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Layered structures are ubiquitous, from one-atom thick layers in two-dimensional ma-
terials, to nanoscale lipid bi-layers, and to micro and millimeter thick layers in composites.
The mechanical behavior of layered structures heavily depends on the interfacial prop-
erties and is of great interest in engineering practice. In this work, we give an analytical
solution of the bending rigidity of bilayered structures as a function of the interfacial shear
strength. Our results show that while the critical bending stiffness when the interface
starts to slide plastically is proportional to the interfacial shear strength, there is a strong
nonlinearity between the rigidity and the applied bending after interfacial plastic shear-
ing. We further give semi-analytical solutions to the bending of bilayers when both in-
terfacial shearing and pre-existing crack are present in the interface of rectangular and
circular bilayers. The analytical solutions are validated by using finite element simulations.
Our analysis suggests that interfacial shearing resistance, interfacial stiffness and pre-
existing cracks dramatically influence the bending rigidity of bilayers. The results can be
utilized to understand the significant stiffness difference in typical biostructures and novel
materials, and may also be used for non-destructive detection of interfacial crack in
composites when stiffness can be probed through vibration techniques.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

In those interface-rich structures, their mechanical properties could be tuned by manipulating the properties of the
interfaces. For examples, weak interaction between the lipid-bilayer of cells enables the two layers to slide easily (Boal,
2002; McIntosh and Simon, 2006), as illustrated in Fig. 1a. This mechanism lowers the bending rigidity of the membrane
and is beneficial to cell shape-adjustment like fusion or budding of vesicles for intermembrane transportation. In artificial
materials, adhesive-bonded components and structures have become a significant part in the aerospace industry and in the
automotive industry. Fiber-reinforced metal laminates – hybrid composites consisting of alternating layers of metal sheets
and fiber-reinforced epoxy have been adopted for high stiffness, high strength, yet low density (see Fig. 1c). The interfacial
properties are deterministic to the overall mechanical behavior of such structures, including stiffness, strength, ductility,
damping, durability, and so on (Dugdale, 1960; Hutchinson and Evans, 2000). In view of this, interfacial mechanics has
attracted the attention of many engineers and researchers. Many of previous endeavors are to develop physically sound
interfacial models (e.g., Xu and Needleman, 1994; Camacho and Ortiz, 1996; Gao and Klein, 1998; Wei, 2014) and apply them
ei).
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(a) (b)
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Fig. 1. Typical layered structures. (a) Lipid-bilayers in cell membranes, the fluidic like interface reduces the bending stiffness of the bilayer and also
enhances the mobility of lipids. (b) Bilayer graphene as a result of van der Waals bonding between two monolayers. (c) Composites composed of metal
sheets and fiber-reinforced layers. (d) Illustration to show the bending of a bilayered beam: The bending stiffness depends on the interfacial deformation of
the layered beam subjected to moment M at its free end when the interface is not rigidly bonded.
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to capture the strength and fracture behavior of interface-rich materials and structures. In this work, we focus on developing
understanding about how interfacial deformation would influence the stiffness of bilayer structures. The understanding we
develop here may not only be utilized to shed light on the mechanical behaviors of broadly seen layered structures in
biological systems, but also be used for non-destructive detection of interfacial crack in composites when stiffness can be
probed via ultrasonic and acoustic techniques. It could be further used to understand the mechanics of layered materials at
nanoscale. For example, it may be applied to illustrate the dramatic difference in bending stiffness of monolayer graphene
and bi-layer graphene (Lu et al., 2009; Koening et al., 2011; Shen and Wu, 2012; Wei et al., 2013), with the latter a resultant
of binding two monolayer graphenes via van der Waals interactions (see Fig. 1b). It remains unclear how the local electron
properties and possible interfacial sliding account for the huge difference in bending stiffness between monolayer graphene
and bilayer graphene.
2. Bilayers with sliding interface

As a bilayer is the fundamental building block for multilayer materials, we focus our attention on examining the elastic
degradation due to the deformation and failure in the interface of a bilayer. The understanding for the bilayer could be
directly applied to capture the mechanical behavior of multilayer structures. The mostly cited theory for composite beams
was developed by Newmark et al. (1951). The authors applied their model to analysis steel-concrete beams under static load,
the layers were treated as Euler-Bernoulli beams and the interface connection was linearly elastic. Since then, extensive
models with different assumptions for layered structure has been studied. Adekola (1968) took into account of both slips
and uplifts in an interface to look at the deformation of a beam. Gara et al. (2006) extended Adekola's model to handle a
wider class of loading and boundary condition. Girhammar and Gopu (1993) and Girhammar and Pan (2007) developed an
exact analysis for composite beams by the first order and second order analysis. More recently, effects of shear deformation
were investigated by employing Timoshenko beam theory. Schnabl et al. (2007) solved the problem of simply supported
bilayer beam with uniformly distributed load. Xu and Wu (2007) obtained analytical solutions for beams subjected to
uniformly distributed load with different boundary conditions. More commonly, numerical method are employed to solve
the nonlinear problems (Ayoub and Filippou (2000), Salari and Spacone (2001), Cas et al. (2004), Nguyen et al. (2011). It is
noted that while previous works laid out the basic strategy to analyze bilayer beams, there is no comprehensive theoretical
work to show how the stiffness of layered materials depends on interfacial properties. Analytical and experimental results
are available for some special cases like perfectly bonded, free sliding, and a brush interface (Boal, 2002). The purpose of the
work is to give an analytical solution on the dependence of the bending rigidity of bilayered structures on the interfacial
properties.



Fig. 2. Shear response of the interface. δ[m] denotes the tangential slip between two layers; pt [ −N m 1] is the interfacial shear force per unit length of the
beam, as illustrated in Fig. 3. We define K [ −N m 2] as the interfacial stiffness and τ0 as the shear strength.
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2.1. Problem statement

We consider the bending response of a beam composed of two layers, see the structure shown in Fig. 1d. The two layers
could slide with respect to each other when the interfacial shear stress reaches a threshold resistance. For simplicity but
without loss of general physics, we consider a slender beam so that it could be treated by the Euler beam theory. To make
the problem solvable, we have several assumptions, as listed below.

(1) Deformation in the two layers is linearly elastic, and the Euler beam theory is applicable to the bending of each in-
dividual layer.

(2) The interface itself is sufficiently thin (could be as thin as one atomic layer). Therefore, the normal separation in the
interface is small and its influence on the mechanical properties of the beam is neglected. The mechanical response to
normal deformation is elastic.

(3) As a consequence, the deflections of the two layers are the same: Despite possible interfacial sliding from bending, the
interface remains well bound without physical separation. The deflection is a function of the position.

(4) The interfacial shear resistance will reach its plateau once the shearing amount approaches a critical value. No shear
failure is considered. The corresponding cohesive zone model to represent the interfacial shearing is illustrated in Fig. 2.

With the assumptions listed above, we are able to formulate the governing equations of the bilayered beam under
bending.
2.2. Governing equations

With the plane strain condition, we neglect the displacement of the beam in the y-axis. The deflection of the beam at x is
ascribed as = ( )w w x . From now on, we use the subscripts ‘1’ and ‘2’ to refer to the top and bottom layers, respectively. With
the assumptions given in Section 2.1, we may write the displacements of the two layers separately:
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with u1 and u2 referring to the displacements of the top and bottom layers, respectively. The displacements of their re-
spective middle planes are u10 and u20. Here h1 and h2 are the heights of the top and the bottom layers, as shown in Fig. 1d. It
is straightforward to write the axial strains εx1 and εx2 for the respective top and bottom layers as:
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All other components are approximately zero. Corresponding axial stresses in the top and bottom layers are:



Fig. 3. The free-body diagram of an infinitesimal beam element. Here we consider a free-body of length dx in the bi-layer beam. Parameters N M Q, , stand
for axial force, moment, shear stress, respectively, with subscript ‘1’ for the top layer and ‘2’ for the bottom layer. The interfacial traction along the
tangential and the normal direction are pt and pn, respectively.
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where E E,1 2 are the Young's modulus of the top and bottom layers, respectively. From the axial stress equation, we can
derive the axial forces and the bending moments of the two layers as:
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where b is the out-of-plane thickness of the beam, with = ( = )A bh i2 1,2i i representing the cross-section areas of the top
and bottom layers, and = ( = )I bh i 1,2i i

2
3

3 are moments of inertia of each layer. Primes denote differentiation with respect to x.
Referring to Fig. 3. The equilibrium equations are:
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Now, we can formulate the relations between interfacial shear force pt and displacements of the beams u u,10 20 and w.
Combining above Eqs. (4)–(8) and eliminating the interfacial normal force pn, we have
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We now consider the displacement jump across the interface:

δ= ( )− ( )= − +( + ) ′ ( )u x u x u u h h w,0 ,0 101 2 10 20 1 2

Differentiating Eq. (10) by twice and then combining it with Eq. (9), we have
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As shown in Fig. 2, we use a simple constitute equation to connect the interface shear force pt and the interface slip δ:
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For a cantilever beam under pure bending, we know the boundary conditions as:
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Substituting Eq. (5) into the third line of Eq. (13), we obtain the boundary conditions for the deflection:
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Differentiating Eq. (10) and combining the result with Eqs. (4), (5) and (13), we may write the boundary condition in Eq.
(13) in the following form:
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For convenience, we rewrite Eqs. (11) and (15) as follows:
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2.3. The analytical solution

From the governing equations obtained in Section 2.2, we could proceed to derive the analytical solutions for the beam
under pure bending. We first solve for δ ( )x and ( )p xt using Eqs. (12) and (16). The general solutions of δ ( )x and ( )p xt are:
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The coefficients in the above equations can be determined using the boundary conditions given in Eq. (17); hence the
exact solutions can be obtained. Inserting this result into the third of Eq. (9) and applying the boundary condition in Eq. (14),
we obtain the deflection of the beam. By definition, we have the bending stiffness θ=S M/e , here the moment M is exerted at
the free end of the beam, and θ is the rotation at the end. We approach the solution by considering separately two states of
the interface: without interfacial plastic sliding and with plastic sliding after the shear stress reaches its plateau.

2.3.1. Elastic interfacial sliding
We first consider the situation when the interface of the beam deforms elastically. There is no interfacial yielding. We

have:

δ ( ) = ( ) = + ( )K x p x c Ax c Axcosh sinh 21t 0 1
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for ∈ [ ]x L0, . Applying the initial conditions in Eq. (17), we obtain:
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Corresponding rotation at the free-end of the beam is obtained from the deflection curve:
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Now we get the bending rigidity defined previously:
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For simplicity, we also adopt the definition suggested by Girhammar and Pan (2007) and use
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where β is the so-called composite action parameter. It quantifies the impact of interfacial rigidity on the beam rigidity.
2.3.2. Elastic-plastic interfacial sliding
If we continue to increase the bending moment, the shear force in the interface increases and may reach the critical shear

resistance of the interface. As a result, part of the interface may experience perceivable amount of plastic shearing while the
interface remains bound. We now consider this circumstance and solve the differential equation for deflection when

>M M0.M0 is the critical bending moment. We made the assumption that crack will initiate from the free end where stress
concentration occurs. Since plastic sliding will start from the free end and move toward the clamped end, we let the point
separating the elastic and plastic sliding at =x l0. From l0 to L, the shear force in the interface would be its shearing re-
sistance. Hence we have
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Combining with the boundary condition in Eq. (17) and the continuous conditions of δ ( )x and δ′( )x at the point =x l0, we
obtain the two unknowns in Eq. (30):
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From the assumption, we have the following condition at point =x l0:

τ+ = ( )c Al c Alcosh sinh 320 0 1 0 0

Applying this stress boundary, we have
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So now we obtain the interfacial force pt . That is, the relationship between pt and bending moment M is built indirectly
via the condition at l0. The corresponding critical bending moment which triggers the yielding of the interface, by setting

=l L0 , is given as:

τ= ( )M
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B

ALcoth 340 0

Since pt is obtained, inputting pt into the third of Eq. (9) and using the boundary condition in Eq. (14), we get the
deflection. In order to reduce the unknowns while solving the third order partial differential Eq. (9), we rewrite it into a
second order differential equation as:
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From Eq. (35), the deflection of the beam is:
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Using the boundary condition for the deflection ( )= ′( )=w w0 0 0 and the continuous conditions for ( )w x and ′( )w x at point
=x l0, we could obtain the deflection curve by iteration. Hence the bending rigidity of the beam could be deduced:

θ
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It is not surprise to see that the stiffness of the beam is now a function of the applied bending moment, the shear
modulus of the interface, and the critical shear resistance of the interface.
3. A bilayer with interfacial crack and sliding

In the previous section, we formulated the equations of bending stiffness as a function of interfacial shearing resistance.
In that scenario, there are no cracks in the interface, which is suitable for problems like lipid bilayers with weak resistance to
relative sliding. Now we extend the analysis to consider a bilayer with pre-existing interfacial crack and possible interfacial
sliding. Problems of these kinds are broadly seen in composite materials.
3.1. Problem description

We consider the same type of bilayers but with a pre-existing crack in the middle of the interface, as illustrated in Fig. 4.
We are interested in how the pre-existing crack would degrade the bending rigidity of the bilayer. The general solution of
δ ( )x and ( )p xt becomes:

δ
τ

( )=

+
+

+ +
( )

⎧
⎨
⎪⎪

⎩
⎪⎪

K x

C Ax C Ax

C x C

A x C x C

cosh sinh ,elastic region

,cracked region
1
2

,yield region
38

0 1

2 3

2
0

2
4 5
Fig. 4. Illustration for the bending of layered structures with pre-existing interfacial crack. The white region in the interface is the initial crack.
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Then we use Eq. (35) to deduce the deflection and hence the bending rigidity.
3.2. Semi-analytical solutions

Following the deformation process, the interfacial shear stress increases with increasing bending moment. To some level,
the bending moment will be high enough to trigger interface yield. The yield region may growth in response to further
increasing in bending moment. The whole process can be divided into four steps and we supply corresponding semi-
analytical solutions for each case.
3.2.1. Bending before interfacial elastic sliding
As the bending moment increases, the interface first experiences an elastic stage when no yield occurs in any portion of

interface, i.e. ( <M M1). ( = )M i 1,2,3i are the respective critical values for those four steps. We first write the equations for
interfacial shear stress. From the general solution to Eq. (11), we have
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where ls and la are the geometry parameters shown in Fig. 4, = +l l le s a. With the boundary conditions in Eq. (17) and the
continuous conditions of δ ( )x and δ′( )x at the points =x ls and =x le, we have
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Since no yield occurs, pt satisfies τ( ) <p Lt 0. That is, τ+ <c AL c ALcosh sinh4 5 0. This condition can be further shown to be:
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Now we proceed to solve the deflection equation ( )w x . Inputting Eq. (41) into Eq. (35), we have
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Combining with the boundary conditions ( )= ′( )=w w0 0 0 and the continuous conditions for ( )w x and ′( )w x , we can solve for
the deflection equation by numeric method.
3.2.2. Bending after partial interfacial plastic sliding
With further increase in the bending moment, interfacial shear stress increases and may trigger part of the interface to

yield. We consider the situation that the bending moment satisfies < <M M M1 2, so that part of interface on right-hand side of
the pre-existing crack yields. Let the yield occurs within l0 to L. Now the general solution for shearing displacement and
shear stress are given as
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Here we only need to solve the unknowns in the expression of ( )p xt . At =x l0, we have τ+ =c Al c Alcosh sinh4 0 5 0 0. This
condition suggests that the bending moment satisfies:
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It is also less than the critical bending moment which triggers the yield of the whole interface in the right-hand-side of
the crack. That indicates:
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Corresponding deflection equations can be given as:
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With known information for the bending moment and the resultant deflection, it is straightforward to deduce the
bending rigidity of the bilayer beam in a particular loading step.

3.2.3. Bending after complete plastic sliding in one part
No surprisingly, the yield zone will grow in response to further increasing bending moment when it falls in the regime of
< <M M M2 3. Now the whole surface on the right-hand side of the crack yields, but no yield happens in the interface on the

left-hand side of the crack. Corresponding interfacial shear stress in the bilayer is given as:
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There are only two unknowns, which could be determined from boundary conditions with the same method employed
previously, thus
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Since we require τ+ <c Al c Alcosh sinhs s4 5 0, it turns out the bending moment satisfies:
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Similarly, now the deflection is obtained as
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From which the bending rigidity could be determined.

3.2.4. Bending after plastic sliding in two parts
After the whole right-hand side of the interface yields, we will experience a nonlinear increase of deflection as the

bending moment increases to the critical level when the left-hand side of the interface starts to yield. That is, >M M3. The
shear stress in this circumstance is described as:

τ
( ) =

+ < <
< <

< < < < ( )

⎧
⎨⎪

⎩⎪
p x

c Ax c Ax x l

l x l

l x l l x L

cosh sinh ,0
0,

, and 55

t s e

s e

0 1 0

0 0

with

τ
= =

− ( − − )
( )

c c
BM A L l l

A Al
0,

cosh 56
a

0 1

2
0 0

0

At l0, we have τ+ =c Al c Alcosh sinh0 0 1 0 0. Writing this condition in terms of the bending moment, we have
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The deflection is hence given as:
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And the bending rigidity could be obtained following the same procedures defined above. In conclusion, the bending
rigidity of the bilayer beam with a pre-existing crack and considering the interfacial slip can be given as:

( )τ= ( ) ( )S S K l l l M, , , , 59e e s e a0

In the next section, we will present applications of the theories to typical bilayers and examine the predictability of the
theories against numerical simulation results.
4. Numerical verification

In the previous two sections, we have shown theoretically how both shearing and pre-existing crack in the interface of a
bilayer beam would influence the bending rigidity of the beam. As there involve several assumptions when we derive the
analytical formula for both cases, we choose finite element simulations to further examine the validity of those theoretical
analysis.

4.1. Simulation details

We consider a bilayer beam with its left end clamped to a rigid wall. We apply bending moment at the free end of the
beam. The thicknesses of the top and bottom layers are =h 0. 5cm1 and =h 0. 25cm2 , respectively. Plane stress boundary
condition is assumed, and we take the out-of-plane thickness of the beam to be =b 1cm. The length of the beam is assumed
to be =L 10cm. We assume the two layers deform elastically. The Young's modulus of the top layer is =E 60GPa1 respectively;
that of the bottom layer is =E 80GPa2 . For the interfacial response, we consider a shear traction-separation law shown in



Table 1
Geometry parameters and material parameters for two types of bilayers: Case A (Two layers with different properties) and case B (Two same layers). Here

=( + )S E I E I L/0 1 1 2 2 denotes the rigidity of unbonded beam, and M0 denotes the critical yielding bending moment with a particular interfacial property of

=K 0. 8Gpa and τ = ∙0.5Mpa m0 . We use S M,0 0 to normalize the bending rigidity and applied bending moment for all figures. Indeed, as b is the out-of-plane
dimension, it could be any number in the plane-strain problem. For simplicity, we take =b 1cm so that all other parameters will have their normal
dimensions.

Case A Case B

=E 60GPa1 , =h 0. 50cm1 =E 80GPa1 , =h 0. 25cm1

=E 80GPa2 , =h 0. 25cm2 =E 80GPa2 , =h 0. 25cm2

=b 1cm =b 1cm
=L 10cm =L 10cm
=( + ) = ∙S E I E I L/ 583N m0 1 1 2 2 =( + ) = ∙S E I E I L/ 167N m0 1 1 2 2

= ∙M N162 m0 = ∙M N83. 4 m0
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Fig. 2. For comparison, we also present theoretical predictions and simulation results for the bilayer beam of identical layers:
= =h h 0.25cm1 2 , =L 10cm, and = =E E 80GPa1 2 . All used parameters are given in Table 1.
We checked the element type and its influence on convergence. It turns out that the two-dimensional element type

SPS8R for the solids and the COH2D4 cohesive element in the interface work well for our calculations. Ten elements along
the beam thickness for each layer is sufficient for convergence. Because of the cohesive element we used in Abaqus only
gives the stress and strain, the properties of the interface we set need to be transformed into the properties we used in the
previous sections by taking into account the interfacial geometry. To maintain consistence, the parameters we investigated
are given following the definition in Section 2 (see Fig. 2).

4.2. The crack-free case

From the previous discussion we know that, for a particular bilayered structure, both interfacial stiffness (K ) and strength (τ0)
contribute to its bending rigidity, i.e. τ= ( )S S K M, ,e e 0 . For convenience, we first concentrate on the influence of interfacial stiffness with
a fixed interfacial shear resistance τ =0.5Mpa m0 , hence = ( )S S K M,e e . The analytical and simulation results show in Fig. 5a. The
analytical result consists of two parts: elastic deformation and post-elastic deformation. The elastic portion is obtained by solving Eq.
(27); for the post-elastic portion, we solve Eqs. (36) and (37) to get the relation for τ= ( )S S K M l, , ,e e 0 0 , Combined with Eq. (33), the

τ( ) −S K M,e 0 curve is obtained with a reference parameter l0. Let = →l L 00 , the yielding process of interface can be evaluated.
It is obvious that, with the increase of bending moment, the bending rigidity of layered structure remains constant first

and starts to reduce when bending moment reaches to a critical value, as the shear stress of interface climbs its critical shear
resistance and yields. With the yield region grows, the rigidity of bilayer beam approaches to S0, i.e. layered beam gradually
become non-adhesion.
(a) (b)
Fig. 5. Stiffness degradation with different interfacial rigidity: (a): the solid lines are the analytical results obtained by the model, and the dots correspond
to FEM simulations (Case A). (b) Analytical and simulation results for the beam composed of identical layers (Case B). S0 and M0 are defined in Table 1.



(a) (b)
Fig. 6. Initial bending rigidity of layered beam as a function of β (Eq. (27)). Simulation (cycles) and theoretical prediction (solid line) for the bending rigidity
as a function of β( )log in a bilayer beam with dissimilar layers for (a). Case A; (b). Case B. Note that the bending rigidity of the perfectly bonded bilayer is
four times of that of the unbonded bilayer.
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As we can see from Fig. 5, the interfacial rigidity influences mostly on the initial stiffness of the bilayer beam. We know
that, for case B, the bending rigidity of the perfectly bonded bilayer is four times of that of the unbonded bilayer. For further
investigation on the influence of interfacial stiffness, the defined non-dimensional parameter β = AL (see Eq. (28)) is helpful.

Fig. 6 shows the relationship between initial stiffness of the layered beam and the parameter β( )log . For high β values,
bilayer beam behaves well combined with higher bending rigidity; for less β values, bilayer beam can not bond tightly and
thus bending rigidity drops. In this diagram, we see, β is an essential parameter which directly decide how tightly the two
layers are bonded through the interface. Now we investigate how the interfacial strength τ0 influences the bilayered beam's
bending performance, without loss of generality, a particular interfacial stiffness =K 80Gpa is considered.

In Fig. 7, we present the rigidity degradation under the increasing load M with a variety of interfacial stiffness for case A
(a) (b)
Fig. 7. Stiffness degradation with different interfacial strength. ( τ= ( )S S K M, ,e e 0 with τ = =0.5Mpa m const.0 ). Simulation (cycles) and theoretical prediction
(solid line) for the bilayer beamwith dissimilar layers for (a) Case A; (b) Case B. The analytical results is obtained using the method for Fig. 5 with different
values of K and τ0.



(a) (b)
Fig. 8. Bending of layered structures with pre-existing interfacial failure. (a) τ= ( )S S K M, ,e e 0 with τ = =0.5Mpa m const.0 Simulation (cycles) and theoretical
prediction (solid line). (b) τ= ( )S S K M, ,e e 0 with = =K 0.8Gpa const. Simulation (cycles) and theoretical prediction (solid line).
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and B. It shows that, higher interfacial strength leads to higher critical load; and most importantly, for higher interfacial
shear resistance, the rigidity of bilayer beam reduces more slowly, that means a layered structure with less interfacial
strength is more flexible than the one with higher interfacial strength.

4.3. The pre-existing interfacial failure case

From the semi-analytical solution derived in the previous section, we have τ= ( ( ) )S S K l l l M, , , ,e e s e a0 . Now a bilayer beam
with a pre-existing crack was investigated (see Fig. 4), the geometry of the crack is =l L0.6s , =l L0.2a and the geometry of the
beam follows the case A in Section 4.2 (Table 1). Let S M,0 0 be the values listed in Table 1. Thus, with a fixed pre-existing
Fig. 9. Rigidity degradation with pre-existing interfacial failure, where we let =K 0. 8Gpa and τ =0.5Mpa m0 . We consider cases when the crack is located at
different positions. The solid black line corresponds to the crack-free case; the dashed black line is the non-adhesion result. Three different crack positions
were investigated. Here l l,s a are the geometrical characteristics of the crack, as seen in Fig. 4.



(a) (b)
Fig. 10. Rigidity of layered beamwith pre-existing crack: (a) For a fixed crack position ls (the left-hand side of crack), Rigidity of layered beam decreases as
the crack length increases. (b) For a constant crack length la, the rigidity of layered beam decreases as the crack close to the free-end.
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crack case, bending rigidity becomes τ= ( )S S K M, ,e e 0 . Using the same method above, bending behaviors with different in-
terfacial property can be evaluated. Fig. 8 shows the same results as the previous crack-free structure. Here, the analytical
results consist of four parts which are discussed in Section 3 separately. Solving the Eqs. (44), (50), (54) and (58), we have
the deflection function for those four periods, and by definition = =

θ ′( )Se
M M

w L
, we obtain the −S Me curves for different K and τ0.

The semi-analytical solution τ= ( ( ) )S S K l l l M, , , ,e e s e a0 indicates that the position of the pre-existing crack affects the bending
rigidity also (Fig. 9).

The crack position influences the bending behavior as the figure shows, the beam with a pre-existing crack locating at
the fixed end have little difference with the crack-free case, and with a pre-existing crack close to free end, the beam
becomes more compliant. More importantly, the most difference between those curves is the initial bending rigidity. When
only consider the elastic behavior, we may explore dependence of rigidity of the bilayer beam with pre-existing using
deflection function in Section 3.2.1. With the deflection and using the definition of = =

θ ′( )Se
M M

w L
, we plot the relation between

initial bending rigidity (without yielding) and the position or length of pre-existing failure, as seen in Fig. 10. The rigidity of
the bilayer beam decreases as the crack region getting closer to the free-end of the beam.
5. Circular bilayer plate with central interfacial crack

In this section, we supply analytical solution to a more practical boundary value problem that a circular bilayer plate is
subjected to central load. We are interested in how elastic interfacial deformation and pre-existing central circular crack
would influence the bending properties of the plate. In Fig. 11, we show such a bilayer plate. At r¼R, the plate is simply
supported. The material properties and the geometry of the plate are shown in the illustration.

5.1. Analytical formulation

We are interested in quantifying the influence of interfacial deformation and pre-existing interfacial crack on the
bending stiffness of the plate. Such change could be detected by non-destructive detecting techniques. Follow the steps
Fig. 11. geometry and properties of bilayer circular plate with pre-existing interfacial crack with radius r0. The plate is simply supported at the edge, =r R.
A central load P is exerted at the center of the circular plate.
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described in Section 2, we assume the normal separation of the bilayer plate is negligible, thus the deflection of the upper
and bottom layer are the same, i.e. = ( )w w r . Under this assumption, we write the displacement field as below:
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Again, subscripts ‘1’ and ‘2’ refer to the top and bottom layers, respectively. Now the strains along the radial direction are:
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The corresponding force and moment equations are given as:
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where μ is the Poisson's ratio. For simplicity and without loss of generality, we assume that the Poisson's ratio of the two
plates is the same.

From the free-body diagram given in Fig. 12, we obtain the equilibrium equations:
Fig. 12. Free-body diagram of an infinitesimal element. Here θ θM M N N F, , , ,r r sr stand for the inner forces per unit length of the plate, and pt , pn are the
tangential and normal stress of the interface respectively.
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The displace jump across the interface is:

δ= ( )− ( )= − −( + ) ′ ( )u r u r u u h h w,0 ,0 672 1 20 10 1 2

Now the above equations could be rewritten as:
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Now combining the constitutive relation of the interface:

δ
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Noting that, the unit of K is [ −N m 3] as the units of pt is [
−N m 2], as shows in Fig. 12. It is different from the definition in

Section 2 due to the geometrical difference between rectangular bilayers and circular bilayers. We first solve Eq. (68) to
obtain the displace jump, and then substitute the result to Eq. (69) to solve the deflection of the bilayer plate.

The general solution of Eq. (68) can be written as
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Hence the general solution of Eq. (69) is given as

( )=
+ + +( − ) + ( )− ( )

+ + +
( )

⎧
⎨
⎪⎪

⎩
⎪⎪

⎡⎣ ⎤⎦
w r

A A r A r k
C

r r
B
A

A I Ar A K Ar

C C r C r
C

r r

ln 1
4

ln ,elastic

ln
4

ln ,crack
73

0 3 4
2 2

3 1 0 2 0

0 3 4
2 2

Here I I,0 1 and K K,0 1 are the modified Bessel function of the first and the second kind, respectively. The constants A0, A1,
A2, A3, and A4 for the elastic interface, and the additional C0, C1, C2, C3, and C4 for the cracked interface in Eqs. (72) and (73) can
be determined by the boundary conditions. In our case the boundary conditions are listed below (in terms of δ and w):
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Additional continuous conditions may be needed when there is a pre-existing crack in the interface. The values include
δ( )r0 ,δ δ′( )+ ( )μr r

r0 0 , ( )w r0 , ′( )w r0 , ( )+ ′( )μ′′w r w r
r0 0 . With the equations shown above, we may obtain the deflection of the bilayer

axisymmetric circular plate.



(a) (b)
Fig. 13. Deformation of the bilayer plate with elastic interface. The solid lines and dashed lines are theoretical predictions and results from finite-element
simulations, respectively. (a) Deflection of the plate for different interfacial rigidity. (b) The shear displacement across the interface for different interfacial
rigidity. Here w0 is the theoretical deflection in the center of a bilayer plate with perfectly bonded interface, and δ0 is the theoretical displace jump in the
boundary of a bilayer plate with free interface sliding.

S. Peng, Y. Wei / J. Mech. Phys. Solids 92 (2016) 278–296294
5.2. Numerical verification

Instead of writing out the long explicit expression of all ten constants A0 to A4 and C0 to C4, we use Matlab to solve the
above equations and get the theoretical solution. We further performed finite element simulations to validate our theo-
retical results. We consider a bilayer circular plate with material properties =E 60GPa1 , =E 80GPa2 and μ=0. 3. The geometries
are =h 0. 50cm1 , =h 0. 25cm2 , and =R 10cm. We apply a concentrated load of =P 1kN at the center of the circular plate.

5.2.1. Crack-free elastic interface
In Fig. 13a, we first show the deformation of the bilayer plate with elastic interface. It is noted that the interfacial stiffness

significantly alters the bending rigidity of the circular plate: the larger value of interfacial rigidity, the smaller deflection at
(a) (b)
Fig. 14. Deformation of the bilayer plate with pre-existing crack in the interface. (a) Deflection curves for plates of different central crack radius. (b) The
deflection of the plate in position =r R/ 0, =r R/ 0.1 and =r R/ 0.2 as a function of the crack radius.
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the central of the plate. The difference in bending stiffness is slightly less than four, due to the geometrical constraints. There
is a very good match between theoretical prediction and numerical results from finite element simulations. Unlike those
rectangular beams where maximum interfacial shear stress first occurs at the end of the beam, we see that the critical point
where the interfacial stress maximizes is a function of the interfacial rigidity, as clearly seen in Fig. 13b.

5.2.2. Interface with pre-existing crack
Now we consider the case of pre-existing crack in the center of the circular plate. We now use a constant interfacial

rigidity of =K 400GPa/m for discussion. Fig. 14 shows how the change in crack size would alter the bending behavior of the
plate. We first show the deflections of the circular plates with central crack of different radii in Fig. 14a. Again the theoretical
predictions match well with numerical results from finite element simulations. Under a constant concentrated load, the
deflection of the plate increases with larger crack radius, as seen in Fig. 14b. There is a singularity at the center of the plate
when a concentrated force is applied here. Hence the results closing to that point are less trust-worthy. We adopt the
deflection at different points, =r/R 0, =r/R 0.1 and =r/R 0.2. It is clearly seen that if we choose a point away from the center,
the theoretical prediction and the numerical result match well.
6. Discussions and conclusions

In response to the global pressure to reduce CO2 emission, major energy consumers like transportation industry are
pushing the limit of energy saving strategies. Among those endeavors, light-weight composite materials and structures with
rich interfaces are broadly employed for better combination of reliability and functionality. The interfacial properties are
hence deterministic to the overall mechanical behavior of the structures and are crucial for safety. In particular, how to
identify the interfacial integrity using non-destructive techniques is a topic of broad interest. Here we focus on revealing the
influence of interfacial shearing or pre-existing cracks on the bending stiffness of layered structures. We formulate the
analytical solution of the bending rigidity of bilayered structures as a function of the interfacial shear strength, and also give
a semi-analytical solution to the bending of bilayers when both shearing and pre-existing crack presents in the interface of
the bilayers. The analytical solutions were validated by finite element simulations. While the critical bending stiffness when
the interface starts to slide plastically is proportional to the interfacial shear strength, there is a strong nonlinearity between
the rigidity and the applied bending after interfacial plastic shearing. One may use the linear relationship between the
critical bending stiffness to trigger plastic shearing and the shear strength (Eq. (34)) to measure the shear strength of
interfaces.

In addition, we expect that the analysis given here could be used to understand the significant stiffness difference in
novel structures and materials. For example, as the perfect bonding case and the unbonded case in the interface of a bilayer
would lead to a maximum difference by a factor of 4 (Fig. 6b), the significant difference in bending stiffness between a
monolayer graphene and a bi-layer graphene (Koening et al., 2011) cannot be fully addressed by interfacial bonding. There
must be dramatic difference in terms of electron distribution in the out-of-plane direction between the monolayer and the
bi-layer graphene. The analysis can also be used for non-destructive detection of interfacial crack when stiffness (typically
resulted in change in vibration frequency) can be probed. In addition, the abrupt change of the bending stiffness in response
to pre-existing cracks in the interface of both rectangular bilayers (see Fig. 10) and circular bilayers (see Fig. 14) could be
utilized to identify the size and the location of possible cracks in interfaces. The latter is particular meaningful for composite
shell structures which are now broadly used in aircrafts.
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