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a b s t r a c t

The progressive buckling behavior of a gradient grooved tube (GGT) designed for high temperature gas
cooled reactor (HTR) is systematically studied in this paper. Based on the plastic hinge formation process,
a sectionalized theoretical model is established to predict the quadratic upward trend of crushing force of
GGT. The ordered and stable energy absorbing process of GGT is examined by low-speed axial impact
using drop hammer test machine. The effect of proactive regulation parameters, including non-
dimensional groove width W=ðh0þhÞ, groove depth h0=h and half wavelength ðHþW�hÞ=

ffiffiffiffiffiffi
Dh

p
on

buckling modes and force–displacement curve is determined by experiments and FE simulation. The
non-dimensional groove width W/(hþh0) is determined as π=2 according to the geometry coordination
of bending grooves. The non-dimensional groove depth h0/h influences local buckling behavior and the
critical value 0.6 for regular bending has been determined by numerical simulation. The quadratic trend
force–displacement curves of GGT can be actively controlled by ðHþW�hÞ=

ffiffiffiffiffiffi
Dh

p
within a certain range

less than 1.2. Free-fall impact experiments show that GGT has a better stability than perfect tube when
used as an energy absorber to protect the graphite in HTR from slender control rod impact.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Energy absorption is a critical issue in the protection of struc-
tures from impact and collision damage. Thin-walled metal tube is
one of the most commonly used energy absorber as the simple
structure and efficient energy absorbing capacity. There are a lot of
researches in this area over the past decades and the review
articles and books outlined the main findings [1–4].

According to different loading and boundary conditions, thin-
walled tubes can dissipate the impact energy through different
deformation modes. The modes for axial loading conditions
mainly include axial crushing [5–8], tube inversion [9–12] and
tube splitting [13–15]. Axial crushing of the tube is one of the most
efficient and reliable modes due to the high specific energy
absorption, high stroke and volumetric efficiency and progressive
buckling behavior. Tube inversion and tube splitting often need a
shaped die or a clamp to initiate and retain the process, these
modes have a relatively flatten force–displacement curves but
have lower adaptability to severe external conditions such as
oblique impact than axial crushing mode. The modes for lateral
.

loading conditions include lateral compression [16–21] and lateral
indentation [21–24]. The lateral modes have the advantage to use
in narrow energy-absorbing space because of the low compressing
displacement and these modes have smooth force-deflection
responses though the energy absorbing efficiency is lower than
the axial crushing mode.

Thin-walled metal tube may be the best energy absorber that
can be used in graphite core of high temperature gas cooled
reactor (HTR) due to the narrow control rod channel space, high
temperature environment and super clean demands [25–27]. For a
perfect tube, the oscillation of crushing force and the erratic
buckling mode are natural. In axial impact event, the critical
buckling force (the peak crushing force) is much higher than the
average one, and the following peak forces have a decreasing trend
due to strain rate effect. Meanwhile, the buckling mode is sensitive
to the diameter-thickness ratio D/h [28,29]. In a wide range of D/h,
a tube starts in concertina mode but transforms into diamond
mode during buckling [5]. Moreover, the plastic hinges tend to
start at the distal end due to the stress wave reflection. All these
factors ease to lead lateral overturn when the absorber is impacted
by a slender free-fall control rod with no lateral restriction. So the
crushing force and buckling mode must be finely regulated to form
a stable collapse process.
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Nomenclature

D diameter of tube
h wall thickness of tube
L length of tube
m location number of groove
hm depth of mth groove
h0 initial depth of groove
t variation of groove depth
W ring length between grooves
H width of grooves
n fold number
Fn average crushing force of nth fold
Efn energy absorbed by nth fold
Sn crushing displacement of nth fold
Ef energy absorbed by a fold
Eb bending energy of plastic hinge
Esc stretching and compressing energy of groove
Ec compressing energy of groove
Es stretching energy of groove

Ering stretching and compressing energy of ring
Mp plastic bending moment per unit length
mf eccentric factor (ratio of outward fold length to total

fold length)
Y yield stress of tube material
Y0 yield stress in a state of plane strain using Von-Mises

yield condition
V impact velocity
ρ density of material
E Young's modulus
μ Poisson's ratio
hlast last groove depth
hmid non-dimensional middle groove wall thickness of

nth fold
Fimpact
n average crushing force of nth fold under impact

conditions
Fstaticn average crushing force of nth fold under quasi-static

conditions
α hardening parameter
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Initial imperfections such as local dents, holes, grooves, ribs
and pre-buckle on the tube are commonly used to regulate the
collapse process. In summary, the effect of initial imperfections
can (a) initiate a specific axial collapse mode, (b) stabilize the
collapse process, and (c) for axial crush response, reduce the peak
load or optimize specific crush characteristics [30,31]. The initial
imperfections can be extensively applied to the entire tube,
therefore the buckling mode can be controlled to some extent.
Adachi et al. analyzed the effects of stiff ribs on the improvement
of energy absorption characteristics [32] and found the ribs can be
Fig. 1. (a) Schematic diagram of the arrangement of circumferential rectangula
used to improve or adjust energy absorption characteristics, and a
critical distance between ribs for mode conversion was deter-
mined by experimental methods. Hosseinipour and Daneshi
[33,34] performed quasi-static crushing tests for the tubes with
circumferential grooves alternately placed inside and outside the
tubes at predetermined intervals. They found uniform annular
grooves can control the folding location, reduce the peak load and
make the load pulse evenly. Theoretical analysis has been made for
the mean crushing force and met a good agreement with the
experimental results.
r grooves with linear gradient depths; (b) a fold formation model of GGT.



Y. Wei et al. / International Journal of Mechanical Sciences 108-109 (2016) 49–60 51
However, whether grooves or ribs, they have the same geo-
metry and uniform positional distribution along the tube, which
will cause uncertainty of the buckling sequence. In conventional
energy-absorbing components, frusta is a kind of gradient struc-
ture which can export an upward-trending crushing force leading
to a stable buckling sequence [35]. Tapered circular tubes with
graded wall thickness show similar upward trends with frusta and
have a larger design domain than the straight tube [36]. Although
the geometry of frusta and tapered tubes bring manufacturing
difficulties and application limitations in narrow control rod
channels, they still present important characteristics that a stable
energy-absorbing structure should have: consistent buckling
mode, stable buckling sequence, small oscillations and upward
trend of crushing force.

In this work, the gradient grooves are arranged along the thin-
walled circular tube to regulate energy-absorbing process. A sec-
tionalized theoretical model is proposed to predict the crushing
force during the buckling process. The influence of several non-
dimensional controllable geometric parameters – including initial
groove depth (h0/h), groove width (W=ðh0þhÞ) and half wave-
length (ðHþW�hÞ=

ffiffiffiffiffiffi
Dh

p
) on the buckling modes and trend of

crushing force – are studied by systematic numerical simulations
and experiments. Free-fall impact experiments demonstrated that
gradient grooved tube (GGT) has a better stability than perfect
tube when used as an absorber to protect the graphite in HTR from
slender control rod.
2. Theoretical analysis

The crushing process is proactively regulated by a series of
grooves presetting along the stainless steel tube. As shown in
Fig. 1a, circumferential rectangular grooves have a linear gradient
distribution (hm¼h0�(m–2)t), where h0 is the initial depth at the
top end (the second groove from the top end, the first one acts as a
trigger and its depth is h0þt),m is the groove location number and
t is the depth variation. W is the width of a single groove, and H is
the width of the space between adjacent grooves.

A theoretical crushing model for GGT under axial loading is
shown in Fig. 1b. Within the range of reasonable groove para-
meters, plastic hinges will be limited to the circumferential
grooves, and as such, the tubes would buckle in perfect concertina
mode. The average crushing force of the nth fold (Fn) is the ratio of
the absorbed energy (Efn) and the crushing displacement (Sn).

Fn ¼
Efn
Sn

ð1Þ

Sn is a distance of two times the ring width subtracting the
residual length 2h, which are the same for each fold:

Sn ¼ 2ðHþW�hÞ ð2Þ
This model here is based on the assumption of Alexander's

model [37], the tube is made of a rigid, perfect plastic material and
the work of loading (Ef ) in an integral fold is converted into the
plastic bending energy (Eb), the stretching and compressing
energy (Esc) and the plastic work of the rings between grooves
ðEring). And these three parts have no interaction during the pro-
cess. The eccentric factor mf (ratio of outward fold length to total
fold length) shown in Singace's work is about 0.5–0.7 [38,39], for
the simplicity of the model and convenience of calculation, mf is
assumed to be 0.5 in this model.

For the nth fold, the energy absorption (Efn) can be expressed as
Eq. (3):

Efn ¼ EnbþEnscþEnring ¼ Ebð2n�1Þ þEbð2nÞ þEbð2nþ1Þ þEcð2n�1Þ

þEsð2nÞ þEcð2nþ1Þ þEring ð3Þ
where Ebð2n�1Þ, Ebð2nÞ, and Ebð2nþ1Þ are the bending energy of the
plastic hinges located on the (2n�1)th, 2nth and (2nþ1)th
grooves respectively. Ecð2n�1Þ and Ecð2nþ1Þ are the compressing
energy of the (2n�1)th and (2nþ1)th grooves, which go inside
the midline of the tube wall and Esð2nÞ is the stretching energy of
the 2nth groove which goes outside the midline of the tube wall.
Ering signifies the energy absorbed by the two rings between the
grooves.

The bending energy of the (2n�1)th, (2n)th and (2nþ1)th
grooves can be expressed as Eqs. (4)–(6):

Ebð2n�1Þ ¼Mpð2n�1Þ

Z π=2

0
π D�ðHþWÞ sinαð Þdα

¼ π2

2
DMpð2n�1Þ �πMpð2n�1Þ HþWð Þ ð4Þ

Ebð2nÞ ¼ 2Mpð2nÞ

Z π=2

0
π DþðHþWÞ sinαð Þdα

¼ π2DMpð2nÞ þ2πMpð2nÞ HþWð Þ ð5Þ

Ebð2nþ1Þ ¼Mpð2nþ1Þ

Z π=2

0
π D�ðHþWÞ sinαð Þdα

¼ π2

2
DMpð2nþ1Þ �πMpð2nþ1Þ HþWð Þ ð6Þ

Mp is the plastic bending limit moment using von Mises' yield
condition and assuming the tube is in a state of plane strain for
which Y 0 ¼ 2Y=

ffiffiffi
3

p
. The plastic bending moment for the mth

groove is expressed as follows:

MpðmÞ ¼
2ffiffiffi
3

p Y
� �

h�h0þðm�2Þtð Þ2
4

ð7Þ

The plastic bending energy of the three grooves for the nth fold
is then:

Enb ¼ Ebð2n�1Þ þEbð2nÞ þEbð2nþ1Þ ¼
π2

2
D Mpð2n�1Þ þ2Mpð2nÞ
�

þMpð2nþ1Þ
��π HþWð Þ �Mpð2n�1Þ þ2Mpð2nÞ �Mpð2nþ1Þ

� �
¼ π2YD h�h0þ2nt�2tð Þ2ffiffiffi

3
p þπ2YDt2

2
ffiffiffi
3

p �πYðHþWÞt2
2
ffiffiffi
3

p ð8Þ

The second and the third terms can be ignored as t2 is a minor
term compared with h�h0ð Þ2: Thus, the bending energy of the
three grooves for the nth fold is approximately equal to:

Enb �
π2YD h�h0þ2nt�2tð Þ2ffiffiffi

3
p ð9Þ

From Eq. (9), the bending energy of the three grooves can only
be affected by the middle groove wall thickness (h�h0þ2nt�2t).

The stretching and compressing energy of the (2n�1)th, (2n)th
and (2nþ1)th grooves due to diameter variation can be expressed
as Eqs. (10)–(12) below, and the sum of them is expressed as Eq.
(13):

Ecð2n�1Þ ¼ πYðh�h0þ2nt�3tÞ W2

4
þHW

2

 !
ð10Þ

Esð2nÞ ¼ 2πYðh�h0þ2nt�2tÞ W2

4
þHW

2

 !
ð11Þ

Ecð2nþ1Þ ¼ πYðh�h0þ2nt�tÞ W2

4
þHW

2

 !
ð12Þ

Ensc ¼ Ecð2n�1Þ þEsð2nÞ þEcð2nþ1Þ ¼ πY h�h0þ2nt�2tð Þ W2þ2HW
� �

ð13Þ
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As the groove widths and ring lengths are constants for a
specific model, the energy absorbed by the two rings between the
grooves is the same among the folds:

Enring ¼ πYhH2 ð14Þ

The energy absorbed by the nth fold Efn can be expressed as:

Efn ¼ EnbþEnscþEnring ¼
π2YD h�h0þ2nt�2tð Þ2ffiffiffi

3
p þπY h�h0ð

þ2nt�2tÞ W2þ2HW
� �

þπYhH2 ð15Þ

The average crushing force of the nth fold is:

Fn ¼
Efn
Sn

¼ π2YDh2

2
ffiffiffi
3

p
HþW�hð Þ

1�h0�2ntþ2t
h

� �2

þ
πYD

1
2h W2þ2HW
� �

2 HþW�hð Þ 1�h0�2ntþ2t
h

� �
þ πYD

1
2hH2

2 HþW�hð Þ
ð16Þ

For a specific model, n is the only independent variable in this
function. The Eq. (16) above, is expressed as a quadratic poly-
nomial, the independent variable is the non-dimensional middle
groove wall thickness for the nth fold (hmid ¼ 1�h0 �2ntþ2t

h ). The
quadratic term represents the bending energy contribution by the
grooves. The primary term represents the stretching and com-
pressing energy contribution by the grooves, and the constant
term represents the energy contribution by the rings. For uniform
grooves without depth variation (t¼0), and if the eccentric factor
mf is set as 1 or 0 (totally external or internal folding) while the
half wavelength (HþW�h) is set as (HþW), the average crushing
force Eq. (16) will be consistent with the theoretical analysis in
reference [34].

It is worth noting that three non-dimensional parameters h0=h,
W=ðh0þhÞ and ðHþW�hÞ=

ffiffiffiffiffiffiffi
Dh

p
, have significant effects on the

buckling process of GGT. h0/h is the ratio of the depth of the
grooves to the wall thickness of the tube. W=ðh0þhÞ is the ratio of
groove width to wall thickness. ðHþW�hÞ=

ffiffiffiffiffiffiffi
Dh

p
is the non-

dimensional half wavelength: the numerator (HþW�h) is the
artificial half wavelength of the GGT, and the denominator (

ffiffiffiffiffiffi
Dh

p
)

is the inherent half wavelength of a perfect tube, which is the
intrinsic property of the perfect tube [7,37,38,40]. The concertina
Fig. 2. Schematic diagram of
buckling mode and half wavelength of GGT can be proactively
regulated by ðHþW�hÞ=

ffiffiffiffiffiffiffi
Dh

p
.

3. Experimental setup

The impact experiment was carried out using drop hammer
equipment with a 200 kg load mass block as shown in Fig. 2. The
hammer was dropped from a height of 3.7 m, and via gravity
acceleration it reached a velocity VE8.5 m/s before impact.

The buckling process was captured by a high-speed camera
with 5700 fps at full resolution (1024�1024 pixels). A faster mode
of 8000 fps at lower resolution (704�992 pixels) was selected to
capture the detailed deformation characteristics of the buckling
behavior. One 200 W LED (19,000 lm) was used as a light source to
supply adequate luminous flux to the camera for such high speeds.
The displacement and speed of the drop hammer could be
obtained by the two-dimensional digital image correlation (2D
DIC) method using the images captured by the high-speed camera.
The tracing area was a rectangular speckled band on the drop
hammer, as shown in Fig. 3, on a plane parallel to the CCD sensor
during the buckling process. The length of the rectangle (100 mm)
was selected as the reference to calibrate the real distance
per pixel.

A pressure sensor assembly was located at the bottom to measure
the transient crushing force during the buckling process. The piezo-
electric coefficient of pressure sensor was 30449 N/V, measured by a
material testing system. All voltage signals were obtained by a high
dynamic data acquisition unit with 40 kHz sampling frequency.
4. Numerical model

The finite element model has been established by commercial
FE code LS-DYNA 971 to study the buckling process and local
deformation of GGTs. As shown in Fig. 4, three parts are defined in
this model: the impact hammer, GGT and back plate. All the parts
are discretized with 8 node hexahedral elements. The tubes are
modeled with 150 elements in longitudinal direction, 60 elements
in circumferential direction and 6 elements through the shell
thickness. The contact between GGT and back plate is “tied” while
all the others are set as “automatic single surface”. The friction
the experimental setup.



Fig. 3. High-speed images with tracing area for DIC method.
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coefficient is set as 0.15 for all the contacts. The impact hammer is
modeled as a rigid body, the density is set as 2.264*106 kg/m3 to
simulate the hammer weighting 200 kg. The back plate is modeled
as an elastic body with the bottom surface fixed in all dimensions.
The material parameters in the present model are listed in Table 1.
All the GGTs in this study have the same geometry: 150-mm-
length, 80-mm-diameter and 2-mm-thickness.

The strain rate hardening effect and the strain hardening effect
of the 304 stainless steel material are described using the John-
son–Cook constitutive model [41]. The high temperature soften
effect is not considered here, then the plastic flow stress of the
material is expressed as Eq. (17).

σeq ¼ AþBεn
� �

1þCln _ε�
� � ð17Þ

where ε is the equivalent plastic strain, _ε� ¼ _ε=_ε0 is the dimen-
sionless plastic strain rate for _ε0¼1 s�1. The first bracket in Eq. (17)
gives the plastic flow stress as a function of strain when strain rate
_ε�¼1. The second bracket expresses the strain rate hardening
effects. The material constants A¼278 MPa, B¼1300 MPa, n¼0.80
and C¼0.072 are obtained from quasi-static tensile tests and
Hopkinson bar tests at different strain rates from reference [42].
5. Results and discussion

5.1. Validity of numerical model

There is no need to carry out large scale experiments to eval-
uate the effects of proactive regulation if an exact numerical model
exists. In this section therefore, the validity of the numerical model
is examined systematically by experimental results at h0=h¼ 0.6,
W=ðh0þhÞ ¼ π=2 and ðHþW�hÞ=

ffiffiffiffiffiffiffi
Dh

p
¼ 1.

As shown in Fig. 5, the GGT buckles from the proximal end
where the deepest trigger groove is located, and sequentially to
the distal end. Both experimental and numerical results show that
all the plastic hinges are strictly limited to the preset grooves to
form five complete concertina folds in this model. The local plastic
hinge goes outside at thinner groove and inside at the outer
groove, the same as the assumed theoretical model, together with
Hosseinipour and Daneshi's model [34]. The eccentric factor (mf)
in the numerical model is about 0.6, which is consistent with
experimental results.

Fig. 6 shows good agreement between 2D DIC and numerical
results of displacement–time and velocity–time curves in the
initial buckling stage and post-buckling stage. Meanwhile, there is
also good consistency in the force–displacement (F–D) curve from
both the pressure sensor and numerical model, which will be
discussed in detail in Section 5.3.1.

The numerical model can be given complete validation as it can
predict the buckling modes, crushing displacement, velocity and
crushing force process well. All the numerical cases discussed
below have the same settings of material parameters, mesh size,
loading conditions, boundary conditions and friction coefficient.

Above all, the gradient grooves on the tube can control the fold
formation position (plastic hinges on the grooves) and sequence
(from the deepest groove end to the other sequentially), which
show the effect of proactive regulation by the gradient grooves of
the buckling process.



Fig. 4. Numerical model (a) parts, initial and boundary conditions of the model
(b) cross-section of the GGT (c) mesh profile of the GGT tube wall.

Table 1
Material parameters for each part in the numerical model.

Parts Material Constitutive
model

E (GPa) ρ (kg/m3) μ

Impact
body

Steel Rigid 210 2.264e6 0.3

GGT 304 stainless
steel

Johnson–Cook 210 7830 0.3

Back plate Steel Elastic 210 7800 0.3
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5.2. Regulation of buckling modes

The theoretical analysis of the crushing force on the GGT is
deduced under the premise of standard concertina folds forming
at the gradient grooves. Thus, the controllability of the plastic
hinge formation is sensitive to several non-dimensional para-
meters including the width of groove (W=ðh0þhÞ), the groove
depth (h0=h) and the half wavelength (ðHþW�hÞ=

ffiffiffiffiffiffi
Dh

p
). In the

following section, the effects of these parameters on the plastic
hinge formation and integrated buckling mode are discussed.

5.2.1. Non-dimensional width of the groove W=ðh0þhÞ
The fold formation assumption and theory model have been

presented by many authors. Alexander [37] first presented a
theoretical model to predict the average crushing force of the
concertina mode, the curvature of the folds are neglected, and the
plastic hinge is assumed to be a point in this model, the length of
the bending curve is not included. Abramowicz and Jones [5]
presented a more realistic model, they assumed that the rings
bend outward and have the same curvature of opposite sense.
Grzebieta' model [43] assumes that the fold has curved regions
and straight regions, two curved regions are separated by a
straight region and each region is one-third of the fold length.
Wierzbicki et al. [40] first developed the concept of eccentric
factor, the mechanism allows the rings bend inside and outside the
tube midline. Singace et al. [38,39] gave out the detailed theore-
tical analysis and experimental validation of the eccentric factor.
Both the rings in the two models above are straight and no cur-
vature is assumed.

Based on the Alexander's model, considering the curvature of
the bending groove region (and considering the eccentric factor,
mentioned in Section 2), an ideal formation of a plastic hinge at a
groove for GGT is that, the upper and lower rings rotate 90° into a
parallel state without curvature and the groove bends into a
semicircle. This gives a relationship of W=ðh0þhÞ ¼ π=2 of geo-
metry coordination which is illustrated in Fig. 7.

The effect of the non-dimensional width of the groove on the
formation of the plastic hinge is numerically evaluated as a case of
W=ðh0þhÞ¼1, π=2 and 2. As shown in Fig. 8, two rings squeeze
each other during the formation of the fold when W/(h0þh) is
lower than π/2. In this case, the extrusion of the rings cause
additional squeezing force between two rings, which is not
expected in our theory model illustrated in Section 2. Conversely,
when W/(h0þh) is equal to or greater than π/2, the hinges can
bend smoothly without any squeezing between rings. However, a
larger W/(h0þh) means an increased slenderness ratio of the
grooves, which increases the possibility of local destabilization.
Therefore, π/2 is suggested as a reasonable value for non-
dimensional width of gradient grooves in all cases.

5.2.2. Non-dimensional groove depth h0/h
The non-dimensional initial groove depth controls the local

instability properties of the GGT. The local grooves can be regarded
as uniform cylinder shells whose destabilization behavior can be
predicted by non-linear large deflection theory [44]. Local buck-
ling of the grooves themselves can be caused by overlarge h0/h
when the critical buckling instability load of the local groove
becomes lower than the whole fold formation load. When local
buckling occurs, the rings between the grooves are similar with
the function of ribs in reference [32], and the grooves are like
minor tubes buckling between the ribs.

Fig. 9 shows numerical results of local buckling behavior of
grooves at different h0/h. The undesirable local buckling happens
when the non-dimensional depth (h0/hZ0.8) and the crushing
force no longer meet the value deduced from our theory. When h0/
h ranges from 0.6 to 0.8, the groove regions bend irregularly, and
the two rings cannot turn into parallel which means the buckling
behavior is still out of control. In the case of h0/hr0.6, the groove
regions bend smoothly to form a perfect plastic hinge which
demonstrates good control effects. Therefore, since the depths of
grooves in the GGT decrease gradually along the tube, we set h0/
h¼0.6 as the initial groove depth in all GGT configurations to
ensure local controllability. It should be mentioned here that the
last groove depth in all GGTs is set as hlast/h¼0.1, as extremely
small non-dimensional groove depth may not perpetuate the
control effect. As the initial and last groove depth are determined
in all GGTs, the groove number and groove depth variation (t)
differ with different non-dimensional half wavelengths
((HþW�h)/

ffiffiffiffiffiffi
Dh

p
), the influence of which will be discussed in

Section 5.2.3 ahead.



Fig. 5. Comparison of experimental and numerical results of fold formation process at h0=h¼ 0.6, W=ðh0þhÞ ¼ π=2 and ðHþW�hÞ=
ffiffiffiffiffiffiffi
Dh

p
¼ 1.
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5.2.3. Non-dimensional half wavelength (HþW�h)/
ffiffiffiffiffiffi
Dh

pffiffiffiffiffiffi
Dh

p
is widely accepted as the inherent half wavelength

[7,37,38,40] while HþW�h is the artificial half wavelength that
we hope to control during the buckling process. The ratio
of HþW�h to

ffiffiffiffiffiffi
Dh

p
represents the competition between human

and natural forces. Unfortunately, the artificially controlled con-
certina folds pattern can be only achieved within a certain range of
parameters.
The numerical results of the integrated buckling pattern at
different values of (HþW�h)/

ffiffiffiffiffiffi
Dh

p
ranging from 0.7 to 1.6 are

shown in Fig. 10, and the results of impact experiments at
(HþW�h)/

ffiffiffiffiffiffi
Dh

p
¼1, 1.2 and 1.6 are also included. Numerical

results in the case of (HþW�h)/
ffiffiffiffiffiffi
Dh

p
¼1.2 represent a few irre-

gularly replicated folds during the buckling process. The number
of these irregular concertina folds increases in the case where
(HþW�h)/

ffiffiffiffiffiffi
Dh

p
¼1.3, and the buckling turns into diamond mode



Y. Wei et al. / International Journal of Mechanical Sciences 108-109 (2016) 49–6056
completely at case (HþW�h)/
ffiffiffiffiffiffi
Dh

p
¼1.4. Two rounds of impact

experiments were also carried out at (HþW�h)/
ffiffiffiffiffiffi
Dh

p
¼1.2, one

showed irregular concertina mode and the other showed
diamond mode.

All of the results above demonstrate that (HþW�h)/
ffiffiffiffiffiffi
Dh

p
¼1.2

is a critical upper limit for the artificial concertina folds. In other
words, if (HþW�h)/

ffiffiffiffiffiffi
Dh

p
is bigger than a critical value, the over-

large half wavelength makes the tube buckle in an uncontrollable
manner. This is due to the overlarge half wavelength makes the
load and energy to buckle in a concertina mode become to high,
thus the diamond mode which needs lower load and energy
occurs. This phenomenon and explanation fit the tube energy
Fig. 6. Typical displacement–time and velocity–time curve from 2D DIC and
numerical model at h0=h¼ 0.6, W=ðh0þhÞ ¼ π=2 and ðHþW�hÞ=

ffiffiffiffiffiffiffi
Dh

p
¼ 1.

Fig. 7. Geometry relationship of perfect concertina folds at grooves.

Fig. 8. Numerical deformation features of p
dissipation analysis by Andrews et al. [45], the concertina mode
dissipates more energy than the diamond mode. Meanwhile, local
tearing was observed in both numerical and experimental results
in the case of (HþW�h)/

ffiffiffiffiffiffi
Dh

p
¼1.6, which is from the local

shearing behavior of the grooves induced by the irregular defor-
mation of diamond folds. When (HþW�h)/

ffiffiffiffiffiffi
Dh

p
o1.2, the GGT

shows good controllability and the half wavelength of the con-
certina folds is strictly limited to the artificial values. It should be
noted that the width of the grooves could be bigger than the ring
length when (HþW�h)/

ffiffiffiffiffiffi
Dh

p
o0.7. That has already gone beyond

the concept of “defect”, so the controllable non-dimensional half
wavelength is determined as 0.7–1.2 for this type of GGT.

5.3. F–D curve of GGTs

5.3.1. F–D curve in controlled concertina mode
The typical F–D curve of GGT at h0/h¼0.6, W/(h0þh)¼π/2

and (HþW�h)/
ffiffiffiffiffiffi
Dh

p
¼1 with completely controlled concertina

mode is illustrated in Fig. 11. Under the effect of the gradient
grooves, the F–D curve presents an upward trend with slight
oscillations integrally, this upward trend can enhance the buckling
stability when impacted by slender control rod. Except our
lastic hinge with different W/(h0þh).

Fig. 9. Numerical deformation features of plastic hinge with different h0/h.



Fig. 10. Numerical and experimental results of integrated buckling patterns at different (HþW�h)/
ffiffiffiffiffiffiffi
Dh

p
ranging from 0.7 to 1.6.

Fig. 11. Typical force–displacement curve of GGT. Fig. 12. Comparison of theoretical, numerical and experimental results of sectio-
nalized F–D curve at h0/h¼0.6, W/(h0þh)¼π/2 and (HþW�h)/

ffiffiffiffiffiffiffi
Dh

p
.
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gradient grooves arrangement method, the upward trend can also
be achieved by tube diameter variation [35], tube wall thickness
and diameter variation simultaneously [36], gradient foam filling
together with tube wall thickness variation [46]. The double peak
feature of each fold formation is because of the eccentric effect;
the same feature has been observed and studied by Singace et al.
[38,39]. As the eccentric factor of this model is about 0.6, the
crushing force inward on the plastic hinge will be lower than the
outward, which arises the discrepancy of two peak values corre-
sponding to the initial bending inward and outward respectively.

5.3.2. Comparison of the theoretical, experimental and numerical
results

In order for a comparison to be made with the theoretical
results, the numerical and experimental F–D curves have been
sectionalized into hmid curves of average crushing force (sectio-
nalized F–D curves). As shown in Fig. 12, the crushing displace-
ment is represented by the non-dimensional middle groove wall
thickness of the nth fold (hmid) and the transient crushing force is
represented by the sectionalized average crushing force derived
from the ratio of energy absorption and the crushing displacement
through the nth fold.
The sectionalized F–D curves represent an obvious upward
trend. The theoretical results can predict this trend even though
the exact values are lower than the experimental and numerical
results. The discrepancy is mainly derived from a consideration of
strain hardening and strain rate hardening. Generally, the quasi-
static theory can also be applied in low-velocity impact conditions
when the strain and strain rate hardening effect are considered by
multiplying a hardening factor [29] by the static crushing force as
expressed in Eq. (18). This hardening parameter (α) is determined
as 2.6 for our configurations and impact conditions, thus demon-
strating good agreement among the theoretical, experimental and
numerical results.

Fimpact
n ¼ αFstaticn ð18Þ
Our theory predicts a quadratic upward trend of the sectiona-

lized crushing force on the GGT. This upward trend is sensitive to
the non-dimensional half wavelengths ((HþW�h)/

ffiffiffiffiffiffi
Dh

p
) as

shown in Fig. 13. Within a controllable range, the upward trend is
gradually weakened with the increasing (HþW�h)/

ffiffiffiffiffiffi
Dh

p
, the

numerical sectionalized F–D curves fit well with the theoretical
curves. The upward trend influencing by the non-dimensional half
wavelength (HþW�h)/

ffiffiffiffiffiffi
Dh

p
provides further evidence for the

controllability of the GGT.



Fig. 13. Numerical sectionalized F–D curves of GGTs with different (HþW�h)/
ffiffiffiffiffiffiffi
Dh

p
.

Table 2

Coefficients of the theoretical force formulation for different (HþW�h)/
ffiffiffiffiffiffiffi
Dh

p
.

(HþW�h)/
ffiffiffiffiffiffiffi
Dh

p
Quadratic
coefficient

Primary
coefficient

Constant
coefficient

0.7 108.4 24.3 6.0
0.8 94.8 24.5 8.2
0.9 84.3 24.7 10.5
1 69.0 25.0 15.2
1.1 63.2 25.1 17.6
1.2 58.3 25.1 20.1

Fig. 14. The three terms of the theoretical force with different (HþW�h)/
ffiffiffiffiffiffiffi
Dh

p

(a) the quadratic term; (b) the primary term; (c) the constant term.
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5.3.3. Theoretical analysis of sectionalized F–D curves
The quadratic term, the primary term and the constant term of

the theoretical sectionalized average force can be obtained from
formulation (16) and (18) for different (HþW�h)/

ffiffiffiffiffiffi
Dh

p
as shown

in Table 2. It can be seen from formulations (15) and (16) that the
contribution of the quadratic term απ2YDh2h2mid=2

ffiffiffi
3

p
HþW�hð Þ of

crushing force is mainly derived from plastic bending in local
gradient grooves. The bending force increases rapidly at a speed
that is proportional to h2mid. It is demonstrated that the quadratic
coefficient απ2YDh2=2

ffiffiffi
3

p
HþW�hð Þ is sensitive to the non-

dimensional half wavelength (HþW�h)/
ffiffiffiffiffiffi
Dh

p
. As shown in

Fig. 14a, the upward trend of crushing force is obviously sup-
pressed at bigger (HþW�h)/

ffiffiffiffiffiffi
Dh

p
. As we know, since the bending

state of a complete concertina fold is almost the same, such as the
concertina models discussed in Section 5.2.1 [7,37,38,40] and the
groove bending model we assumed in Fig. 7, the bending force is
mainly dependent on the thickness of the grooves that participate
in bending. For the same hmid, the energy absorbed by bending is
the same, thus bigger (HþW�h)/

ffiffiffiffiffiffi
Dh

p
reduces the energy

absorption efficiency as the crushing displacement increasing for a
fold, and this causes the upward trend of bending force to level off.

The primary term απYh W2þ2HW
� �

hmid=2 HþW�hð Þ repre-

sents the contribution of stretching and compressing of the
grooves. The crushing force from this part is linearly increased
during the buckling process as shown in Fig. 14b. The primary

coefficient απYh W2þ2HW
� �

=2 HþW�hð Þ is insensitive to the

non-dimensional half wavelength (HþW�h)/
ffiffiffiffiffiffi
Dh

p
. This insensi-

tivity is mainly derived from that: for bigger half wavelength,
although the crushing displacement for a fold increased, the
amount of stretching and compressing deformation will be
increased too, which led to a neutralizing effect.
The contribution of constant term απYhH2=2 HþW�hð Þ is
derived from stretching and compressing of the rings between
three grooves. Since the identical half wavelength is set in a
unique GGT, the crushing force from this part is independent of
hmid as shown in Fig. 14c. However, since the amount of stretching
and compressing deformation increases at greater half wave-
length, a larger crushing force will be output for this part due to
more material participation in energy absorption, even though the
crushing displacement increases. This is confirmed by the positive
correlation with (HþW�h)/

ffiffiffiffiffiffi
Dh

p
as illustrated in Table 2.

We can see in Fig. 14 that the quadratic term contributes the
most energy absorption for the entire process, the primary term
contributes the second most, and the constant term makes the
least energy absorption contribution. However, as the quadratic
and constant terms have negative and positive correlations with
(HþW�h)/

ffiffiffiffiffiffi
Dh

p
, the gap between the constant terms and other

two terms for bigger (HþW�h)/
ffiffiffiffiffiffi
Dh

p
becomes smaller.

5.4. Application of GGT in HTR

The proactive regulation effects of GGT is examined by free-fall
impact experiment in control rod channel, with the same experiment



Fig. 15. (a) The slender control rod of HTR used in the experiment (b) the slender control rod impacted the GGT (c) perfect tube buckles on the distal end and lead to offset
laterally; (d) GGT buckles in controlled concertina mode.
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setup in reference [27]. Fig. 15 shows the slender control rod and
crushed perfect tube and GGT. Perfect tubes have tendencies to buckle
from distal end, resulting laterally offset from the impact axis. In con-
trast, the GGTexhibits good stability with standard concertina folds and
consistent buckling sequences, and no lateral offset happens in all free-
fall impact experiments.
6. Conclusions

In this paper, a method to proactively regulate the buckling
process of a thin-walled tube has been explored using the gradient
defect. The gradient grooved tube (GGT) is designed to protect
graphite in high temperature gas-cooled reactor (HTR) from the
free-fall impact of slender control rod. A sectionalized theory for
crushing force of the GGT is developed and predicts a quadratic
upward trend which is also confirmed by experimental and
simulated results. Several non-dimensional parameters having
significant influences on crushing force and buckling modes are
studied comprehensively using theoretical, experimental and
numerical methods. The slender control rod free-fall experiments
have been performed to the perfect tube and GGT respectively. The
main findings of this paper are as follows:
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1. The non-dimensional groove width (W/(hþh0)) is determined
as π/2 based on the geometric coordination of plastic hinge
formation. The non-dimensional groove depth h0/h¼0.6 is
determined as an upper limit value for regular bending which
is the premise of proactive regulation of the buckling of the GGT.
The non-dimensional half wavelength (HþW�h)/

ffiffiffiffiffiffi
Dh

p
has a

great effect on the integral buckling mode of the GGT. This
upper limit value for controllable concertina mode is deter-
mined as (HþW�h)/

ffiffiffiffiffiffi
Dh

p
¼1.2 by both experiments and

simulations.
2. The integral and sectionalized F–D curves of the GGT show a

quadratic upward trend to realize a more stable crushing pro-
cess. This upward trend shows a negative correlation with the
non-dimensional half wavelength (HþW�h)/

ffiffiffiffiffiffi
Dh

p
, showing

controlablle by this parameter within a certain range.
3. The relationship between the three terms of the theoretical

quadratic crushing force and (HþW�h)/
ffiffiffiffiffiffi
Dh

p
has been analyzed

theoretically. The quadratic term is mainly derived from the
plastic bending in local gradient grooves, can be obviously

suppressed with bigger (HþW�h)/
ffiffiffiffiffiffi
Dh

p
. The primary term is

mainly derived from the stretching and compressing of the

grooves, showing insensitive to (HþW�h)/
ffiffiffiffiffiffi
Dh

p
. The constant

term of crushing force is mainly derived from the stretching and
compressing of the rings between three grooves, having a

positive correlation with (HþW�h)/
ffiffiffiffiffiffi
Dh

p
.

4. Finally, the free-fall impact experiments demonstrate that GGT
has a better stability than perfect tube when used as an
absorber to protect the graphite in HTR from slender
control rod.
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