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ABSTRACT

This article presents a thermal post-buckling solution for sandwich panels with
truss cores under simply supported conditions, when subjected to uniform
temperature rise. The Reissner assumptions are adopted and truss cores are
assumed to be continuous and homogeneous. Di�erential governing equa-
tions are developed based on the variational principle. The perturbation tech-
nique is employed to determine the thermal post-buckling path of sandwich
panels with truss cores. Based on the present method, in�uences of truss core
con�guration, relative density, aspect ratio, and initial imperfection on the
thermal post buckling behavior are discussed.
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Introduction

Sandwich panels with truss cores (SPTCs) have been considered to be promising candidates for load
bearing components and thermal protection systems (TPS) in high speed �ights, due to the superior
characteristics such as high speci�c strength, high speci�c sti�ness and multifunctional properties.
When being used in TPS, the SPTC typically experiences large non-uniform temperature rise and
may buckle due to thermal stresses. Therefore, the prediction of the thermal buckling response of the
SPTC becomes of utmost importance, in order to integrate this novel lightweight and multifunctional
structure into a �ight-ready aircra�. In recent years, SPTCs have been extensively investigated on their
fundamental properties, thermal insulation, shock resistance and energy absorption behaviors [1–12].
However, the post-buckling behavior of SPTCs under thermal loadings, which is quite di�erent from
conventional panels and may demonstrate unique properties, have not been systematically studied.

There have been a wealthy of theoretical works on the prediction of the critical buckling temperature
(CBT) for plates and laminates. Based on the �rst-order shear deformation theory, Kabir et al. [13]
obtained the CBT of clamped rectangular plates with symmetric angle-ply lamination. Kant and Babu
[14] analyzed the buckling behavior of skew �bre-reinforced composites and sandwich plates by using
shear deformable �nite elementmodels. Mansourand Shariyat [15] obtained the CBT of the functionally
graded orthotropic plates by using a new di�erential quadrature method. Since plates and laminates
always have initial imperfections, there also have some theoretical and numerical analysis on the thermal
post-buckling behaviors.Mossavarali andEslami [16] studied the thermal post-buckling behavior of thin
plates which has initial �aws.

Based on the classical thin plate theory, Singh et al. [17] studied the thermal post-buckling behavior
of rectangular antisymmetric cross-ply composite plate by using the Rayleigh-Ritz method. Thankam
et al. [18] analyzed the thermal post-buckling behavior of laminated plates by using the �nite element
method. Sohn and Kim [19] used �nite element method to calculate the thermal post-buckling response
of functionally graded panels subjected to combined thermal and aerodynamic loads. Shen [20] analyzed
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the thermal post-buckling behavior of shear deformable functionally graded plates with temperature-
depended properties by using a two-step perturbation technique.

For SPTCs that have weak cores and strong facesheets, the transverse shear deformation is mainly
produced by the truss cores and should not be neglected. Therefore, the SPTC cannot be simpli�ed as
a thick plate or a laminate. To obtain the CBT of the SPTC, Chen et al. [21] solved the characteristic
equations of simply supported SPTC under uniform thermal loading based on the Reissner model
[22]. Yuan et al. [23] obtained CBTs of SPTCs under fully clamped boundary conditions by using
double Fourier expansions to the virtual deformation mode. Later on, Yuan et al. [24] also performed
experimental study on the thermal buckling behavior of SPTCs under uniform high temperature
environments, and captured the full-�eld deformation history through the revised noncontact three-
dimensional digital image correlation technique. It is found that the sandwich panel deformed in
asymmetric mode in high temperature environments, due to fabrication defects. However, there have
been few theoretical works on the thermal post-buckling behavior of the SPTC.

The present work focuses on the thermal post-buckling behavior of simply supported SPTCs
subjected to uniform thermal loading. To obtain the buckling deformation of SPTCs, the truss core is
assumed to be a continuousmaterial. For the equivalentmechanical behavior, Deshpande et al. [25] gave
the three-dimensional elastic constitutive relationship of lattice truss cores. Hyun et al. [26] obtained the
properties of Kagome and tetragonal truss cores by using the �nite element method. In general, the
equivalent mechanical properties of truss cores are derived by geometric deformation of the lattice truss
cells. Subsequently the governing di�erential equations of SPTCs with initial imperfection are obtained
by using the variational principle. The thermal post-buckling equilibrium path is obtained by using the
perturbation method. Structure parameters that a�ect the thermal post-buckling response of SPTCs are
also discussed.

Theory and formulation

In the present study, a simply supported SPTC subjected to uniform thermal loading is considered.
The most commonly investigated con�gurations of truss cores are pyramidal, tetrahedral and Kagome,
which are illustrated in Figures 1a and 1b. The equivalent analytical model is shown in Figure 1c. In
the Cartesian coordinate system, the OXY plane is located in accordance with the middle plane of the
SPTC, and the edge lengths of the SPTC along the X and Y directions are a and b, respectively. The
thicknesses of the truss core and SPTC along the Z direction are hp and hc, respectively. For the SPTC,
the buckling deformation is small and the major deformation is produced by the facesheet. In addition,
the deformations of the facesheet and truss core are compatible and continuous. Therefore, the rotation
of the truss can be neglected. To obtain the theoretical model, the following assumptions are made:
(1) The size of the unit truss cell is small in comparison with the size of the SPTC, therefore the truss

core is considered as a continuous and homogeneous material.
(2) The truss is pin-jointed at the core-facesheet interface; therefore, the truss core does not contribute

to the overall �exural rigidity.
(3) The transverse shear sti�ness of the SPTC is only contributed by the truss core.

Due to the thin facesheet and the so� truss core, the shear deformation of SPTC is mainly produced
by the truss core, and the transverse shear deformation of the facesheet can be neglected. Therefore, the
�rst-order deformation theory is adopted. Strains of the facesheet are given by [16]
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+
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Figure 1. Theoretical analysis model of SPTC.

The equivalent strains of truss cores can be expressed as

εXZ =
1

2

(

ψX +
∂W

∂X

)

(2)

εYZ =
1

2

(

ψY +
∂W

∂Y

)

where U, V and W are displacements of the middle plane of the SPTC in the X, Y , and Z directions,
while ψX and ψY are rotations of the normal to the XZ and YZ planes, respectively. Additionally,W0 is
the initial geometric imperfection of the SPTC.

According to Hooke’s law, stresses in the facesheet are expressed as

σX =
E

1 − µ2
(εX + µεY − (1 + µ)α1T)

σY =
E

1 − µ2
(εY + µεX − (1 + µ)α1T) (3)

τXY =
E

1 + µ
εXY

And stresses in the truss core are written as

τXZ = 2GcεXZ
(4)

τYZ = 2GcεYZ
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whereE andµ are the elasticmodulus andPoisson’s ratio of the facesheet respectively.Gc is the equivalent
shear modulus of truss core, which is obtained by using the representative unit cell approach. α and1T
are the coe�cient of thermal expansion of the facesheet and the temperature rise, respectively.

The strain energy of the facesheet and the truss core are

ufactsheet =
1

2

∫∫∫

vfactsheet

(σXεX + σYεY + 2τXYεXY) dXdYdZ

(5)

ucore =

∫∫∫

vcore

(τXZεXZ + τYZεYZ) dXdYdZ

According to the minimum potential energy principle

δu = δufactsheet + δucore = 0 (6)

by usingU,V ,W,ψX ,ψY as independent variables, the governing di�erential equations can be deduced

∂NX

∂X
+
∂NXY

∂Y
= 0

∂NXY

∂X
+
∂NY

∂Y
= 0

∂QX

∂X
+
∂QY
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(
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∂Y

)

+
∂
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(

NXY
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∂X
+ NY
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∂Y

)

= 0 (7)

∂MX

∂X
+
∂MXY

∂Y
− QX = 0

∂MXY

∂X
+
∂MY

∂Y
− QY = 0

It is assumed that the SPTC is subjected to uniform thermal loading. In this case, the internal force
can be expressed as

NX=
E(hp − hc)
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(1 − µ)D
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∂ϕX
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QX = C

(
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, QY = C

(

ψY +
∂W

∂Y

)

D =
E(h3p − h3c)

12(1 − µ2)
, C = Gchc

where C and D are the shear sti�ness and �exural rigidity of the SPTC, respectively.
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In addition, the deformation compatibility equation and stress functions are considered

NX =
∂2SF

∂Y2
, NY =

∂2SF

∂X2
, NXY = −

∂2SF

∂X∂Y
(9)

∂2εX

∂Y2
+
∂2εY
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∂2εXY

∂X∂Y
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(
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+ 2
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∂2W

∂X2
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−
∂2W

∂Y2
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Before proceeding, it is convenient to de�ne the following dimensionless quantities in the di�erential
governing equations

x =
πX

a
, y =

πY

b
, β =

a

b
, w =

W

hp

√

12(1 − µ2)

w0 =
W0

hp
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12(1 − µ2), F =
SF

D
, γ 2
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(10)
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aψX

πhp

√
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aψY
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√
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(

D

C

)
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π2

a2

(

D

C

)

ξ =
12a2(1 − µ2)

π2h2p
, δx = ξ δ̄X , δy = ξ δ̄Y

Therefore the nonlinear di�erential governing equations of the thermal post-buckling of SPTC in the
dimensionless form can be obtained

∇̄
4F = β2γ 2

(

(
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)2
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∂2w

∂x2
∂2w

∂y2
+ 2
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The simply supported boundary conditions are

x = 0 and x = π : w = ϕy = 0,
∂2F

∂x∂y
= Mx = 0

(12)

y = 0 and y = π : w = ϕx = 0,
∂2F

∂x∂y
= My = 0
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And the end-shorting relationships can be expressed as [27]

δx =

∫ ∫

∂u

∂x
dxdy =

∫ ∫ (

1

γ 2

(

∂2F

∂x2
− µβ2

∂2F

∂y2

)

−
1

2

(

∂w

∂x

)2

−
∂w

∂x

∂w0

∂x
+ ξα1T

)

dxdy

(13)

δy =

∫ ∫

∂v

∂y
dxdy =

∫ ∫ (

1

γ 2

(

β2
∂2F

∂y2
− µ

∂2F

∂x2

)

−
β2

2

(

∂w

∂y

)2

− β2
∂w

∂y

∂w0

∂y
+ ξα1T

)

dxdy

Asymptotic solutions

Applying Eq. (11), the buckling behavior of SPTC is determined by the two-step perturbation technique
[20]. Solutions of unknown functions are assumed to have the following forms

w(x, y, ε) =

∑

i=1

εiwi(x, y), F(x, y, ε) =

∑

i=0

εiFi(x, y)

(14)
ϕx(x, y, ε) =

∑

i=1

εiϕxi(x, y), ϕy(x, y, ε) =

∑

i=1

εiϕyi(x, y)

where ε is a small perturbation parameter and the �rst term of out-of-plane displacement can be
expressed as the classic solution of small de�ection

w1(x, y) = A11 sinmx sin ny (15)

The initial geometric imperfection of the SPTC is assumed to have a similar form

w0(x, y) = ελA11 sinmx sin ny (16)

For the SPTC that has no initial geometric imperfection

λ = 0 (17)

Substituting Eqs. (14)–(16) into Eq. (11) and collecting terms of the same order of ε, a set of
perturbation equations is obtained. Unknown functions can be obtained by using the perturbation
equations of each order. Finally, up to the fourth order, asymptotic solution are obtained

w(x, y, ε) = ε
[

A11 sinmx sin ny
]

+ ε3
[

A13 sinmx sin 3ny + A31 sin 3mx sin ny
]

+ O(ε5)

ϕx(x, y, ε) = ε
[

C11 cosmx sin ny
]

+ ε3
[

C13 cosmx sin 3ny + C31 cos 3mx sin ny
]

+ O(ε5) (18)

ϕy(x, y, ε) = ε
[

D11 sinmx cos ny
]

+ ε3
[

D13 sinmx cos 3ny + D31 sin 3mx cos ny
]

+ O(ε5)

F(x, y, ε) = −B100
y2

2
− b100

x2

2
+ ε2

[

−B200
y2

2
− b200

x2

2
+ B220 cos 2mx + B202 cos 2ny

]

+ ε4
[

− B400
y2

2
− b400

x2

2
+ B420 cos 2mx + B402 cos 2ny + B422 cos 2mx cos 2ny

+ B440 cos 4mx + B404 cos 4ny + B424 cos 2mx cos 4ny + B442 cos 4mx cos 2ny

]

+ O(ε5)

where

C11 =
mk22 − βnk12

k11k22 − k12k21
A11, D11 =

βnk11 − mk21

k11k22 − k12k21
A11

A13 = f2(ζ33ζ55 − ζ35ζ53)/χ1, A31 = f1(ζ44ζ66 − ζ46ζ64)/χ2, C13 = −f2(ζ31ζ55 − ζ35ζ51)/χ1

C31 = −f1(ζ42ζ66 − ζ46ζ62)/χ2, D13 = f2(ζ31ζ53 − ζ33ζ51)/χ1, D31 = f1(ζ42ζ64 − ζ44ζ62)/χ2

B100 =
1

φ2(1 + λ)(m2 + n2β2)

(

m
mk11 − βnk12

k11k22 − k12k21
+ βn

βnk11 − mk21

k11k22 − k12k21
+ m2

+ β2n2
)

,

b100 = β2B100
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B200 =
1

m2 + n2

(

2m2n2(
n2(1 + 2λ)β2γ 2

32m2
A2
11 +

m2(1 + 2λ)γ 2

32n2β2
A2
11)−

(γ 2 + 2λ)(β2n2 − m2)

8(1 + µ)
A2
11

)

(19)

b200 = β2B200 +
(γ 2 + 2λ)(β2n2 − m2)

8(1 + µ)
A2
11, B400 =

2φ2m2n2(B202A13 + B220A31)

A11(1 + λ)(m2φ2 + β2n2φ2)
, b400 = β2B400

B420 = −
16n2β2γ 2(1 + λ)A11A31

m2
, B422 = −

4m2n2β2γ 2(1 + λ)A11(A31 + A13)

16m4 + 32m2n2β2 + n4β4
,

B440 = −
n2β2γ 2(1 + λ)A11A31

64m2

B424 = −
m2n2β2γ 2(1 + λ)A11A13

16m4 + 128m2n2β2 + 256n4β4
, B442 = −

m2n2β2γ 2(1 + λ)A11A13

256m4 + 128m2n2β2 + 16n4β4

B402 = −
m2n2γ 2(1 + λ)A11A31

16n2β2
, B404 =

m2n2γ 2(1 + λ)A11A31

64n2β2

and parameters in Eq. (19) can be expressed as

χ1 = ζ21ζ33ζ55 − ζ21ζ35ζ53 − ζ23ζ31ζ55 + ζ23ζ35ζ51 + ζ25ζ31ζ53 − ζ25ζ33ζ51

χ2 = ζ12ζ44ζ66 − ζ12ζ46ζ64 − ζ14ζ42ζ66 + ζ14ζ46ζ62 + ζ16ζ42ζ64 − ζ16ζ44ζ62

k11 = −
1

2
(1 − µ)β2n2η2 − 1 − m2η2, k12 = k21 = −

1

2
(1 + µ)η2mnβ ,

k22 = −β2n2η2 − 1 −
1

2
(1 − µ)m2η2

ζ12 = 9m2φ2B100 + n2φ2b100 − n2β2 − 9m2, ζ14 = 3m, ζ16 = βn

ζ21 = m2φ2B100 + 9n2φ2b100 − 9n2β2 − m2, ζ23 = m, ζ25 = 3nβ
(20)

ζ31 = −m, ζ33 = −m2η2 −
9

2
(1 − µ)η2β2n2 − 1,

ζ35 = ζ53=ζ46=ζ64 = −3η2mnµβ −
3

2
(1 − µ)η2mnβ

ζ42 = −3m, ζ44 = −9m2η2 −
1

2
(1 − µ)η2β2n2 − 1

ζ51 = −3nβ , ζ55 = −9η2β2n2 −
1

2
(1 − µ)η2m2

− 1

ζ62 = −nβ , ζ66 = −η2β2n2 −
9

2
(1 − µ)η2m2

− 1

f1 =
(1 + 2λ)(1 + λ)β2n4φ2γ 2

16
A3
11, f2 =

(1 + λ)(1 + 2λ)m4φ2γ 2

16β2
A3
11

In the present work, the global buckling behavior of SPTC is considered. The maximum out-of-plane
displacement, which is assumed at point x =

π
2m , y =

π
2n , can be expressed as

wm = A11ε + ε3 (A13 + A31)+ O(ε5) (21)

Then the perturbation parameter can be obtained

A11ε = wm +

(

(1 + λ)(1 + 2λ)m4φ2γ 2

16β2
313 +

(1 + 2λ)(1 + λ)β2n4φ2γ 2

16
331

)

w3
m + O(w5

m) (22)

where

313 = (ζ33ζ55 − ζ35ζ53)/χ1

331 = (ζ44ζ66 − ζ46ζ64)/χ2
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Substituting Eq. (18) into boundary conditions δx = 0, δy = 0, the thermal post-buckling equilibrium
path can be obtained

�T = �10 +�12w
2
m +�14w

4
m (23)

where

�T = ξα1T

�10 =
(1 − µ)β2

γ 2φ2(1 + λ)(m2 + n2β2)

(

m
mk11 − βnk12

k11k22 − k12k21
+ βn

βnk11 − mk21

k11k22 − k12k21
+ m2

+ β2n2
)

�12 =
1

8
(1 + 2λ)m2

+
1

γ 2

(

β2(1 − µ)

m2 + n2

(

2m2n2(
n2(1 + 2λ)β2γ 2

32m2

+
m2(1 + 2λ)γ 2

32n2β2
)−

(γ 2 + 2λ)(β2n2 − m2)

8(1 + µ)

)

+
(γ 2 + 2λ)(β2n2 − m2)

8(1 + µ)

)

�14 =
β2 (1 − µ)

γ 2

2φ2m2n2

(1 + λ)(m2φ2 + β2n2φ2)

(

n2(1 + 2λ)β2γ 2

32m2

(1 + λ)(1 + 2λ)m4φ2γ 2

16β2
313

+
m2(1 + 2λ)γ 2

32n2β2
(1 + 2λ)(1 + λ)β2n4φ2γ 2

16
331

)

+ 2�12

(

(1 + λ)(1 + 2λ)m4φ2γ 2

16β2
313 +

(1 + 2λ)(1 + λ)β2n4φ2γ 2

16
331

)

Results and discussions

In this section, the post-buckling behavior of the SPTC is obtained according to the theoretical model.
The geometric parameters and material properties used in the theoretical analysis are listed in Table 1.

Comparison of CBTs with di�erent theories

To solve the CBT of SPTC, the small de�ection theory may lead to desirable results. Figure 2 shows
the comparison of CBTs of pyramidal SPTC obtained from the present theory with that from the
small de�ection theory [21, 23]. It can be found that CBTs from the present theory model are in
good agreement with the small de�ection theory. However, the linear small de�ection theory may lead
to signi�cant errors due to the large amplitude thermal post-buckling deformations. Therefore, the
nonlinear large de�ection theory is used to get the thermal post-buckling response of SPTC.

E�ects of initial geometric imperfection

Figure 3 shows the e�ect of initial geometric imperfection on the thermal post-buckling behavior of
SPTCs. Lines with W0/hp = 0 are thermal post-buckling equilibrium paths of SPTCs that do not
have initial geometric imperfections, and W0/hp = 0.05 are equilibrium paths of imperfect SPTCs.
For perfect SPTCs, there is no out-of-plane displacement when the temperature rise is under the CBT,
whereas it increases dramatically when the temperature rise is larger than the CBT. Unlike the perfect
SPTC, there is initial out-of-plane displacement and the displacement increases dramatically when the
temperature rise is approaching to the CBT of the perfect SPTC. The out-of-plane displacement of SPTC
with large imperfections is larger than those with small imperfections due to the in�uence of initial

Table 1. Parameters used to calculate the thermal post-buckling path theoretically.

hc (mm) hp (mm) E (GPa) µ α (×10−6) a (mm) b (mm)

8 10 200 0.3 17 300 300



164 W. YUAN ET AL.

Figure 2. Comparisons of CBT predicted by di�erent theories.

Figure 3. E�ect of initial imperfection on the thermal post-buckling behavior of SPTC.

geometric imperfection, whereas all of them tend to be the same when the dimensionless displacement
W/hp = 0.7.

E�ects of truss core con�guration and relative density

Figure 4 shows the e�ect of truss con�gurations on the thermal post-buckling behavior of SPTC. For
the three con�gurations of truss cores illustrated in Figure 1a, the equivalent shear sti�ness can be
expressed as

Cpyramid = Gpyramidhc =
1

8
ρEhc,

(24)

Ctet = Ckagome = Gtethc =
1

9
ρEhc

where Cpyramid, Ctet and Ckagomeare the equivalent shear sti�ness of the pyramidal, tetrahedral and
Kagome truss cores, respectively. Gpyramid, Gtet and Gkagomeare the equivalent shear modulus of the
pyramidal, tetrahedral and Kagome truss cores [23]. ρ is the relative density of the truss core. From
Eq. (24), the shear sti�ness of the pyramidal truss core is larger than the Kagome and tetrahedral cores,
when they are in the same relative density. Therefore, the resistance to thermal post-buckling of a SPTC
with pyramidal truss cores will be higher than those of the other two con�gurations. In addition, the
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Figure 4. E�ect of truss con�guration on the thermal post-buckling behavior of SPTC.

Figure 5. E�ect of relative density of truss core on the thermal post-buckling behavior of SPTC.

Figure 6. E�ect of truss core thickness on the thermal post-buckling behavior.

di�erence is signi�cant when the relative density is 0.01, but not so obvious when the relative density
gets 0.1.

Figure 5 shows the thermal post-buckling behavior of pyramidal SPTC when the relative density of
the truss core ρ is raised from 0.01 to 0.1. It can be seen that, the increase of relative density ρ yields
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Figure 7. E�ect of SPTC aspect ratio on the thermal post-buckling behavior.

Figure 8. E�ect of facesheet thickness on the thermal post-buckling behavior of SPTC.

an improved resistance of thermal post-buckling deformation. According to Eq. (24), the shear sti�ness
of the SPTC is directly related to the relative density. Therefore, the thermal post-buckling strength can
be improved by using a higher relative density. However, according to Figure 2 and also ref. [23], the
tendency slows down when the relative density is approaching to 0.06.
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Figure 6 shows the e�ect of truss core thickness hc on the thermal post-buckling behavior of SPTC
when the facesheet thickness is 1 mm and relative density is 0.03. When the truss core relative density
ρ and the facesheet thickness are constant, the �exural rigidity grows dramatically as the truss core
thickness is elevated. Therefore, the resistance to thermal post-buckling of SPTC is enhanced as the
truss core thickness hc grows.

E�ects of aspect ratio and facesheet thickness

Figure 7 shows the e�ect of aspect ratio β on the thermal post-buckling behavior of pyramidal SPTC
when panel length a is 300mm. The increase in the width b means the slenderness ratio of SPTC is
increased, therefore, the CBT and thermal post-buckling resistance is decreased.

Both the in-plane load and the �exural sti�ness of SPTC increase when the facesheet thickness is
increased. As a result, the facesheet thickness has di�erent e�ects on the thermal post-buckling resistance
of SPTC when the truss core relative density ρ is varied. As Figure 8a shows, for the relative density
ρ = 0.1, the CBT and post-buckling resistance of SPTC are improved as the facesheet thickness is
increased. When the relative density decreases to 0.01, as Figure 8b shows, the CBT decreases when the
facesheet thickness is increased. However, the out-of-plane displacement of SPTCwith smaller facesheet
thickness is larger than that has bigger thickness when the temperature rise is increased.

Conclusions

This article presents a theoretical analysis on the thermal post-buckling behavior of simply supported
SPTC under uniform temperature rise. Based on the �rst-order shear deformation theory, the governing
di�erential equations of SPTC are developed by using the variational principle. The CBT and the
thermal post-buckling equilibrium path of SPTC are obtained by using the perturbation technique.
CBTs calculated by the present model are in good agreement with that from the small de�ection theory.
Parameters that in�uence the post-buckling behavior of SPTC, including initial geometric imperfections,
truss core con�gurations, relative densities, truss core thickness, aspect ratio, and facesheet thickness,
are discussed. The resistance to thermal post-buckling of pyramidal SPTC is highest of the three
con�gurations. The CBT and thermal post-buckling strength of SPTC can be improved by using a higher
relative density. The stability of SPTC can be improved by adding the truss core thickness, but weakened
when the length of SPTC increases. In addition, the e�ect of facesheet thickness on the CBT and thermal
post-buckling resistance of SPTC is di�erent when the relative density of the truss core is varied.
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Nomenclature

a, b Sandwich panel length
C Shear sti�ness of sandwich panels
D Flexural rigidity of sandwich panels
E Modulus of the material
F Stress function in dimensionless units
SF Stress function
Gc Equivalent shear modulus of the lattice truss core
hc Core thickness
hp Sandwich panel thickness
Mx Bending moment in x-direction
Mxy Torsional moment
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My Bending moment in y-direction
Nx,Ny,Nxy Compressive in-plane force
Qx,Qy Shear force
U Displacement in X-direction
u Displacement in X-direction in dimensionless units
V Displacement in y-direction
v Displacement in Y-direction in dimensionless units
W Displacement in Z-direction
W0 Initial geometric imperfection
w Displacement in Z-direction in dimensionless units
w0 Initial geometric imperfection in dimensionless units
wm Maximum displacement in z-direction in dimensionless units
α Coe�cient of thermal expansion of the sandwich panel
1T Temperature rise
δx, δy End-shorting of sandwich panel
εX , εY , εXY Strains of facesheet
εXZ , εYZ Strains of truss cores
µ Poisson’s ratio
ρ Relative density of sandwich panel
σX , σY , τXY Stress of facesheet
τXZ , τYZ Stress of truss cores
ψX , ψY Rotations of the normal in the XZ and YZ planes
ϕx, ϕy Rotations of the normal in the XZ and YZ planes in dimensionless units
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