, Pullin, and Kosovic (2001).
The one-dimensional energy spectrum E(k) is computed
by the integration of three-dimensional energy spectrum
E(k1, k2, k3) in the spherical shell k = √

k21 + k22 + k23 in
spectrum space, i.e., it is a shell-integrated spectrum.

According to the famous Kolmogorov theory, in the
self-similar decay stage, energy is passed down from a low
wave number k to a high wave number with k−5/3 spectral
law in the inertial sub-range. Finally, this energy is dissi-
pated into heat in the dissipative sub-range of sufficiently
small length scales by the fluid viscosity. To test the abil-
ity of producing important k−5/3 sub-ranges, the kinetic
energy spectrum is shown in Figures 1–4. As expected,
Case 1 (Cen-SMA) produces good results.
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6 X.-S. LI AND X. LI

Table . The velocity structure function of skewness tensor S3.

  

Case  (Cen-SMA) . . .
Case  (Roe) . . .
Case  (ξ ) . . .
Case  (δpu) . . .
Case  (0.5ξ ) . . .

For Case 2 (Cen), Case 5 (δUp), Case 6 (δUu), and Case
7 (δpp), convergence fails for all the mesh resolutions.
Figure 1 provides the kinetic energy spectrum of the four
failed cases before their divergence at the 323 grid. As
shown in this figure, the energy accumulates in the sub-
range of high wave numbers because of the lack of a phys-
ical or numerical dissipation mechanism. The result of
Case 6 (δUu) almost overlaps that of Case 2 (Cen); hence,
the numerical dissipation of the term δUu is almost zero.
The result of Case 7 (δpp) indicates that the term δpp
has a small negative dissipation. According to the result
of Case 5 (δUp), the term δUp having small dissipation
is important. Although the term δUp is not necessary for
HDT, it must bemaintained in the scheme to suppress the
checkerboard problem for practical wall flows; otherwise,
the computationwill diverge. The indispensable term δUp
fortunately features a negligible dissipation for LES.

Figures 2–4 present the results of Case 3 (Roe),
Case 4 (ξ ), Case 8 (δpu), and Case 9 (0.5ξ ). Similar
conclusions can be obtained for different mesh reso-
lutions. The numerical dissipation of the classical Roe
scheme is too large to produce correct k−5/3 sub-ranges,
which are replacedwith approximately k−5 sub-ranges for
high wave numbers. This problem barely improves with
the adoption of higher-order reconstruction methods
(Garnier et al. 1999; Thornber, Mosedale, and Drikakis
2007).

The energy spectrum independently produced by the
terms ξ and δpu indicates that each term features a larger
dissipation than the correct SGS model. Notably, the
behaviour of the term δpu is not significantly different
from that of the term ξ , although it does lead to the non-
physical behaviour problem. The reason may be the one-
dimensional characteristic of ‘homogeneity’. For the one-
dimensional computation with the Roe scheme, the non-
physical behaviour problem is known to not occur, and
the reason is explained by Guillard (2009). For the 643
and 1283 resolutions, however, the energy spectrum of
δpu seems to oscillate at high wave numbers. Considering
the possible non-physical behaviour problem for general
flows and the non-monotonicity near the cut-off wave
number, the term δpu should be reduced to near zero.

Although the term ξ also produces a large dissipation
rate, it should be maintained for computation stability

Table . The velocity structure function of flatness tensor S4.

  

Case  (Cen-SMA) . . .
Case  (Roe) . . .
Case  (ξ ) . . .
Case  (δpu) . . .
Case  (0.5ξ ) . . .

Table . The total integrated kinetic energy k (m/s).

  

Case  (Cen-SMA) . . .
Case  (Roe) . . .
Case  (ξ ) . . .
Case  (δpu) . . .
Case  (0.5ξ ) . . .

and the improved reduction of dissipation. Simply multi-
plied by 0.5, the term ξ produces satisfactory energy spec-
tra for all resolutions.

Figure 5 illustrates the iso-surfaces of vorticity, which
provide an intuitionistic perspective for observing turbu-
lence eddy and dissipation. Compared with those in Case
1 (Cen-SMA), the vortex cubes with a small space scale
corresponding to high wave numbers in Case 3 (Roe)
almost disappear because of the large dissipation, and
only a few large space-scale vortex tubes are produced.
Obviously, Case 4 (ξ ) is better than Case 8 (δpu), which,
in turn, is better than Case 3 (Roe). Case 9 (0.5ξ ), which
is very close to Case 1 (Cen-SMA), appears to be the best.

The velocity structure functions are also important
parameters related to the turbulence characteristic, which
are defined as follows:

Sn = (−1)n
〈(

∂ui
∂xi

)n〉/〈(
∂ui
∂xi

)2
〉 n

2

. (28)

The third-order structure function (n = 3) is the
skewness tensor, which is related to enstrophy and non-
Gaussian behaviour in HDT. The fourth-order structure
function (n = 4) is the flatness tensor, which indicates the
probability of occurrence of extreme events. As expected,
all the results in Tables 2 and 3 increase with an increase
in the resolution and fall within a reasonable range. How-
ever, the results also indicate that skewness and flat-
ness factors have little relation to the numerical dissipa-
tion because of the absence of an obvious rule between
cases. Above facts provide some justification of directly
adopting the Roe scheme for LES (Garnier et al. 1999;
Thornber, Mosedale, and Drikakis 2007).

Tables 4 and 5 give the total integrated kinetic energy
k = 1

2ui
′ui′ and dissipation rate ε = ν ∂ui ′

∂x j

∂ui ′
∂x j

, where the
value of ν is 1.711∗10−5. For k, all models with all mesh
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Figure . Iso-surfaces of vorticity at ω = 8.5 in the  grid (a) Case  (Cen-SMA), (b) Case  (Roe), (c) Case  (ξ ), (d) Case  (δpu), and
(e) Case  (0.5ξ ).
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8 X.-S. LI AND X. LI

Table . The total integrated dissipation rate ε (− m/s).

  

Case  (Cen-SMA) . . .
Case  (Roe) . . .
Case  (ξ ) . . .
Case  (δpu) . . .
Case  (0.5ξ ) . . .

Figure . Effect of Mach number on the function.

resolutions obtain approximately value of 0.4, except
Case 3 (Roe) and Case 4 (ξ ) at the coarse grid 323. For
ε, the value increases with an increase of grid numbers,
because the turbulence is more fully resolved. Case 8
(δpu), Case 4 (ξ ), and especially Case 3 (Roe), obtain
obviously smaller values compared with that of Case 1
(Cen-SMA), because the turbulence is overly dissipated
by the numerical viscosity, as intuitionisticly shown in
Figure 5. Case 9 (0.5ξ ) can produce reasonable results
similar to that of Case 1 (Cen-SMA).

4. Improvement of the Roe scheme for LES

According to the discussion in Section 3.2, an improved
all-speed Roe scheme for LES is proposed as follows:

ξ = α1
[
1 + f α2 (M)

] |U | , (29)

δpu = f α2 (M)

[
|U | − |U − c| + |U + c|

2

]
[U�ρ − � (ρU )] ., (30)

δpp = −|U − c| − |U + c|
2

cβ, (31)

δUu = |U − c| − |U + c|
2ρc

[U�ρ − � (ρU )] , (32)

δUp = 1
ρ

( |U − c| + |U + c|
2

− |U |
)

β. (33)

Figure . Kinetic energy spectra of the improved Roe scheme for
LES at different resolutions.

The differences between the classical Roe scheme and
the proposed scheme only lie in the terms ξ and δpu with
the Mach number-related function f (M), i.e.,

f (M) = min

(
M

√
4 + (1 − M2)2

1 + M2 , 1

)
. (34)

Equation (34) (Li, Gu, and Xu 2009) is used to
smoothen the transonic speed. However, the dissipation
in the δpu term is

√
5 times that in the ξ term when

M → 0. Such condition is not important for general low
Mach number flows, but it has a significant effect on LES.
Therefore, α2 is chosen as

α2 = 4, (35)

which causes δpu to approach zero in the lowMach num-
ber limit (Figure 6).

On the basis of the behaviour of Case 9 (0.5ξ ), α1 is
chosen as

α1 = 0.5. (36)

Therefore, Equation (29) tends to approach Case 9
(0.5ξ ) in the low Mach number limit.

The improved Roe scheme shown in Equations (29)–
(36) satisfies the rules (Li and Gu 2013) for overcoming
the non-physical behaviour problem, the global cut-off
problem, and the checkerboard problem.As expected, the
results produced by the improved Roe scheme for LES
are very similar to those in Case 9 (0.5ξ ). Figure 7 shows
that the improved Roe scheme for LES can produce good
energy spectra in general for all grid resolutions. Hence,
even under coarse resolutions, this scheme can produce
satisfactory results for the LES computation of engineer-
ing problems.

D
ow

nl
oa

de
d 

by
 [

T
si

ng
hu

a 
U

ni
ve

rs
ity

] 
at

 0
4:

42
 1

7 
M

ar
ch

 2
01

6 



INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS 9

Table . Important factors by the improved Roe scheme.

  

S3 . . .
S4 . . .
k (m/s) . . .
ε (− m/s) . . .

Table 6 shows important factors of the skewness, flat-
ness, the total integrated kinetic energy and dissipation
rate, which are obtained by the improved Roe scheme
with different mesh resolutions. All results are similar to
that of Case 9 (0.5ξ ) and are as expected.

5. Conclusions

The Roe scheme in this work is divided into five parts,
and the effects of such parts on the LES of HDT are inves-
tigated.

(1) The terms δUu, δpp, and δUp have little numerical
dissipation that could affect LES. This conclusion
is important, especially for the term δUp, because
the checkerboard problem should be suppressed
to compute general flows. The term δUp can be
retained in the scheme to achieve computational
stability and to ultimately avoid the influence of
dissipation.

(2) The terms ξ and δpu feature a significantly larger
numerical dissipation than the SGS model. Given
that the term δpu can be set to zero in the low
Mach number limit, we only need to focus on the
term ξ . The improvement for ξ should mimic the
SGS model to maintain stability. According to the
current results, simply multiplying ξ by a coeffi-
cient of 0.5 achieves this goal.

Considering all conditions, this work proposes an
improved Roe scheme for LES. Under the proposed
scheme, LES can be performed with relatively coarse grid
resolutions, and usually adopted second-order recon-
structions of the finite volume method.
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