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The linear stability analysis of Oldroyd-B fluid for thermocapillary liquid layers is
carried out. Results are presented for linear flow and return flow with Prandtl numbers
of 0.02 and 100. Three kinds of instabilities are found: oblique wave, streamwise
wave, and spanwise stationary mode, whose properties are all significantly affected
by elasticity. For the first, the critical Marangoni number increases with elasticity.
For the second, the work done by perturbation stress fluctuates in vertical direc-
tion. The last becomes the preferred mode when the elasticity is high enough and
its perturbation energy comes from the Marangoni force caused by perturbation
temperature while dissipates by perturbation stress. Their mechanisms are discussed
and the comparisons are made with Newtonian fluid. C 2016 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4943971]

I. INTRODUCTION

Thermocapillary convection refers to the fluid motion driven by temperature-dependent surface
tension, where the fluid layer is subjected to a horizontal temperature gradient on the surface. It has
always received a wide range of interest in the last few decades for its fundamental and practical
importance. In many technological fields, it has an important or even a dominant effect, including
crystal growth,1 film rupture,2 thin-film coating,3 fusion welding,4–6 and combustion.7 There have
been plenty of theoretical and experimental studies of thermocapillary flows, which have been
reviewed by Davis8 and Schatz and Neitzel.2

In many industrial applications, there are some physical systems involving non-uniform heating
on the surface of polymer liquid, such as plastic welding9–11 and film drying.12–14 There have been
plenty of works on the surface tension of polymer liquid, which has been reviewed by Dee and
Sauer.15 It has been observed that the surface tension for polymer molecules is also linear with
the temperature over limited temperature domains. This may lead to thermocapillary effect and
makes a great influence on the quality of products in materials processing, for example, the local
thinning16 and surface tension driven defects in liquid film.17 However, the polymer liquids are often
viscoelastic fluids, whose flow properties are affected by elasticity significantly. Viscoelastic models
should be used in the study of thermocapillary flows for polymer liquids.

The upper-convected Maxwell (UCM) fluid and Oldroyd-B fluid are two non-linear visco-
elastic models which are mainly used in theoretical studies. Comparing to linear models, they can
describe the normal stress effects in shear flows more properly. Their constitutive equations can
be derived from kinetic theory where the spring-dumbbell model is used to represent polymer
molecules.18–20 The Oldroyd-B fluid can be obtained for a dilute suspension of spring-dumbbells in
a Newtonian solvent. When the polymer contribution to the fluid viscosity is far larger than that of
the solvent, the UCM fluid is derived.21

In the theoretical studies, thermocapillary liquid layer is a convenient model, where the flow
above an infinite flat plane is subjected to a horizontal temperature gradient on the surface. For
Newtonian fluids, there are two types of instabilities, which are stationary longitudinal rolls and
unstable hydrothermal waves, respectively.22 For viscoelastic fluids, a few papers have been devoted
to the study of Benard-Marangoni convection, where a vertical temperature gradient is imposed to
the fluid layer.23–29 Concerning the liquid layer with a horizontal temperature gradient, we are only
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aware of the work given by Kaloni and Lou,30 where the influence of thermocapillary forces on the
buoyancy-driven viscoelastic fluid layer has been demonstrated for Oldroyd-B fluid with Prandtl
numbers 10 and 100.

Our previous paper has examined the linear stability of thermocapillary liquid layers for UCM
fluid.31 Elastic instability is found for oblique waves. In contrast to Newtonian fluids,22 unstable
modes are detected at low Reynolds numbers when the wave number is high enough. The wave
speed and propagation direction of the most unstable mode keep constant for different basic flows.
It suggests that the stabilities of viscoelastic thermocapillary flows are very different from those for
Newtonian fluids. However, in the present work, we find that the elastic waves decay rapidly with
the increasing of the solvent viscosity in Oldroyd-B fluid. This makes its instability quite different
from that for the UCM fluid.

The purpose of this paper is to generalize the study of the instability of viscoelastic thermocap-
illary liquid layers to Oldroyd-B fluid. Buoyancy is not considered in our work. The flow includes
linear flow and return flow. The results are presented for Prandtl numbers 0.02 and 100.

This paper is organized as follows. In Section II, the mathematical formulations are intro-
duced and the dimensionless governing equations are derived. Then in Section III, the numerical
results are presented. The most unstable modes at different elasticities are studied and the critical
Marangoni numbers are obtained. The critical wave speed, wave number, and wave propagation
angle are derived. The perturbation flow field is plotted and the energy analysis is proposed. Later,
the mechanisms are discussed in Section IV. Finally, the main results are summarized in Section V.

II. PROBLEM FORMULATION

We use the same model and coordinate as the work by Smith and Davis,22 where a fluid layer is
above an infinite rigid plane and a temperature gradient is imposed on its free surface (see Fig. 1).
x, y, z are the streamwise, spanwise, and wall-normal direction, respectively. The dimensionless
parameters are defined as follows: R is the Reynolds number R = ρUd

µ
, where ρ, U, d, µ are the

fluid density, characteristic velocity, the depth of the fluid layer, and viscosity, respectively. Here,
U = bγd/µ, b is the temperature gradient on the surface, and γ is the negative rate of change of
surface tension with temperature. Ma is the Marangoni number defined as Ma = bγd2/µχ, χ is the
thermal diffusivity. Ma and R have the relation Ma = R · Pr, where Pr is the Prandtl number. These
definitions are the same as those in Ref. 22.

A. Governing equations

The length, velocity, and temperature difference scales are set as d, U, and bd, respectively.
Thus, the dimensionless governing equations can be derived as follows by dividing these scales
to the dimensional variables, which are the continuity equation, the momentum equation, and the
energy equation, respectively,

FIG. 1. The schematic of thermocapillary liquid layers.
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∇ · u = 0, (2.1)

R
(
∂u
∂t
+ u · ∇u

)
= −∇p + ∇ ·Q, (2.2)

∂T
∂t
+ u · ∇T =

1
Ma
∇2T. (2.3)

Here u,p,T stand for the velocity field, pressure, and temperature, respectively. Q is the stress
tensor. For an Oldroyd-B fluid, its dimensionless constitutive relation is given by the equation32(

1 + λ
δ

δt

)
Q =

(
1 + η

δ

δt

)
S. (2.4)

It can be derived by dividing µU/d to the dimensional form. Here λ is the Weissenberg number,
which has λ = µ

G
U
d

, G is the elastic modulus. η/λ represents the ratio of solvent to the total viscos-
ity,33 S is the strain-rate tensor with the form S = ∇u + u∇, and δ

δt
is the upper convected derivative

with the expression

δQ
δt
=

∂Q
∂t
+ u · ∇Q − (u∇) ·Q −Q · (∇u) . (2.5)

It should be noted that Oldroyd-B fluid recovers UCM fluid when η = 0 and Newtonian fluid when
λ = η = 0. We use elastic number ε = λ/R in the following computation as it only depends on the
properties of the fluid and the flow geometry.33

The boundary conditions are set as the following:

z = 0 : u = (u, v,w) = 0,
∂T
∂z
= 0, (2.6)

z = 1 : Q13 +
∂T
∂x
= 0,Q23 +

∂T
∂ y
= 0, w = 0,

∂T
∂z
= 0. (2.7)

Here, the heat flux through the plane and surface are both zero, the stress on the surface is caused by
thermocapillary effect.

We consider two kinds of basic flows as the work by Smith and Davis,22 which includes linear
flow and return flow (see Fig. 1). Both of them are plane shear flows on an infinite rigid plane, and
the fluid is set in motion by the temperature gradient on the free surface. The former has homoge-
neous velocity gradient, while the latter, which is a sum of plane Couette and plane Poiseuille flow,
has zero mass flux through any vertical section. The temperature field is linear in x as imposed plus
a distribution in z, which maintains a balance between conduction and convection. The solutions of
the basic flow for Oldroyd-B fluid have the same form as those for Newtonian fluid,22 except the
normal stress in streamwise direction,

u0 = u′0 (1) z +
1
2

u′′0 (1) �z2 − 2z
�
, v0 = w0 = 0, (2.8a)

T0 = −u′0 (1) x +Ma · u′0 (1)


1
24

u′′0 (1) �1 − z4� + 1
6
�
u′0 (1) − u′′0 (1)� �1 − z3�


, (2.8b)

S0 = u′0 (z)


0 0 1
0 0 0
1 0 0



,Q0 = u′0 (z)


2 (λ − η) u′0 (z) 0 1
0 0 0
1 0 0



. (2.8c)

For linear flow, we have u′0 (1) = 1, u′′0 (1) = 0 while for return flow u′0 (1) = 1, u′′0 (1) = 3
2 .u
′
0 (z)

stands for the derivative of z.

B. Perturbation equations

A small perturbation in the normal mode form is added to the basic flow,

u = u0 + ( ⌢u , ⌢v , ⌢w ) exp [σt + i (αx + βy)] , (2.9a)
T = T0 +

⌢
T exp [σt + i (αx + βy)] , (2.9b)
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P = P0 +
⌢
P exp [σt + i (αx + βy)] , (2.9c)

Q = Q0 +



e r f
r q g

f g h



exp [σt + i (αx + βy)] , (2.9d)

in which σ = σr + iσi. The wave number and direction of wave propagation are defined as k =
α2 + β2, φ = tan−1 (β/α), respectively. Due to symmetry, we shall confine ourselves to the case

of φ ∈ [0◦,180◦]. Hereafter, the variables without subscript 0 stand for the perturbation. Substituting
(2.9a)–(2.9d) into governing equations, the linearized perturbation equations can be derived,

iα ⌢u + i βv̂ + ⌢w ′ = 0, (2.10a)

R
�
σ ⌢u + ⌢w u′0 + u0iα ⌢u

�
= −iα ⌢p + iαê + i β ⌢r +

⌢
f
′
, (2.10b)

R (σ ⌢v + u0iα ⌢v ) = −i β ⌢p + iα ⌢r + i β ⌢q + ⌢g ′, (2.10c)

R (σ ⌢w + u0iα ⌢w ) = − ⌢p ′ + iα
⌢
f + i β ⌢g +

⌢
h
′
, (2.10d)

Ma
(

⌢u
∂T0

∂x
+ ⌢w

∂T0

∂z
+ u0iα

⌢
T

)
+
�
α2 + β2� ⌢

T − ⌢
T ′′ = −σMa

⌢
T , (2.10e)

(1 + λ (u0iα)) e − (1 + η (u0iα)) 2iα ⌢u − λu′02 f + λ
�
⌢w u′′0 · u

′
04 (λ − η) − u′0

�
4 (λ − η) u′0iα

⌢u
+ 2 ⌢u ′)) + ηu′0 (2 ⌢u ′ + 2iα ⌢w ) + ηu′02

⌢u ′ = σ (η2iα ⌢u − λe) , (2.10f)

(1 + λ (u0iα)) r − (1 + η (u0iα)) (iα ⌢v + i β ⌢u ) − λu′0g + λ
�
−u′0

�
2 (λ − η) u′0iα

⌢v + ⌢v ′
��

+ ηu′0 (i β ⌢w + ⌢v ′) + ηu′0
⌢v ′ = σ (η (iα ⌢v + i β ⌢u ) − λr) , (2.10g)

(1 + λ (u0iα)) f − (1 + η (u0iα)) ( ⌢u ′ + iα ⌢w ) − λu′0h + λ
�
⌢w u′′0 − u′0

�
2 (λ − η) u′0iα

⌢w
+ ⌢w ′ + iα ⌢u )) + ηu′0 (2 ⌢w ′) − η � ⌢w u′′0 − u′0 ( ⌢w ′ + iα ⌢u )� = σ (η ( ⌢u ′ + iα ⌢w ) − λ f ) ,

(2.10h)
(1 + λ (u0iα)) q − (1 + η (u0iα)) (2i β ⌢v ) = σ (η (2i β ⌢v ) − λq) , (2.10i)

(1 + λ (u0iα)) g − (1 + η (u0iα)) (i β ⌢w + ⌢v ′) − λu′0iα
⌢v + ηu′0iα

⌢v = σ (η (i β ⌢w + ⌢v ′) − λg) ,
(2.10j)

(1 + λ (u0iα)) h − (1 + η (u0iα)) (2 ⌢w ′) − λu′02iα ⌢w + ηu′02iα ⌢w = σ (η (2 ⌢w ′) − λh) . (2.10k)

The boundary conditions of perturbation flow are

⌢u = ⌢v = ⌢w =
∂

⌢
T
∂z
= 0, z = 0, (2.11a)

f + iα
⌢
T = 0, g + i β

⌢
T = 0, ⌢w = 0,

∂
⌢
T
∂z
= 0, z = 1. (2.11b)

Chebyshev collocation method is used to solve the generalized eigenvalue problem and more
than 80 Chebyshev modes are applied to ensure the accuracy.

C. Code validation

The code we used is based on that for UCM fluid. The only differences of the codes for these
two fluids are the constitutive equations and the stress of basic flow. It is known that Oldroyd-B fluid
tends to Newtonian fluid when η/λ → 1, which can also be seen from the constitutive equation.
In order to validate our code, we compute the eigenvalues of Oldroyd-B fluid with η/λ → 1 and
compare the results with Newtonian fluid. The comparison of most unstable eigenvalues between
them is displayed in Table I, which are exactly the same with each other.

We compare the critical Marangoni number and propagation angle of hydrothermal waves
determined by linear stability analysis for an infinite liquid layer with the numerical simulation
results for annular pools in Table II. It can be seen that the propagation angle is in good agreement
with the results of Li et al.,34,35 while the Marangoni number for the appearance of hydrothermal
wave is different in different geometries.
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TABLE I. A comparison of most unstable eigenvalues for Newtonian fluid
and Oldroyd-B fluid at Pr= 0.02, Ma= 6.15, k = 0.39, φ = 86.3◦ (linear
flow).

Newtonian fluid (λ =η = 0) Oldroyd-B fluid at ε = 0.01, η/λ→ 1

0.000 026 + 0.031 995i 0.000 026 + 0.031 995i
−0.000 001 − 0.012 584i −0.000 001 − 0.012 584i
−0.000 613 − 0.062 832i −0.000 613 − 0.062 832i
−0.065 904 − 0.016 560i −0.065 904 − 0.016 560i
−0.108 399 − 0.011 974i −0.108 399 − 0.011 974i

III. NUMERICAL RESULTS

In our previous work on the thermocapillary liquid layers for UCM fluid, unstable oblique
waves are detected at low Reynolds numbers.31 Their wave speeds have c ∝ 1√

Rλ
when other param-

eters are fixed. Thus, the dimensional form of the wave speeds has C = cU ∝ U√
Rλ
=


G
ρ

, which
is obviously an elastic wave speed. In Table III, the case for η/λ = 0 corresponds to UCM fluid,
unstable wave exists when R = Ma/Pr = 0.03.

The elastic wave is the most unstable mode for UCM fluid. However, it decays rapidly with the
increasing of the solvent viscosity in Oldroyd-B fluid (see Table III). It is observed that when η/λ
increases, the frequency σi nearly keeps the same while the growth rate σr decreases significantly.
This is conceivable. Comparing with the UCM model, the Oldroyd-B model adds a Newtonian compo-
nent, which can make viscous dissipation at low Reynolds numbers. When η/λ is not very small, the
most unstable mode changes to other kinds of mode (for example, the spanwise stationary mode for
η/λ ≥ 0.1 in Fig. 4). Thus, the instability of Oldroyd-B fluid is quite different from that for UCM fluid.

In Table IV, we list the eigenvalues for Oldroyd-B fluid at two elastic numbers. It can be seen
that there are two kinds of modes: the first five eigenvalues nearly keep constant while the last two
eigenvalues change a lot with ε. The wave speeds of the second kind modes have c = |σi|

k
∝ 1√

ε
. (As

ε = λ/R, we have c ∝ 1√
Rλ

for fixed R.) When ε → 0, the first kind still exists while the second kind
decays. Thus we can infer that the latter is mainly caused by elasticity while the former is not. As
UCM fluid can be seen as the special case of Oldroyd-B fluid for η = 0, the existence of elastic mode
in Oldroyd-B fluid is conceivable. There is also a critical wave number for Oldroyd-B fluid, which is
similar to that for UCM fluid. In Fig. 2, the growth rate of elastic mode for Oldroyd-B fluid increases
with k and exceeds zero when k reaches the critical value. However, the elastic mode for Oldroyd-B
fluid decays rapidly with η and its critical wave number increases dramatically. When η/λ ≥ 0.005,
we cannot find an unstable elastic mode for k ≤ 105. So later, we do not consider the elastic mode
and restrict our tension to the first kind of modes for η/λ ≥ 0.1. The results for linear flow and return
flow will be discussed separately.

The parameters Pr, ε, λ/η only depend on the fluid properties and flow geometry.33 When they
are fixed, we compute the eigenvalues at different wave numbers and propagation directions to find
the preferred mode, which reaches neutral stability with the smallest Marangoni number Mac. We
call it the critical Marangoni number in the following.

TABLE II. The critical Marangoni number and propagation angle for the appearance of hydrothermal waves at Pr= 0.01.
Comparison with reference values by numerical simulations.

Numerical simulation
Linear stability analysis for an

infinite liquid layer

Li et al. (annular pool)34
Li et al. (pool with Cz

configuration)35 Smith and Davis22 Present work

Ma 11.94 24.40 6.29 6.29
Angle of propagation 78 78 77 77



033105-6 Hu, He, and Chen Phys. Fluids 28, 033105 (2016)

TABLE III. The most unstable eigenvalues of linear flow for Oldroyd-B
fluid at Pr = 100, Ma= 3, k = 10, φ = 55◦, ε = 2.

η/λ σ

0 2.694 084−253.071 634i
0.001 0.818 839−253.002 646i
0.002 −1.055 771−252.919 687i
0.005 −6.675 798−252.586 828i

A. Linear flow

The neutral curves for linear flow with Pr = 100, φ = 90◦ are displayed in Fig. 3 with various
values of ε and η/λ. The Marangoni number of neutral mode always increases with k and reaches
the minimum for k → 0.

The variation of critical Marangoni number Mac with ε for linear flow at Pr = 100 is displayed
in Fig. 4. The computation shows that the preferred mode is the spanwise stationary mode (φ = 90◦),
which is the same as the case for Newtonian fluid (the stationary longitudinal rolls22).

Mac increases with ε and decrease with η/λ. Physically, these suggest that the elasticity can
destabilize the spanwise stationary mode while the solvent viscosity is stabilizing. As the increasing
of η/λ always makes the flow stability approach to that for Newtonian fluid, for simplicity, we shall
confine ourselves to the case for η/λ = 0.1 and discuss the impact of ε for the flow stability in the
following study.

The variation of critical wave number kc for spanwise stationary mode with ε for linear flow at
Pr = 100, η/λ = 0.1 is displayed in Fig. 5. It is observed that kc decreases with ε rapidly, and tends
to 0 for large ε.

Similar results hold for the cases we studied in the following for Pr = 0.02 and return flow. The
spanwise stationary mode becomes the preferred mode when ε is high enough, meanwhile its critical
wave number tends to 0.

The variation of Mac with ε for linear flow at Pr = 0.02, η/λ = 0.1 is displayed in Fig. 6. The
preferred mode changes with the increasing of ε. For ε < 0.009, the preferred mode is the oblique
wave (φ , 0◦,90◦), Mac increases slightly with ε; for 0.009 < ε < 0.07, the preferred mode is the
streamwise wave (φ = 0◦); for ε > 0.07, it becomes the spanwise stationary mode (φ = 90◦). Mac for
the last two modes decreases with ε significantly.

Fig. 7 shows the wave number kc corresponding to the oblique wave and streamwise wave in
Fig. 6. For the former, kc is smaller and increases slightly with ε while for the latter, kc is larger and
decreases with ε significantly. For the spanwise stationary mode, kc → 0.

In Fig. 8, we plot the wave propagation angle φc corresponding to the oblique wave in Fig. 6.
When ε is small, φc decreases with ε and changes from φc > 90◦ to φc < 90◦ at ε ≈ 0.003, which
suggests that the oblique wave changes from upstream to downstream. When ε > 0.035, φc starts to
increase with ε.

The wave speed corresponding to the oblique wave and streamwise wave in Fig. 6 is displayed
in Fig. 9. The former increases with ε to some extent and then decreases slightly while the latter

TABLE IV. The eigenvalues σ of linear flow for Oldroyd-B fluid at two
elastic numbers at Pr= 100, Ma= 1.71, k = 3, φ = 55◦, η/λ = 0.1.

ε = 0.3 ε = 0.5

−5.279 624−0.866 043i −5.279 639−0.865 904i
−10.963 913−0.927 956i −10.964 437−0.925 270i
−28.342 864−0.920 475i −28.342 548−0.914 101i
−57.214 140−0.878 765i −57.211 826−0.873 992i
−97.614 137−0.872 966 −97.610 748−0.864 717i
−130.997 657+335.782 333i −92.012 657+263.306 667i
−130.997 654−338.200 447i −92.012 646−265.724 781i
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FIG. 2. The variation of the growth rate for elastic mode with the wave number for linear flow at Pr = 100, Ma= 1.71,
θ = 55◦, ε = 0.5.

is always decreasing. However, the former is smaller than the latter for each ε. The wave speed of
spanwise stationary mode is zero.

B. Return flow

The variation of Mac with ε for return flow is displayed in Fig. 10 at Pr = 100, η/λ = 0.1. The
preferred mode also consists of three kinds. For ε < 0.09, the preferred mode is the upstream oblique
wave (φ > 90◦), Mac increases with ε continuously; for 0.09 < ε < 0.3, the preferred mode is the
downstream oblique wave (φ < 90◦); for ε > 0.3, it becomes the spanwise stationary mode. Mac for
the last two modes decreases with ε swiftly.

FIG. 3. The neutral curves for linear flow with various values of ε and η/λ at Pr= 100, φ = 90◦.
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FIG. 4. The variation of critical Marangoni number Mac with ε for linear flow at Pr = 100. The preferred mode is the
spanwise stationary mode (φ = 90◦).

In Figs. 11-13, we plot the wave number, wave propagation angle, and wave speed cor-
responding to the upstream and downstream oblique waves in Fig. 10. Both of their wave
numbers and propagation angles decrease with ε. For the wave speed, the one for upstream
oblique wave increases slightly with ε while the one for downstream oblique wave decreases
obviously.

Although the oblique wave in Fig. 6 can also propagate upstream and downstream (see Fig. 8),
its wave number, wave speed, and propagation angle change with ε continuously. In contrast, the
upstream oblique wave in Fig. 10 cannot transit to the downstream oblique wave continuously,
which can be seen in Figs. 11-13. So they are different modes.

FIG. 5. The variation of critical wave number kc for spanwise stationary mode with ε for linear flow at Pr= 100, η/λ = 0.1.
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FIG. 6. The variation of Mac with ε for linear flow at Pr= 0.02, η/λ = 0.1.

The variation of Mac with ε for return flow is displayed in Fig. 14 at Pr = 0.02, η/λ = 0.1.
To some extent, it is similar to the case for linear flow at Pr = 0.02 in Fig. 6. The preferred modes
are the oblique wave for ε < 0.006, the streamwise wave for 0.006 < ε < 0.025, and the spanwise
stationary mode for ε > 0.025. For the first mode, Mac increases slightly with ε while for the last
two modes, it decreases with ε significantly. The corresponding wave number, wave propagation
angle, and wave speed for these modes are displayed in Figs. 15-17. Most of their variations with ε
are similar to those for linear flow in Figs. 7-9. The only exception is the wave speed for the oblique
wave, which decreases with ε.

It is worth noting that there is no stationary instability in return flow for the Newtonian fluid.22

In contrast, the spanwise stationary mode is the preferred mode for Oldroyd-B fluid in both linear
flow and return flow when ε is high enough, which suggests a different mechanism from that in
Newtonian fluid. We will give an explanation in Section IV.

FIG. 7. The wave number corresponding to the oblique wave and streamwise wave in Fig. 6.
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FIG. 8. The wave propagation angle corresponding to the oblique wave in Fig. 6.

C. The perturbation flow field

In Table V, we list the growth rate of the spanwise stationary mode for different wave numbers
near the critical Marangoni number. It suggests that the growth rates for small wave numbers are
very close at the critical condition. Although the critical wave number tends to 0, the growth rate
increases with the wave number when the Marangoni number is a little above the critical value.
Additionally, the perturbation flow fields for small wave numbers are all similar. Therefore, we plot
the perturbation flow fields at k = 0.1, for instance, in the following.

In Figs. 18-20, the streamlines and isothermals for spanwise stationary mode and oblique wave
are plotted in the direction of wave propagation. The streamlines show that the rolls are arranged
periodically for both the modes. For the latter, the rolls have some asymmetric deformity in direc-
tion of wave propagation, which is similar to the case for Newtonian fluid.22,36 The isothermals

FIG. 9. The wave speed corresponding to the oblique wave and streamwise wave in Fig. 6.
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FIG. 10. The variation of Mac with ε for return flow at Pr= 100, η/λ = 0.1.

form many shapes in different parameters and flows. For spanwise stationary mode, they are nearly
vertical. For the oblique wave, the location of perturbation amplitude can be on the free surface for
Pr = 0.02 (Fig. 19(b)) and in the interior for Pr = 100 (Fig. 20(b)).

However, the case for streamwise wave is distinct from previous two modes. The streamwise
velocity u fluctuates several times in the vertical direction in linear flow (see Fig. 21), which do
not exist for the streamwise wave in the Newtonian fluid.36 A similar result is observed for the
streamwise wave in return flow.

D. Energy analysis

We study the maintenance of perturbation energy in this section. The rate of change for pertur-
bation energy can be written as37,38

FIG. 11. The wave number corresponding to the upstream and downstream oblique waves in Fig. 10.
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FIG. 12. The wave propagation angle corresponding to the upstream and downstream oblique waves in Fig. 10.

∂Ekin

∂t
= − 1

2R


(Q : S)d3 r +

1
R


u ·Q · n d2 r −


u · ((u · ∇)u0)d3 r = −N + M + I, (3.1)

where N is the work done by the perturbation stress, M is the work done by Marangoni forces on
the free surface, I is the interaction between the perturbation flow and the basic flow, respectively.
The perturbation is normalized as follows: 

u2 d3 r = 1. (3.2)

The computation shows that for Pr = 100, I is small enough to be neglected. The perturbation
energy only depends on the M and N , where M,N > 0. Physically, this means that the source of
perturbation energy comes from the Marangoni force caused by perturbation temperature on the

FIG. 13. The wave speed corresponding to the upstream and downstream oblique waves in Fig. 10.
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FIG. 14. The variation of Mac with ε for return flow at Pr= 0.02, η/λ = 0.1.

surface, while the perturbation stress is dissipating in the flow region. Compared with Newtonian
fluid, it seems that the elasticity does not change the mechanism of perturbation energy significantly.

For Pr = 0.02, the energy mechanism changes with mode. In Figs. 22 and 23, we plot the ratios
of three terms in (3.1) for the spanwise stationary modes and oblique waves in Figs. 6 and 14.

For spanwise stationary mode, I can also be neglected, which is completely opposite to the
case of the stationary mode in liquid bridge for Newtonian fluid at Pr = 0.02.38 For the latter, I
is dominant while M is negligible. Physically, the stationary mode for the former is caused by the
perturbation temperature on the surface while for the latter, the instability mechanism is purely
hydrodynamic.

For oblique wave, the energy coming from the Marangoni force and basic flow balances the
dissipation caused by the perturbation stress. Here, M, I,N > 0. When the oblique wave is the
preferred mode, the ratio of M to I is larger than 1, although it decreases with ε.

FIG. 15. The wave number corresponding to the oblique wave and streamwise wave in Fig. 14.
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FIG. 16. The wave propagation angle corresponding to the oblique wave in Fig. 14.

For streamwise wave, we list three terms in (3.1) for various cases in Table VI. Each term can
change sign in different parameters. The perturbation stress can either dissipate (N > 0) or input
energy (N < 0), which is very distinct from that for the Newtonian fluid. This is due to the phase
difference between Q and S caused by elasticity.37,39

As there are many fluctuations for the perturbation velocity in vertical direction (see Fig. 21),
we plot the distribution of the work done by perturbation stress in vertical direction and make
comparison between three modes (see Fig. 24). Here,

− N =


Pσdz, Pσ = −
1

2R


(Q : S)d2r. (3.3)

Pσ < 0 stands for the energy dissipation, which always holds for the Newtonian fluid. Pσ > 0
stands for the energy input. It can be found that Pσ < 0 for oblique wave and spanwise stationary
mode. However, for streamwise wave, Pσ ≈ 0 when z < 0.5 while it fluctuates several times in the
rest of the region.

FIG. 17. The wave speed corresponding to the oblique wave and streamwise wave in Fig. 14.
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TABLE V. The growth rate of the spanwise stationary mode for different
wave numbers near the critical Marangoni numbers at Pr= 100, ε = 2,
η/λ = 0.1.

k = 0.2 k = 0.1 k = 0.06 k = 0.04

Ma= 11.1 0.000 011 0.000 008 0.000 003 0.000 002
Ma= 11.0 −0.000 055 −0.000 008 −0.000 002 −0.000 001

IV. DISCUSSION

We will discuss the instability mechanism for the Oldroyd-B fluid in this section.

A. Spanwise stationary mode

The stationary mode for Oldroyd-B fluid only appears in spanwise direction. Its energy comes
from the Marangoni force. These features are the same as those in the Newtonian fluid. However,
the mechanism has completely changed for high elasticity.

For the Newtonian fluid, the stationary mode in linear flow involves the classical Marangoni
instability for the layer being heated from below while the vertical temperature distribution in return
flow corresponds to the layer being cooled from below.22 Therefore, the stationary instability cannot
be found in the latter.

For the Oldroyd-B fluid, when a hot point is on the surface, its heating comes from the heat
convection and losses by heat conduction. For Pr = 0.02, when the spanwise stationary mode be-
comes the preferred mode, our computation shows that the terms in (2.10e) have | ⌢u ∂T0

∂x
| ≫ | ⌢w ∂T0

∂z
|

for z > 0. The streamwise velocity u > 0 when underneath the hot spot on the surface, which is just
opposite to the case in Newtonian fluid.22 It can produce a convective heating and destabilize the
flow. These indicate that the horizontal basic-state temperature field transfers heat to the hot point

FIG. 18. The perturbation flow field of the spanwise stationary mode for linear flow at Pr= 100, Ma= 11.1, k = 0.1, ε = 2,
η/λ = 0.1: (a) the streamlines, (b) the isothermals.
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FIG. 19. The perturbation flow field of the oblique wave for return flow at Pr= 0.02, Ma= 11.96, k = 1.25, φ = 70◦,
ε = 0.014, η/λ = 0.1: (a) the streamlines, (b) the isothermals.

through horizontal convection. The vertical temperature distribution is not important for the mecha-
nism. Therefore, the stationary instability appears in both linear flow and return flow, although their
vertical temperature gradient is opposite. For Pr = 100, the vertical heat convection becomes larger,
but still does not affect the mechanism qualitatively.

FIG. 20. The perturbation flow field of the oblique wave for return flow at Pr= 100, Ma= 394, k = 1.9, φ = 78◦, ε = 0.2,
η/λ = 0.1: (a) the streamlines, (b) the isothermals.



033105-17 Hu, He, and Chen Phys. Fluids 28, 033105 (2016)

FIG. 21. One cycle of the streamwise velocity for streamwise wave. The basic flow is linear flow at Pr= 0.02, Ma= 3.49,
k = 2.6, ε = 0.02, η/λ = 0.1.

The critical wave number of spanwise stationary mode tends to zero. This may be due to the
heat conduction. The isothermals are nearly vertical (see Fig. 18(b)), so the heat conduction of
perturbation is mainly horizontal. Decreasing wave number also decreases the horizontal tempera-
ture gradient, which reduces the heat conduction. For a hot point on the surface, the reduction of

FIG. 22. The ratios of three terms in (3.1) for the oblique wave and spanwise stationary mode of linear low in Fig. 6.
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FIG. 23. The ratios of three terms in (3.1) for the oblique wave and spanwise stationary mode of return low in Fig. 14.

conduction can increase its perturbation temperature. Therefore, the flow is more unstable for small
wave numbers.

B. Streamwise wave

For streamwise wave, energy analysis shows that each term in (3.1) can change sign in different
flows and parameters. The perturbation stress can input energy to the perturbation because of elas-
ticity. The distributions of Pσ and u fluctuate in vertical direction. These features are so different
from not only the case for Newtonian fluid, but also the other two modes in Oldroyd-B fluid. It
seems that the elasticity is more essential than the perturbation temperature on the surface for the
case of streamwise wave.

When ε is moderate, the streamwise wave is the preferred mode for both the linear flow and
return flow at Pr = 0.02 (see Figs. 6 and 14). In contrast, for Pr = 100, it is not preferred at any
ε. It is worth noting that the Weissenberg number λ ≥ 3 for the streamwise wave at Pr = 0.02 in
Figs. 6 and 14, while λ < 1 for the preferred mode at Pr = 100, η/λ = 0.1. This suggests that the
mechanism of streamwise wave is related to the Weissenberg number, which can reflect the elastic
effect in the flow, while the basic flow is of little importance.

TABLE VI. The terms of perturbation energy growth for unstable streamwise wave at Pr= 0.02, η/λ = 0.1. Here, LF stands
for linear flow while RF stands for return flow.

−N M I

LF: Ma= 5.42, k = 3.2, ε = 0.012 0.007 468 0.013 922 −0.021 252
LF: Ma= 1.74, k = 1.7, ε = 0.05 0.036 031 0.002 713 −0.038 674
RF: Ma= 14.53, k = 5.12, ε = 0.005 0.003 026 −0.005 578 0.002 555
RF: Ma= 8.94, k = 4.17, ε = 0.008 −0.008 220 −0.004 896 0.013 125
RF: Ma= 4.22, k = 3.38, ε = 0.018 0.006 761 −0.002 381 −0.004 376
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FIG. 24. The distribution of the work done by perturbation stress in vertical direction at Pr= 0.02,η/λ = 0.1. The parameters
for each mode are (a) oblique wave: Ma= 11.54, k = 0.365, θ = 85◦, ε = 0.005; (b) streamwise wave: Ma= 4.22, k = 3.38,
ε = 0.018; (c) spanwise stationary mode: Ma= 1.69, k = 0.03, ε = 0.05.

C. Oblique wave

For the oblique wave, Mac increases with the ε when ε is small. The explanation is as follows.
In this region, the work done by Marangoni force is the main source for perturbation energy. For
the Newtonian fluid, the Marangoni force keeps the same phase with the perturbation velocity on
the free surface. However, there is a phase difference between them for Oldroyd-B fluid because
of elasticity. Thus, the work efficiency of Marangoni force decreases, and the flow becomes more
stable. A higher Marangoni number is needed to increase the energy input by Marangoni force and
move the flow back to the neutral point.

The increasing of Marangoni number increases the inertia of basic flow, which also affects the
oblique wave. Then its wave speed in streamwise direction increases. Therefore, the propagation
angle of oblique wave decreases with ε when ε is small.

V. CONCLUSION

The linear stability of thermocapillary liquid layers for Oldroyd-B fluid has been investigated.
Results have been obtained for linear flow and return flow with Prandtl numbers of 0.02 and 100,
which shows that the elasticity has a great impact on the critical parameters, critical mode, and
perturbation mechanism.

Elastic mode still exists for Oldroyd-B fluid. However, it decays rapidly with η/λ and does not
affect the stability for η/λ ≥ 0.1. The increasing of η/λ always makes the flow stability approach to
that for Newtonian fluid.

For linear flow, when Pr = 100, the preferred is the spanwise stationary mode. Its critical
wave number tends to zero and Mac decreases with ε. When Pr = 0.02, with the increasing of
ε, the preferred modes are oblique wave, streamwise wave, and spanwise stationary mode in that
order. For the first mode, Mac increases slightly with ε and the wave changes from upstream to
downstream. For the last two modes, Mac decreases with ε significantly.

For return flow, when Pr = 100, with the increasing of ε, the preferred modes are upstream
oblique wave, downstream oblique wave, and spanwise stationary mode in that order. For the first
mode, Mac increases with ε continuously while for the last two modes, Mac decreases with ε swiftly.
When Pr = 0.02, the variation of the preferred mode with ε is similar to the case of linear flow.
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The streamlines for spanwise stationary mode and oblique wave are both periodically arranged
rolls while the perturbation velocity fluctuates several times in vertical direction for streamwise wave.
The isothermals have several shapes in different cases. For spanwise stationary mode, they are nearly
vertical, while for oblique wave, the location of perturbation amplitude can be either on the free
surface or in the interior of flow region.

Energy analysis shows that when Pr = 100, the perturbation energy comes from the Marangoni
force caused by perturbation temperature while dissipates by perturbation stress. The impact of basic
flow is negligible. When Pr = 0.02, the energy mechanism is different for three modes. The case
for spanwise stationary mode is similar to that at Pr = 100. For oblique wave, the perturbation en-
ergy comes from the Marangoni force and the basic flow. For streamwise wave, the work done by
perturbation stress fluctuates in the vertical direction.

Comparing with the Newtonian fluid, it is found that the weak elasticity makes the oblique wave
more stable while the strong elasticity is always destabilizing. The preferred mode and its propagation
direction are changed significantly by elasticity. A distinct difference is that the stationary instability
does not exist in return flow for Newtonian fluid, however, when ε is high enough, the spanwise
stationary mode becomes the preferred mode for Oldroyd-B fluid in both linear flow and return flow.
Although the three modes for Oldroyd-B fluid also appear in the Newtonian fluid, their mechanisms
are greatly affected by elasticity.
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