
Xianghong Xu1

State Key Laboratory of Nonlinear Mechanics,

Institute of Mechanics,

Chinese Academy of Sciences,

No. 15 Beisihuanxi Road,

Beijing 100190, China

e-mail: xxh@lnm.imech.ac.cn

Zhongkang Lin
State Key Laboratory of Nonlinear Mechanics,

Institute of Mechanics,

Chinese Academy of Sciences,

No. 15 Beisihuanxi Road,

Beijing 100190, China

Shilong Sheng
State Key Laboratory of Nonlinear Mechanics,

Institute of Mechanics,

Chinese Academy of Sciences,

No. 15 Beisihuanxi Road,

Beijing 100190, China

Wenjun Yuan
State Key Laboratory of Nonlinear Mechanics,

Institute of Mechanics,

Chinese Academy of Sciences,

No. 15 Beisihuanxi Road,

Beijing 100190, China

Evolution Mechanisms
of Thermal Shock Cracks
in Ceramic Sheet
Knowledge of crack initiation, propagation, and corresponding thermal shock failure
evolution is prerequisite for effective maintenance of civil engineering so as to avoid
disaster. Experimental analysis of the cracking in the ceramic sheets subsequent to water
quenching has been conducted. Based on statistical mesoscopic damage mechanics, it
was revealed that there are four stages in the process of thermal shock evolution of
ceramics subjected to water quenching. The multiple cracks interaction mechanism has
been analyzed from the viewpoint of the evolution of the elastic strain energy and stress
intensity factor. [DOI: 10.1115/1.4033175]
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1 Introduction

Ceramic has been widely used in industrial fields due to its
intrinsically advanced thermal mechanical properties, anti-
oxidation, and corrosion resistances. However, ceramics exhibit
low resistance to fracture by thermal shock due to their brittleness,
and often occur in cracking or worse, even a highly catastrophic
failure. Therefore, thermal shock crack is one of the most primary
reasons resulting in the failure in the ceramic structure, and ther-
mal shock resistance undoubtedly restricts the ceramic engineer-
ing application in high-temperature environment. The study of the
working mechanism of the crack growth induced by thermal
shock not only could be able to assess the service life of the
ceramic components to reduce the accident rate but also is helpful
to design of ceramic with high thermal shock resistance.

The study on thermal shock damage problem of ceramic has
been carried out since 1950s. In order to solve the above men-
tioned issues, a large number of research scholars had taken great
effort on the aspects of theoretical model and analysis, experiment
and numerical simulation, characterization, and evolution crite-
rion. Lu and Fleck [1] analyzed the effect of different factors on
thermal shock resistance of brittle solids based on a failure crite-
rion. After that, the hot points of research have been turned to the
evolution of the crack patterns, for instance, Bazant et al. [2] and
Nemat-Nasser [3,4] studied the stability in crack growth according
to parallel cycle way and proposed the instability criterion of the
crack grading; Jagla [5] discussed the form and growth of cycle
crack by the stress criterion and energy minimization; and Bahr
et al. [6] derived the growth rule of the cycle thermal shock crack
in the semi-infinite body. Bahr et al. [7,8] experimentally studied
the evolution of crack patterns in the different thermal shock

temperatures and carried out a qualitative analysis of multiple
crack growth based on Griffith’s criterion. Jenkins [9] and Jiang
et al. [10] studied the evolution of spacing and depth of thermal
shock crack using the energy minimization. Li et al. [11,12]
simulated the extension of thermal shock crack by applying the
nonlocal damage model. Sicsic and Bourdin [13,14] promoted
the simulation for thermal shock crack in ceramic to 3D using the
gradient-enhanced damage model and discussed the condition,
under which the penetrating cracks are converted into the net
cracks.

To date, the study on thermal shock damage in ceramic has
been made the great progress. However, there are still several
fundamental issues that need to be solved, such as ignoring the
influence of the heterogeneity. Tang et al. [15–17] and Bai et al.
[18–20] have proposed damage model studying concrete and rock
fracture undergoing compression and other external loading. In
this study, a theoretical model has been proposed for the thermal
shock cracks growth of ceramic based on that given by Tang
and Bai. The mechanism of the multiple thermal shock cracks
evolution has been investigated and discussed.

2 Experimental Details

Commercially available Al2O3 powder (particle size 0.5 lm,
purity 99.5%) was compressed into blocks at 20 MPa and subse-
quently sintered at 1650 �C for 2 hrs at normal pressure. The
sintered bodies, with 4% porosity and 10 lm mean grain size,
were cut into sheets with dimensions of 50 mm� 10 mm� 1 mm.
The ceramic sheets were ground, polished, slightly chamfered,
and then stacked as shown in Fig. 1 to prevent coolant from
accessing the interior surfaces (50 mm� 10 mm). In such case,
adiabatic boundary is satisfied on the left, right, and interior
surfaces of the sheet, while convective heat transfer boundary is
satisfied on the top and bottom surfaces.

The stacks were initially heated to a predetermined temperature
in a muffle furnace (MF-0914P), kept for 20 min to reach thermal
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equilibrium, and then quenched in water at 17 �C. After drying,
the quenched samples were immersed in dye and then wiped with
absorbent cotton. The crack patterns of each specimen after
quenching were thus distinguishable and were photographed by a
digital scanner. Figure 2(a) shows the thermal shock cracks of
three specimens quenched at 400 �C.

3 Numerical Simulations

3.1 Theoretical Model. A two-dimensional theoretical model
is introduced to depict the above water quenching test of ceramic
sheet. The specimen dimensions along x and y axes are 2L� 2H,
where L¼ 25 mm and H¼ 5 mm, and both of them are far greater
than that in the z direction (Fig. 3).

The temperature field T(x,y,t) is simplified as two-dimensional
plane problem due to no heat exchange along the z direction, and
satisfies the Fourier heat equation as follows [1]:

@2T

@x2
þ @

2T

@y2
¼ 1

j
@T

@t
; jxj � L; jyj � H; t > 0ð Þ (1)

where j¼ k/qc is the thermal diffusivity, k is the thermal conduc-
tivity, q is the density, and c is the constant-pressure specific heat.
At t¼ 0, the initial temperature of the sheet is T0

Tðx; y; tÞ ¼ T0; ðjxj � L; jyj � H; t ¼ 0Þ (2)

The top and bottom surfaces (y¼6H) of the sheet are quenched
in water at T1 and can be expressed by the convection boundary
condition, and the left and right surfaces are satisfied the adiabatic
boundary condition

k
@T

@y
¼ 7h T � T1ð Þ; y ¼ 6H; t > 0ð Þ
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@x
¼ 0; x ¼ 6L; t > 0ð Þ

9>>=
>>; (3)

where h is the surface heat transfer coefficient.
The stress fields rx(x,y,t), ry(x,y,t), and sxy(x,y,t) are simplified

as plane stress problem and satisfy the equilibrium equations as
follows [9]:
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The thermo-elastic constitutive relation is given as

ex ¼
1

E i; tð Þ rx � �ry½ � þ a T � T1ð Þ

ey ¼
1

E i; tð Þ ry � �rx½ � þ a T � T1ð Þ

cxy ¼
2 1þ �ð Þ

E i; tð Þ sxy

9>>>>>>>=
>>>>>>>;

(5)

where ex(x,y,t), ey(x,y,t), and cxy(x,y,t) are the strain fields. It was
assumed that the specimen consists of a number of mesoscopic
units, and each unit has the same Poisson’s ratio �, thermal expan-
sion coefficient a, thermal conductivity k, constant-pressure
specific heat c, and density q, but different mesoscopic mecha-
nical properties. E(i,t) represents the elastic modulus of the ith
unit at the moment t, and the coordinate (x,y) corresponds to a
point within the ith element. Moreover, the thermal shock process
is accompanied by the transformation from the heat energy to the
elastic strain energy U(t) which can be calculated by

U ¼ 1

2

ðL

�L

ðH

�H

rxex þ ryey þ sxycxyð Þdxdy (6)

3.2 Mesoscopic Heterogeneity of Ceramics. For the study
of damage and failure of brittle materials, a statistical model of
heterogeneous elastic–brittle medium was used [15–17]. The
mesoscopic mechanical properties of ceramics are various due to
the holes, bubbles, microcracks, and other defects. Assume that
the ceramic sheet consists of N mesoscopic units with different

Fig. 1 Schematic of bound ceramic sheet and free fall direc-
tion for thermal shock

Fig. 2 Thermal shock cracks on the interior surface of three
ceramic sheets: (a) experimental results and (b) simulation
results. The quench and water temperatures are 400 �C and
17 �C, respectively.

Fig. 3 Theoretical model of ceramic sheet under water
quenching
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initial tensile strength rTc(i) and elastic modulus E(i,0),
i¼ 1,…,N, both of which follow the Weibull statistical distribu-
tion function

f fð Þ ¼ m

f0

f
f0

� �m�1

exp � f
f0

� �m
" #

(7)

where f represents the initial tensile strength or elastic modulus of
mesoscopic unit; the mean value f0 represents the initial strength
and elastic modulus of materials, i.e., rTc0 and E0, respectively;
the Weibull modulus m relates to the heterogeneity of materials,
that is to say, the smaller the m is, the more diverse the rTc(i) and
E(i,0) are. rTc(i) and E(i,0) are assigned as follows [21]:

Eði; 0Þ ¼ E0ð�lnniÞ1=m

rTcðiÞ ¼ rTc0ð�lnniÞ1=m; i ¼ 1:::N

(
(8)

where ni is the pseudouniformly distributed random number in the
interval [0,1].

3.3 Statistical Mesoscopic Damage Mechanics. For conven-
ience, the complex stress state of the mesoscopic unit is equivalent
to a unidirectional stress state, and then, the constitutive relation
of a mesoscopic unit can be expressed as

rði; tÞ ¼ ½1� Dði; tÞ�Eði; 0Þeði; tÞ (9)

where r(i,t), e(i,t), and D(i,t) are the stress, strain, and damage
variables of the ith mesoscopic unit. D(i,t), ranged from 0 to 1,
indicates the damage degree, in which the “health” and “failure”
are represented by 0 and 1, respectively. The damage of the meso-
scopic unit is reflected by the reduction of its elastic modulus, and
the elastic modulus of the ith damaged mesoscopic unit can be
expressed by

Eði; tÞ ¼ ½1� Dði; tÞ�Eði; 0Þ (10)

Furtherly, the tensile, compression, and shear modes are three
possible damage modes of the mesoscopic unit subjected to exter-
nal load, and D(i,t) can be determined by

Dði; tÞ ¼ maxfDTði; tÞ;DCði; tÞ;DSði; tÞ; Dði; t� DtÞg; Dt > 0

(11)

where DT(i,t), DC(i,t), and DS(i,t) are the damage variables of the
ith mesoscopic unit under the tensile, compression, and shear
modes, respectively. The tensile strain is defined as positive and
the compressive strain is defined as negative. The unidirectional-
stress-state equivalent expressions of the damage evolution func-
tion under the above three damage modes will be introduced as
follows.

As the ith mesoscopic unit is in the tensile damage mode, the
damage evolution equation can be expressed as (Fig. 4(a)) [22]

DT i; tð Þ ¼

0 0 � eT i; tð Þ � eTc ið Þ
eT i; tð Þ � eTc ið Þ
eTu ið Þ � eTc ið Þ

eTu ið Þ
eT i; tð Þ eTc ið Þ < eT i; tð Þ < eTu ið Þ

1 eT i; tð Þ � eTu ið Þ

8>>><
>>>:

(12)

where eTcðiÞ ¼ rTcðiÞ=Eði; 0Þ is the critical tensile strain of the ith
unit, eTuðiÞ is assumed to be kTeTcðiÞ and the coefficient kT> 1,
and the equivalent tensile strain eTði; tÞ can be expressed by

eTði; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
he1ði; tÞi2 þ he2ði; tÞi2 þ he3ði; tÞi2

q
(13)

where e1, e2, and e3 are three principal strains of the mesoscopic
unit, respectively, and the function hfi is defined by

hfi ¼
f; f � 0

0; f < 0

(
(14)

As the ith mesoscopic unit is in the compression damage
mode, the damage evolution equation can be expressed as
(Fig. 4(b)) [22]

DC i; tð Þ ¼

0 �eCc ið Þ � eC i; tð Þ � 0

eC i; tð Þ þ eCc ið Þ
eCu ið Þ � eCc ið Þ

eCu ið Þ
eC i; tð Þ �eCu ið Þ < eC i; tð Þ < �eCc ið Þ

1 eC i; tð Þ � �eCu ið Þ

8>>>><
>>>>:

(15)

where eCcðiÞ ¼ rCcðiÞ=Eði; 0Þ is the critical compressive strain of
the ith unit, rCcðiÞ and eCuðiÞs are assumed to be xrTcðiÞ and
kCeCcðiÞ, respectively, and the coefficients x> 1 and kC> 1, and
the equivalent compressive strain eCði; tÞ can be expressed by

eCði; tÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�e1ði; tÞi2 þ h�e2ði; tÞi2 þ h�e3ði; tÞi2

q
(16)

As the ith mesoscopic unit is in the shear damage mode, the
damage evolution equation of the mesoscopic unit can be
expressed as (Fig. 4(c)) [15]

DS i; tð Þ ¼

0 eSc i; tð Þ � eS i; tð Þ � 0

1� b
eSc i; tð Þ
eS i; tð Þ eSu i; tð Þ < eS i; tð Þ < eSc i; tð Þ

1 eS i; tð Þ � eSu i; tð Þ

8>>><
>>>:

(17)

Based on the Mohr–Coulomb criterion [23], the critical shear
strain of the ith unit eScði; tÞ can be deduced by

eSc i; tð Þ ¼ 1

E i; 0ð Þ �
2 sin u

1� sin u
rTc ið Þ

�

þ 1þ sin u
1� sin u

r1 i; tð Þ � � r1 i; tð Þ þ r2 i; tð Þ½ �
�

(18)

and the equivalent shear strain is equal to

eSði; tÞ ¼ e3ði; tÞ (19)

where u is the friction angle of the mesoscopic unit; � is the Pois-
son’s ratio; r1 and r2 are the first and second principal stresses,
respectively; e3 is the third principal strain; and eSuði; tÞ is assumed
to be kSeScði; tÞ and the coefficient kS> 1. Assume that the shear
strength of the damaged unit rrði; tÞ ¼ brScði; tÞ, in which
rScði; tÞ ¼ Eði; tÞeScði; tÞ is the shear strength of the intact unit and
b is the reduction coefficient that ranges from 0 to 1. Unlike in the
case of tensile or compressive damage mode, friction force is
generated as the mesoscopic unit subjected to shear stress. Since
the friction force is not a constant but relative to the stress state,
the shear strength of the mesoscopic unit changes over time.

3.4 Numerical Simulation for Thermal Shock Process. In
the framework of the above statistic mesoscopic damage mechan-
ics, the ceramic specimen is divided into N¼ 1000� 200 meso-
scopic units with dimensions of 0.05 mm� 0.05 mm. Each unit is
assigned to the same values of Poisson’s ratio �, thermal expan-
sion coefficient a, thermal conductivity k, constant-pressure spe-
cific heat c, density q, frictional angle u, and coefficients kT¼ 2,
kC¼ 2, kS¼ 6, x¼ 6, and b¼ 0.5, but different values of initial
tensile strength rTc(i) and initial elastic modulus E(i,0) due to
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mesoscopic heterogeneity. Moreover, assume that the above
parameters, the initial strength rTc0 and elastic modulus E0 of
materials, do not change with the temperature (Table 1). However,
the heat transfer coefficient h increases significantly with tempera-
ture [24]. For simplicity, the Biot number Bi¼ hH/k is taken as
2.5 and 10, respectively, for the quench temperature T0� 280 �C
and T0> 280 �C.

Finite element is adopted to simulate the thermal shock process
of ceramic sheet. Each of the mesoscopic unit is characterized by
an eight-node thermomechanical coupling element. The time step
is 0.001 s. At t¼ 0, all the damage variables of the mesoscopic
unit are initialized as zero, and the initial and boundary conditions
are imposed according to Eqs. (2) and (3). At time t, i.e., the jth
time step, the temperature and stress fields are solved by ANSYS

according to Eqs. (1)–(5), the damage variable of the mesoscopic
unit is calculated by Eq. (11), and the elastic modulus of the unit
is updated by Eq. (10). At the next (jþ 1)th time step, the stress
field is calculated by the updated elastic modulus. In order to
avoid the singularity of the stiffness matrix, the elastic modulus of
the failure mesoscopic unit is assumed as 10�6 MPa. Figure 2(b)
shows the final simulation results of thermal shock cracks, which
are composed of the failure mesoscopic units, of three specimens
quenched at 400 �C.

4 Experimental Verification of the Model

Effectiveness

Comparing the simulation results (Fig. 2(b)) with the experi-
mental results (Fig. 2(a)), it can be seen that both crack patterns
present a hierarchical structure of long and shock cracks, and the
long cracks separate by the short cracks. Crack depth is defined as
the maximum vertical distance from the tip of a crack to the side,
and its dimensionless expression was obtained by dividing by half
the specimen height (5 mm). Figure 5 shows the statistical distri-
butions of the thermal shock crack depths of six ceramic sheets.
Both the experimental and simulation results present a typical bi-
modal distribution which can be well fitted by the bimodal Gaus-
sian function

f xð Þ ¼
X2

n¼1

An

wn

ffiffiffiffiffiffiffiffi
p=2

p e
�2

x�pnð Þ2

w2
n (20)

where pn, wn, and An are the position, width, and area of the nth
peak, respectively, and the fitting values are shown in Table 2.
The bimodal Gaussian fitting values p1 and p1, which are the
mainly concerned here, represent the mean depth of long and short
cracks, and their relative errors between the numerical and experi-
mental results are less than 5%.

Moreover, the average crack spacing with respect to the crack
length is analyzed statistically to characterize the spatial distribu-
tion of multiple cracks. The average crack spacing has been deter-
mined by counting the intersection points of cracks with a straight
line in the crack length [11]. These values were normalized by the
half-specimen height (5 mm) to obtain the corresponding

Fig. 4 Damage constitutive model of the mesoscopic unit: (a) tensile mode, (b) compressive mode, and (c) shear
mode

Table 1 Thermal and mechanical parameters of the 99% Al2O3

ceramic [25]

Thermal conductivity
k W/(m K)

Constant-pressure specific
heat c J/(kg K) Poisson’s ratio �

31 880 0.22
Density
q (kg/m3)

Frictional angle
u (deg)

Coefficient of thermal
expansion a (K�1)

3980 30 6.8� 10�6

Elastic modulus
E0 (GPa)

Tensile strength
rTc0 (MPa)

Weibull modulus m

370 300 5

Fig. 5 Statistic distributions of the thermal shock crack depths
of the ceramic sheets. Cracks of six specimens are adopted in
the statistical analysis each. The quench and water tempera-
tures are 400 �C and 17 �C, respectively. The solid line repre-
sents the bimodal Gaussian fitting function, and the dotted line
indicates the positions of the bimodal peak.

071001-4 / Vol. 83, JULY 2016 Transactions of the ASME

Downloaded From: http://appliedmechanics.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/journals/jamcav/935222/ on 07/12/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use



dimensionless values. Figure 6 shows the comparison between the
experimental and numerical results on such curves. It is shown
that the numerical simulations (solid squares) are close to the real
experimental results (hollow circles). As the crack length is
smaller which indicates near the specimen boundary, the average
crack spacing nearly keeps unchanged. As the crack length
increases, the average crack spacing increases gradually which
indicates that some cracks are arrested, and the arrested crack
must locate between the growth cracks; in other words, the long
and shot cracks distribute on each other at intervals.

Therefore, the numerical simulation presents satisfactory agree-
ment with the experimental results. That is to say, the evolution of
multiple cracks of the ceramic sheet under water quenching can
be effectually simulated by the statistical mesoscopic damage
mechanical model.

5 Evolution Mechanism of the Multiple Thermal

Shock Cracks

5.1 Evolution Process of Thermal Shock Cracks. Numerical
simulation provides the evolution process of crack patterns of the
ceramic sheet under water quenching (Fig. 7). The depths of sev-
eral long and short cracks of specimen no. 1 versus thermal shock
time are shown in Fig. 8. It is observed that the thermal shock
crack initiates from the specimen boundary and propagates to the
internal along y direction. The evolution has experienced four
stages. In the first stage, i.e., t< t2, the initial period of the thermal
shock, all cracks grow simultaneously. The cracks initiated almost
at the same time on the heat transfer surface and propagated to the
inside of the specimen with approximately the same growth rate
6.16 6 0.53 s�1 (Fig. 7(a)). In the second stage, i.e., t2� t� t2max

,
some cracks are arrested one after another until all these cracks
arrested. The cracks arrested in this period are called short cracks
in the final state, and others continued to extend are long cracks.
At t¼ t2¼ 0.017 s, the first short crack is arrested while other
cracks continue to grow (Fig. 7(b)); at t2< t< t2max

, many short
cracks arrested (Fig. 7(c)); and at t¼ t2max

¼ 0.030 s, all of the short
cracks arrested and the arrested cracks distributed uniformly along
the x axis (Fig. 7(d)). The black dotted line arrows in Figs.
7(b)–7(d) indicate the arrested short cracks. In the third stage, i.e.,

t2max
< t< t3

min
, all of the long cracks extend simultaneously

(white solid line arrows in Fig. 7(e)). In the fourth stage, i.e.,
t3

min
� t� t3, the long cracks arrested one after another until all of

them arrested. The long crack growth rate is 1.49 6 0.26 s�1 which
is about 1/5 of the first stage. At t¼ t3

min
¼ 0.250 s, the first long

crack arrested (Fig. 7(f)); at t3
min
< t< t3, many long cracks arrested

(Fig. 7(g); and at t¼ t3¼ 0.477 s, all of the long cracks arrested
and the crack pattern with the alternative distribution of long and
short cracks is formed (Fig. 7(h)). The pattern at t¼ t3 be consid-
ered as the final state of thermal shock cracks is according to the
number of failure mesoscopic units no longer increases as t> t3
(Fig. 9). The white dotted line arrows in Figs. 7(f)–7(h) indicate
the arrested long cracks.

The above mentioned four characteristic moments, t2, t2max
,t3

min
,

and t3, represent the moments of the first crack arrested, all of
the short cracks arrested, the first long crack arrested, and
all of the cracks arrested, respectively. The values obtained from
statistical analysis of six specimens are t2¼ 0.019 6 0.001 s,
t2max
¼ 0.038 6 0.004 s, t3

min
¼ 0.295 6 0.027 s, and t3¼ 0.454

6 0.023 s (Table 3). It can be seen that the crack evolution of the

Table 2 Bimodal Gaussian function fitting parameters

p1 p2 w1 w2 A1 A2

Experimental result 0.115 0.683 0.084 0.071 0.017 0.004
Simulation result 0.110 0.654 0.108 0.061 0.024 0.008

Fig. 6 Thermal shock crack spacing versus crack length. Hol-
low circles (�) and solid squares (�) show the experimental
and numerical results, respectively.

Fig. 7 Crack evolution process of the ceramic sheet under
water quenching by numerical simulations. The upper left 1/4
area of the specimen no. 1 is shown. The quench and water
temperature are 400 �C and 17 �C, respectively. White and black
arrows represent the long and short cracks, respectively. Dot-
ted and solid lines represent the arrested and extending cracks,
respectively. The thermal shock time t is (a) 0.009 s, (b) 0.017 s,
(c) 0.024 s, (d) 0.030 s, (e) 0.100 s, (f) 0.250 s, (g) 0.400 s, and (h)
0.477 s, respectively.
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ceramic sheet under water quenching experienced that all cracks
almost initiate simultaneously at the heat exchange surface with
an approximately equal growth rate in the initial period of about
0.019 s, the short cracks arrested in succession in 0.019 s, all of
the long cracks continue to grow in 0.257 s and then arrested in
succession in 0.159 s, and the crack pattern with long and short
grading is formed finally.

5.2 Energy Mechanism of Crack Depth Grading. After the
ceramic sheet is heated to the predetermined temperature and kept
for about 20 min, the specimen will reach thermal equilibrium
with uniform temperature field and a lot of thermal energy is
stored in the specimen. At the moment of the specimen contact
the water, heat exchange occurs at the specimen boundary
between specimen and water, the temperature field changes
rapidly, and the temperature gradient appears. The results of the
temperature gradient lead to the difference in thermal expansion
between crystals or phases, and the thermal stress will arise [26].
In the process of water quenching, one part of the thermal energy
stored in the specimen converted to the elastic strain energy, one
part released into the surrounding water by the heat exchange, and
the rest is the residual heat energy that not yet be converted or
exchanged. In the present study, the elastic strain energy is

concerned since it directly determines the crack initiation and
propagation.

The elastic strain energy stored in the specimen, calculated
by Eq. (6), with respect to the thermal shock time is obtained
according to the statistical mesoscopic mechanical damage model
(Fig. 10 and Table 4). As t� t1, i.e., in the initial stage of the
water quenching, the temperature and stress fields changed
suddenly, and the stored elastic strain energy increased rapidly
and reached the peak in a short time. As t1< t� t2

0, the elastic
strain energy decreased gradually due to the generation of a large
number of the cracks, that is, the elastic strain energy was released
in the form of crack initiation. As t2

0< t� t3, the elastic strain
energy increased gradually first due to some cracks arrest and then
decreased.

The above mentioned three characteristic moments, t1, t2
0, and

t3, represent the moments of the elastic strain energy reached to
the first peak and the first minimum value, and all of the cracks
arrested, respectively. The values obtained from statistical analy-
sis of six specimens are t1¼ 0.010 6 0.001 s, t2

0 ¼ 0.028 6 0.004 s,
and t3¼ 0.454 6 0.023 s (Table 4). Compare Tables 3 and 4, it can
be seen that t2

0 located at the time interval of short crack arrest,
i.e., [t2, t2max

].
Thus, it can be seen that the driving force of crack initiation

and growth comes from the elastic strain energy stored in the
specimen. In the period of t1< t< t2, the elastic strain energy
decreased due to crack extending, and all cracks grow at almost
same velocity. As the elastic strain energy decreased to a certain
value at t¼ t2, just before t2

0 which corresponds to the moment of
the minimum elastic energy, the first crack arrested and other
cracks continued to extend. After that, some cracks arrested one
after another, and this caused the gradual increasing of the elastic
strain energy after t2 which can continue to drive other cracks
extending as t2< t< t3, until all cracks arrested at t¼ t3. During
the water quenching process, the elastic strain energy reached
a local minimum value, which is closely related to the physical

Fig. 9 Evolution process of the failure unit number and crack
depth under thermal shock. t2 and t3 represent the thermal
shock times of the first crack arrested and all cracks arrested,
respectively.

Table 3 Characteristic moments for crack evolution under
water quenching

Time (s) No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 Average Std.

t2 0.017 0.020 0.018 0.021 0.017 0.019 0.019 0.001
t2max

0.030 0.038 0.039 0.037 0.040 0.041 0.038 0.004
t3

min
0.250 0.339 0.293 0.286 0.290 0.313 0.295 0.027

t3 0.477 0.473 0.420 0.463 0.423 0.468 0.454 0.023

Fig. 10 Evolution process of the elastic strain energy stored in
a specimen during thermal shock. t1 and t2

0 represent the times
of the first peak and first minimum elastic strain energy, respec-
tively. t2, t2max

, t3
min

, and t3
min

represent the times of the first crack
arrested, all short cracks arrested, the first long crack arrested,
and all cracks arrested, respectively.

Fig. 8 Evolution of the crack depth during the whole process
of thermal shock. The specimen number is no. 1. Symbols “L”
and “S” represent the long and short cracks, respectively. The
short crack has arrested one after the other in the [t2, t2max

], and
the long crack has arrested one by one in the [t3

min
, t3]. t2, t2max

,
t3

min
, and t3

min
represents the times of the first crack arrested, all

short cracks arrested, the first long crack arrested, and all
cracks arrested, respectively.
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process of the crack arrest. This indicated that the elastic strain
energy is the driving agent of the crack growth, and the crack
arrest, which eventually leads to the depth grading, is mainly
caused by the lack of the elastic strain energy.

5.3 Stress Analysis of the Crack Depth Grading. Further
statistical analysis on numerical simulations indicates that the
depths of the multiple cracks are different during the whole water
quenching process, even in the initial stage. The fluctuation of
crack depth, i.e., its standard deviation, increases with increasing
thermal shock time (Fig. 9). In the initial stage of thermal shock,
the fluctuation is mainly due to the mesoscopic heterogeneity of
ceramics. However, the interaction between the multiple cracks is
the main reason of making the fluctuation strongly amplified and
presenting crack depth grading in the end.

A simplified model is introduced to study the crack interaction
with existing small fluctuations. Consider a plane stress problem
for a homogeneous elastic sheet with 15 parallel cracks of equal
spacing along the surfaces x¼6H perpendicular to the bounda-
ries (Fig. 11). All the 15 cracks have equal depth p in Fig. 11(a),
while the middle crack no. 8 has depth pþDp and other 14 cracks
have depth p in Fig. 11(b). The specimen size, initial and bound-
ary conditions, and material parameters are the same as aforemen-
tioned (Fig. 3 and Table 1). The crack spacing is assigned as 0.18
since the statistical spacing of our experiments and simulations is
0.174 and 0.177, respectively. Moreover, p and Dp are taken as
0.10 and 0.02, respectively, which is corresponding to the crack
configuration closing to depth grading just before the moment t2
(Fig. 9). The six-node triangle singular element and eight-node
thermomechanical coupling element are adopted near the crack
tip and other parts, respectively, in the finite element mesh divi-
sion. In the whole thermal shock process, assume that the cracks
do not propagate.

The difference of the stress intensity factors at the crack tips,
DKI, between the two crack configurations is obtained and showed
in Fig. 12. As t increased, DKI of crack no. 8 decreased first and
then increased, while the values of other cracks are all reduced
(Fig. 12(a)). It can be concluded that a little growth of a crack, no.
8, would inhibit its own further growth at the early stage but
accelerate later, and inhibit the growth of all the adjacent cracks.
Moreover, the variation amplitude of DKI reduced rapidly with
the increasing distance between the crack no. 8 and its neighbors,
and the crack interaction had locality with interaction distance

about 1–2 crack spacing (Fig. 12(b)). The interaction modes
between the multiple parallel cracks induced by depth fluctuations
have common characteristics with different values of the crack pa-
rameters, such as spacing, depth, and its fluctuation. Statistical
analysis on the experimental and simulation results shows that the
thermal shock cracks of ceramic sheet present three depth grading
modes, i.e., two long cracks separated by one, two, and three short
cracks, and this is mainly caused by the locality of the crack
interaction.

Therefore, the evolution of the multiple cracks in the ceramic
sheet under the thermal shock has the following characteristics:
(1) In the early stage of thermal shock, many cracks have gener-
ated on the heat transfer surface almost at the same time and
propagate to the interior of the specimen under the drive of elas-
tic strain energy, and the slight depth fluctuations are generated
due to the mesoscopic heterogeneity of materials. (2) The inter-
action between the multiple cracks induced by the depth fluctua-
tions is divided into two stages. In the first stage, once a crack
exceeds its adjacent cracks, its crack tip stress intensity factor is
reduced, while the adjacent cracks will extend and catch up
with this crack, that is, most cracks will extend stably grow and
crack depth grading will not appear. In the second stage, the
crack stress intensity factor of the relatively longer crack
increases gradually, and promotes itself extending, while that of
the relatively short crack decreases gradually and inhibits
growth even, and the crack pattern of long and short grading
will be formed. (3) The crack interaction has locality which
reduces rapidly with the distance between two cracks, and it is
the interaction locality caused the interval distribution of long
and short cracks.

Table 4 Characteristic moments for the evolution of elastic
strain energy under water quenching

Time (s) No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 Average Std.

t1 0.009 0.010 0.011 0.010 0.009 0.011 0.010 0.001
t2
0 0.020 0.030 0.031 0.030 0.025 0.031 0.028 0.004

t3 0.477 0.473 0.420 0.463 0.423 0.468 0.454 0.023

Fig. 11 Theoretical model of the interaction between multiple
cracks with depth fluctuations. (a) Cracks with equal depth and
spacing and (b) cracks with equal spacing and depth except for
the middle crack no. 8 with a little more depth.

Fig. 12 Stress intensity factor difference DKI caused by crack
depth fluctuation: (a) DKI versus thermal shock time and (b) DKI

versus spatial location of crack. The crack spacing, depth, and
depth fluctuation are taken as 0.18, 0.1, and 0.02, respectively,
according to the statistical analysis of experimental and numer-
ical results. For symmetry, only eight cracks, nos. 1–8, are
shown.
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6 Multiple Cracks With the Different Quench

Temperature

Figures 13 and 14 show the experimental and simulation crack
patterns of ceramic sheets under the water quenching at different
quench temperature, T0, 220 �C, 240 �C, 260 �C, 280 �C, 290 �C,
300 �C, 400 �C, 500 �C, and 600 �C, respectively. Obviously, the
thermal shock cracks present different grading features with differ-
ent quench temperatures, which is similar to our previous study
[27]. This is mainly caused by the locality of the crack interaction.
For the thermal shock in the ceramic sheet, the experiment results
(Fig. 13) and simulation results (Fig. 14) show that the single peak
statistical distribution of the crack depth is translated gradually in
to double peak with the increase of the thermal shock temperature,
which is mainly due to the interaction between the multiple cracks,
as it has local feature decaying rapidly with the increase of crack
spacing. At lower quench temperature, i.e., 220 �C� T0� 280 �C,
the crack depth is almost at the same level due to the poor

interaction since the crack spacing is much large; each crack can
be considered as isolated crack, and the stress state is almost iden-
tical during the thermal shock process, and the final depths of these
cracks are on the same level. At higher temperature, i.e.,
T0> 280 �C, the interval distribution of the long and short cracks
appeared. In this stage, the crack spacing decreases, the interaction
between the cracks is strengthened, and eventually crack grading
appears.

7 Conclusion

Based on the statistical mesoscopic mechanics, a model is intro-
duced to study the thermal shock mechanisms of ceramic materi-
als. The distribution of the crack depth and the average crack
spacing with respect to the crack length have been analyzed statis-
tically to quantitatively characterize the thermal shock cracks of
the ceramic sheets. It can be seen that the numerical simulation
presents satisfactory agreement with the experimental results.
That is, the evolution of multiple cracks of the ceramic sheet

Fig. 13 Experimental crack patterns of the ceramic sheets
under thermal shock. The upper left 1/4 area of the specimen is
shown. The water temperature is 17 �C. The quench tempera-
ture is (a) 220 �C, (b) 240 �C, (c) 260 �C, (d) 280 �C, (e) 290 �C, (f)
300 �C, (g) 400 �C, (h) 500 �C, and (i) 600 �C, respectively.

Fig. 14 Numerical crack patterns of the ceramic sheets under
thermal shock. The upper left 1/4 area of the specimen is
shown. The water temperature is 17 �C. The quench tempera-
ture is (a) 220 �C, (b) 240 �C, (c) 260 �C, (d) 280 �C, (e) 290 �C, (f)
300 �C, (g) 400 �C, (h) 500 �C, and (i) 600 �C, respectively. The
water temperature is 17 �C.
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under water quenching can be effectually simulated by the statisti-
cal mesoscopic damage mechanical model.

The crack evolution of the ceramic sheet under water quench-
ing experienced four stages, that is, all cracks almost initiate
simultaneously at the heat exchange surface with an approxi-
mately equal growth rate, the short cracks arrested on by one, and
all of the long cracks continue to extend and then arrested in suc-
cession. After that, the crack pattern with long and short grading
is formed finally. The mechanism of the multiple cracks propaga-
tion of ceramics under the thermal shock has been analyzed from
the viewpoint of the evolution of the elastic strain energy and
stress intensity factor during the water quenching process. It can
be concluded that some cracks will arrest as the elastic strain
energy stored in the specimen is insufficient to drive all the crack
continue to extend. Moreover, the crack interaction makes the
multiple cracks with initial small depth fluctuations present long
and short grading in the case of thermal shock. The crack interac-
tion has locality which reduces rapidly with the distance between
two cracks, and it is the interaction locality that caused the inter-
val distribution of long and short cracks.
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