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a b s t r a c t 

We proposed a new analytical solution for a population balance equation for fractal-like 

agglomerates. The new analytical solution applies to agglomerates with any mass frac- 

tal dimensions. Two well-known numerical methods, including the Taylor-series expansion 

method of moments and the quadrature method of moments, were selected as references. 

The reliability of the analytical solution with three mass fractal dimensions of 1.0, 2.0, and 

3.0 in the continuum-slip regime was verified. The accuracy of the new analytical solution 

is affected by both the Knudsen number and the mass fractal dimension. The new analyt- 

ical solution can be further improved in accuracy by introducing a correction factor to the 

originally derived mathematical formula. The new analytical solution was finally confirmed 

to possess potential for replacing the numerical solution in the continuum-slip regime. 

© 2016 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Aerosols are unstable in particle process engineering and the environment because of Brownian coagulation, which

causes the particle size distribution to always vary with time [1] . This process can be characterized mathematically

by solving the the population balance equation (PBE) [2,3] . The PBE was proposed by Smoluchowski and later de-

veloped by Müller in its integral-differential form [4,5] . However, the PBE associated with a particle-size-dependent

coagulation kernel cannot be precisely solved. Various methods for solving the PBE have been proposed in the last

century, including the method of moments [6–11] , sectional method [12–15] , and Monte Carlo method [16–19] , with

almost all methods belonging to the numerical solution. For the numerical solution, time-consuming iterative algo-

rithms, such as the 4th-order Runge–Kutta method, must be performed. Although there are also some analytical so-

lutions [20–22] , the scope of their application is usually limited because of their inability to resolve time-dependent

dynamical process or because of a prior assumption about size distribution. For fractal-like agglomerates, the analyti-

cal solution for the PBE is more difficult to achieve because of an additional variable(i.e., the mass fractal dimension)

[2] . 
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Nomenclature 

A constant ( = 1.591) 

r particle radius, m 

N particle number concentration density, m 

−3 

B 2 collision coefficient for the continuum-slip regime 

C Cunningham correction factor 

k b Boltzmann constant, J K 

Kn particle Knudsen number 

m k k th moment of particle size distribution 

g = m 0 m 2 /m 

2 
1 

M k Dimensionless k th moment of size distribution 

t time, s 

T temperature, K 

U the point of Taylor-series expansion ( m 1 / m 0 ) 

v particle volume, m 

3 

v g geometric mean particle volume, m 

3 

N initial total particle number concentration, m 

−3 

f 1/ D f 

D f mass fractal dimension 

Greek letters 

ν kinematic viscosity, m 

2 s −1 

B particle collision kernel 

M gas viscosity, kg m 

−1 s −1 

λ mean free path of the gas, m 

σ g geometric mean deviation of size distribution 

τ dimensionless coagulation time, tN 0 B 2 

Because of the relative simplicity of implementation and the low computational cost, the method of moments has been

extensively used to resolve aerosol dynamical processes [23] . In the application of this method, the fractal moment variables

inevitably appear in the conversion from the PBE to the ordinary differential equations (ODEs) for k th moments, the closure

of which can be achieved using five techniques [23] (i.e., pre-defined size distributed method [9,24] , Gaussian quadrature

method (QMOM) [8,10] , p th-order polynomical method [25] , interpolative method [7] , and Taylor-series expansion method

(TEMOM) [11,26] ). To the best of our knowledge, the TEMOM has the simplest structure for governing equations among

all the methods of moments. Compared with the QMOM and its variants, such as the direct QMOM, the TEMOM has an

advantage in analytically expressing the time evolution of k th moments as polynomials composed of integer moments.

Thus, the ODEs of the TEMOM are more easily solved analytically compared with their counterparts, especially for fractal-

like agglomerates involving a very complex coagulation kernel. 

Since being proposed in 2008 [11] , the TEMOM has displayed potential to become a vital method in solving the PBE

because it makes no assumptions for size distribution and generates very low computational costs. Two key physical quan-

tities characterizing an aerosol property (the geometric standard deviation [GSD] of number distribution and geometric

mean volume) [27] can be easily reconstructed using this method. In fact, the TEMOM, QMOM, and log-normal method

of moments (log MM) [9] have been verified to yield nearly the same results for both quantities as well as for the first

three moments [28] . Along with a mathematical analysis of the ODEs of the TEMOM, the governing equations for k th mo-

ments can be further simplified through introducing a novel variable g ( m 0 m 2 / m 1 
2 , where m 0 , m 1 , and m 2 are the first

three moments, respectively). It was recently verified that if g is treated as a constant, then the ODEs of the TEMOM can

be analytically resolved by executing a separate variable method (SPV) in both the continuum regime and free molecular

regime [31] . Primarily because of the novel property of g , it only varies within a very small range, as illustrated in Fig. 1 .

This is consistent with the self-preserving size distribution theory first devised by Friedlander [22] . However, the feasibil-

ity of treating g as a constant in the derivation for fractal-like agglomerates in the continuum-slip regime has never been

verified. 

Therefore, the aim of this study was to verify the feasibility of an analytical solution for solving the PBE for fractal-

like agglomerates in the continuum-slip regime. Here, fractal-like agglomerates represent particles composed of numerous 

smaller primary particles, the morphology of which can be characterized using fractal theory. Because the TEMOM and

QMOM for numerically solving ODEs have been verified as reliable solutions [6–11] , they were used here as references. Three

key physical quantities, namely the total particle number concentration, GSD of the number distribution, and geometric

volume concentration, were chosen for investigation. The structure of this paper is as follows. In Section 2 , the mathematical

equations are briefly discussed, and in Section 3 , the specific calculation parameters are given. The results and discussion

are presented in Section 4 . Conclusions are given in Section 5 . 
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Fig. 1. Variance of g with different initial values by solving the PBE undergoing Brownian coagulation. Kn is the Knudsen number, Kn = λ/r, where λ is 

mean free path of air molecular and r is the radius of an aerosol particle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Mathematical model 

The PBE was first proposed by Smoluchowski and then developed by Müller into its integral-differential form [4,5] , 

∂n ( v , t ) 
∂t 

= 

1 

2 

v 
∫ 
0 

β
(
v − v ′ , v ′ 

)
n 

(
v − v ′ , t 

)
n 

(
v ′ , t 

)
dv ′ − n ( v , t ) 

∞ 

∫ 
0 

β
(
v , v ′ 

)
n 

(
v ′ , t 

)
dv ′ , (1)

where n ( v, t ) dv is the particle number whose volume is between v and v + d v at time t , and β( v, v ′ ) is the collision kernel

for two particles of volumes v and v ′ . In the continuum-slip regime, the form of the collision kernel for fractal agglomerates

is as follows [26] : 

β
(
v , v ′ 

)
= B 2 

{ (
1 

v f 
+ 

1 

v ′ f 
)(

v f + v ′ f 
)

+ ∅ v p0 
f− 1 

3 

(
1 

v 2 f 
+ 

1 

v ′ 2 f 
)(

v f + v ′ f 
)} 

, (2)

where v c is the collision volume of agglomerates with v c = v p0 
1 −3 / D f v 3 / D f , ∅ = λA/ ( 3 / 4 π) 1 / 3 , A = 1.591, f = 1 / D f , and v is

the real volume of the agglomerate. Here, v p 0 is the volume of primary particles whose diameter is specified to be 1 nm in

this work, and and D f is the fractal dimension, whose value is theoretically between 1 and 3. B 2 = 2 k B T / 3 μ, where k B is the

Boltzmann constant, T denotes the air temperature, and μ denotes the gas viscosity. As Eq. (2) is introduced into Eq. (1) ,

and the method of moments is applied, 

∂ m k 

∂t 
= 

1 

2 

∫ ∞ 

0 

∫ ∞ 

0 

[ (v + v ′ ) k − v k − v ′ k ] β(v , v ′ ) n (v , t) n (v ′ , t) d v d v ′ (k = 0 , 1 , 2 , . . . ) , (3)

where the moment, m k , is defined by, 

m k = 

∞ 

∫ 
0 

v k n ( v ) dv . (4)

To obtain the closure of Eq. (3) , we must introduce the closure model for k th moments [11] , 

m k = u 0 
k −2 

(
k 2 − k 

2 

)
m 2 + u 0 

k −1 
(
−k 2 + 2 k 

)
m 1 + u 0 

k 

(
k 2 − 3 k 

2 

)
m 0 (5)

Here, the Taylor-series expansion point, u , is calculated as averaged volume, u = m 1 / m 0 . Although the geometric mean

volume, ( m 1 
2 /( m 0 

3/2 m 1 
1/2 ), seems more reasonable than the averaged volume, it cannot reach the expected level in the

TEMOM. The theoretical analysis of selecting these two volumes as Taylor-series expansion points has been conducted in

[29] and [30] , in which the averaged volume has been verified as a more precise measure. Although the highest order of

moments in Eq. (5) is two, it was verified to reliably approximate moments with orders up to 2 + f , which is the highest

order that appears in the investigated model in this work [26] .Applying Eq. (2) to Eq. (3) and further approximating fractal
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moments by using Eq. (5) , we obtain, 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

d m 0 

d t 
= B 2 

⎧ ⎪ ⎨ 

⎪ ⎩ 

(
− f 4 + f 2 

4 

g 2 + 

f 4 − 3 f 2 

2 

g + 

− f 4 + 5 f 2 − 8 

4 

)
m 

2 
0 + φv f−1 / 3 

p0 

(
g m 1 

m 2 

) f 

[ (
− f 4 + 

1 

2 

f 3 + 

1 

2 

f 2 
)

g 2 + 

(
2 f 4 − f 3 − 4 f 2 − f 

)
g + 

(
− f 4 + 

1 

2 

f 3 + 

7 

2 

f 2 + f − 2 

)] 
m 

2 
0 

⎫ ⎪ ⎬ 

⎪ ⎭ 

d m 1 

d t 
= 0 

d m 2 

d t 
= B 2 

⎧ ⎨ 

⎩ 

(
f 4 − f 2 

2 

g 2 + 

(
− f 4 + 3 f 2 

)
g + 

f 4 − 5 f 2 + 8 

2 

)
m 

2 
1 + φv f−1 / 3 

p0 

(
g m 1 

m 2 

) f 

[(
2 f 4 + f 3 − f 2 

)
g 2 + 

(
−4 f 4 − 2 f 3 + 8 f 2 − 2 f 

)
g + 

(
2 f 4 + f 3 − 7 f 2 + 2 f + 4 

)]
m 

2 
1 

⎫ ⎬ 

⎭ 

, (6) 

where g = m 0 m 2 / m 1 
2 . Our previous works provide instructions on how to use Taylor-series methods of moments to obtain

closure of moment equations [11,26] . When applying a dimensionless solution with m k = M k m k 0 and m k 0 = N v g0 
k to Eq. (6) ,

the dimensionless ODEs for moments are expressed as follows: 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

d M 0 

d τ
= 

⎧ ⎪ ⎨ 

⎪ ⎩ 

(
− f 4 + f 2 

4 

g 2 + 

f 4 − 3 f 2 

2 

g + 

− f 4 + 5 f 2 − 8 

4 

)
M 0 

2 + φv f−1 / 3 
p0 

( v g0 ) 
− f 

(
1 

M 1 

) f 

[ (
− f 4 + 

1 

2 

f 3 + 

1 

2 

f 2 
)

g 2 + 

(
2 f 4 − f 3 − 4 f 2 − f 

)
g + 

(
− f 4 + 

1 

2 

f 3 + 

7 

2 

f 2 + f − 2 

)] 
M 0 

2 − f 

⎫ ⎪ ⎬ 

⎪ ⎭ 

d M 1 

d τ
= 0 

d M 2 

d τ
= 

⎧ ⎨ 

⎩ 

(
f 4 − f 2 

2 

g 2 + (− f 4 + 3 f 2 ) g + 

f 4 − 5 f 2 + 8 

2 

)
M 1 

2 + φv f−1 / 3 
p0 

( v g0 ) 
− f g f M 1 

2+ f [(
2 f 4 + f 3 − f 2 

)
g 2 + 

(
−4 f 4 − 2 f 3 + 8 f 2 − 2 f 

)
g + 

(
2 f 4 + f 3 − 7 f 2 + 2 f + 4 

)]
M 2 

− f 

⎫ ⎬ 

⎭ 

, (7) 

where τ = N B 2 t . Here, we used the same method as in [26] to replace v g 0 with v p 0 , then, 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

d M 0 

d τ
= 

⎧ ⎪ ⎨ 

⎪ ⎩ 

(
− f 4 + f 2 

4 

g 2 + 

f 4 − 3 f 2 

2 

g + 

− f 4 + 5 f 2 − 8 

4 

)
M 0 

2 + AK n 0 

(
1 

M 1 

) f 

[ (
− f 4 + 

1 

2 

f 3 + 

1 

2 

f 2 
)

g 2 + 

(
2 f 4 − f 3 − 4 f 2 − f 

)
g + 

(
− f 4 + 

1 

2 

f 3 + 

7 

2 

f 2 + f − 2 

)] 
M 0 

2+ f 

⎫ ⎪ ⎬ 

⎪ ⎭ 

d M 1 

d τ
= 0 

d M 2 

d τ
= 

⎧ ⎨ 

⎩ 

(
f 4 − f 2 

2 

g 2 + (− f 4 + 3 f 2 ) g + 

f 4 − 5 f 2 + 8 

2 

)
M 1 

2 + AK n 0 g 
f M 1 

2+ f [(
2 f 4 + f 3 − f 2 

)
g 2 + 

(
−4 f 4 − 2 f 3 + 8 f 2 − 2 f 

)
g + 

(
2 f 4 + f 3 − 7 f 2 + 2 f + 4 

)]
M 2 

− f 

⎫ ⎬ 

⎭ 

, (8) 

where Kn 0 is the Knudsen number for agglomerates at an initial time. Eq. (8) is further simplified as follows: ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

d M 0 

d τ
= a c M 0 

2 + a cm 

M 0 
2+ f 

d M 1 

d τ
= 0 

d M 2 

d τ
= b c + b cm 

M 2 
− f 

, (9) 

where 

a c = 

(
− f 4 + f 2 

4 

g 2 + 

f 4 − 3 f 2 

2 

g + 

− f 4 + 5 f 2 − 8 

4 

)

a cm 

= AK n 0 

(
1 

M 1 (τ ) 

) f [ (
− f 4 + 

1 

2 

f 3 + 

1 

2 

f 2 
)

g 2 + 

(
2 f 4 − f 3 − 4 f 2 − f 

)
g + 

(
− f 4 + 

1 

2 

f 3 + 

7 

2 

f 2 + f − 2 

)] 
b c = 

(
f 4 − f 2 

2 

g 2 + 

(
− f 4 + 3 f 2 

)
g + 

f 4 − 5 f 2 + 8 

2 

)
M 1 (τ ) 

2 

b cm 

= AK n 0 g 
f M 1 

2+ f [(2 f 4 + f 3 − f 2 
)
g 2 + 

(
−4 f 4 − 2 f 3 + 8 f 2 − 2 f 

)
g + 

(
2 f 4 + f 3 − 7 f 2 + 2 f + 4 

)]
. 
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In the evolution of an aerosol dominated by Brownian coagulation, it is feasible to assume g as a constant [31] . Under

these conditions, coefficients a c , a cm 

, b c , and b cm 

are constants, and the analytical solution of Eq. (9) might be obtained: ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

M 0 ∫ 
M 00 

a cm 

M 0 

a c M 0 
2 + a cm 

M 0 
2+ f = 

τ∫ 
0 

dτ

M 1 = M 10 

M 2 ∫ 
M 20 

b cm 

M 2 

b c + b cm 

M 2 
− f 

= 

τ∫ 
0 

dτ

, (10)

where M 00 , M 10 , and M 20 are the first three moments at an initial time. Obviously, assuming a constant g , Eq. (9) can be

solved analytically and conveniently. Notably, however, g actually varies during evolution in the present model, which is

discussed in Section 4.1 . Therefore, the analytical solutions of the equations for M 0 and M 2 should be joined and cannot be

achieved separately. 

Notably, the mass fractal dimension f is a value from 1/3 to 1 [2] . Once f is specified, the analytical solution for Eq. (9)

can be easily obtained . For example, we can produce the following expressions if f = 1, {
τ ( M 0 ) = R ( τ ) − R ( 0 ) 
τ ( M 2 ) = Z ( τ ) − Z ( 0 ) 

, (11)

with R (τ ) and Z (τ ) 

R ( τ ) = 

ln { ( a cm 

M 0 + a c ) / M 0 } a cm 

a c 2 
− 1 

a c M 0 

, 

and 

Z ( τ ) = 

M 2 

b c 
− dln ( b c M 2 + b cm 

) 

b c 
2 

. 

In Eq. (11) , M 0 , M 1 , M 2 , a c , a cm 

, b c , and b cm 

are all functions of time, and τ . R (0) and Z (0) are variables at the initial

condition. Similarly, if f = 1/2, then, 

R ( τ ) = 

ln 

⎧ ⎨ 

⎩ 

(
a cm 

√ 

M 0 − a c 

)
M 0 (

a cm 

√ 

M 0 + a c 

)(
a cm 

2 M 0 − a c 2 
)
⎫ ⎬ 

⎭ 

b 2 

a c 3 
+ 

2 a cm 

a c 2 
√ 

M 0 

− 1 

a c M 0 

, 

and 

Z ( τ ) = 

M 2 

b c 
− 2 

√ 

M 2 b cm 

b c 
2 

+ 

2 d 2 ln 

(
b c 

√ 

M 2 + b cm 

)
b c 

3 
. 

The aforementioned derivation is straightforward and does not require any assumption about the particle size distri-

bution, distinguishing it from the existing analytical model [34–36] . In this paper, only f = 1, 1/2, and 1/3 are selected as

examples to verify the proposed model. These three f correspond to three types of agglomerate morphology. 

3. Computations 

The 4th-order Runge–Kutta method with a fixed time step of 0.0010 is used to numerically solve the TEMOM and QMOM

ODEs. For all numerical and analytical solutions, the total time is up to 100. In all simulations, the temperature andpressure

of the surrounding air are assumed to be 300 K and 1.0130 × 10 5 Pa, respectively, such that the viscosity and mean free path

of the gas molecules are 1.8508 × 10 −5 Pa s and 68.4133 nm, respectively. The particle density is 10 0 0 kg/m 

3 . The relative

error for any variable is calculated as follows [11] : 

RE% = 

φ − φNM 

φNM 

× 100% , (12)

where φ is the arbitrary analytical variable and φNM 

is the referenced numerical variable. In the calculation, we assume that

aerosols follow log-normal size distributions, and therefore, all initial dimensionless moments are expressed as follows: { 

M 00 = 1 

M 10 = χ
M 20 = χ4 

, (13)

where χ = e w g 
2 / 2 , w g = 3 ln σg0 , and σ g 0 is the initial GSD of the aerosol size distribution [32] . Notably, the present model

can be applied to other initial size distributions. 
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Fig. 2. Comparison of M 0 (a), νg (b) σ g (c), and g (d) obtained from this work with the TEMOM and QMOM models for f = 1, 1/2, and 1/3. 

 

 

 

 

 

 

 

 

4. Results and discussion 

In this section, we verify the new analytical model by comparing it with other well-known numerical models for the

same problem, including the TEMOM [26] and QMOM [8] . Here, the Gauss integral node number is 4 when the QMOM

is implemented, and the Taylor-series expansion order is 3 when the TEMOM is implemented. Fig. 2 demonstrates the

evolution of M 0 , v g , σ g , and g with times obtained from these three methods for f = 1,1/2, and 1/3, respectively. Notably,

f = 1,1/2, and 1/3 corresponds to the mass fractal dimension, D f = 1, 2, and 3. In this paper, v g and σ g are calculated as

follows [33] : 

v g = M 1 
2 

/ 

(
M 0 

3 
2 M 2 

1 
2 

)
, (14) 

and 

l n 

2 ( σg ) = 

(
1 

9 

)
ln ( g ) . (15) 

For comparison, the same initial Kn (0.0 0 01) and initial GSD (1.2) are selected for all cases. For M 0 as illustrated in

Fig. 2( a), the results from the TEMOM and QMOM overlap for all three values of f ; thus, the difference between them

is negligible . Our study reveals that the difference of v g , σ g , and g between the TEMOM and QMOM is also negligible,
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a b

Fig. 3. Variance of the RE%s of the analytical solution with respect to the numerical solution for M 0 (a) and M 2 (b) that are relevant to dimensionless time 

in the near-continuum regime. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

which is similar to Fig. 2( a) for M 0 .Therefore, the results from the QMOM are not displayed in Fig. 2( b–d). The comparison

between the TEMOM and QMOM verifies that selecting the TEMOM as the reference in this study is feasible. Comparing the

analytical solution to the TEMOM illustrates a decreasing difference for all four investigated quantities, including M 0 , v g , σ g ,

and g , with an increase of D f (or decrease of f ). This indicates that the accuracy of the analytical solution is affected by the

mass fractal dimension. However, the difference between the proposed analytical solution and the TEMOM is not obvious.

In fact, when f = 1/2 and 1/3, the difference between the two methods is negligible. Thus, the analytical method proposed in

this work is verified as a reliable method for solving the agglomerate Brownian coagulation equation in the continuum-slip

regime. Next, we further study the difference between the analytical solution and the TEMOM by selecting f = 1/3 as an

example and investigate how to improve the accuracy of the analytical solution. 

4.1. Pseudo-self-preserving aerosols 

The evolution of the aerosol size distribution in the continuum-slip regime exhibits notably different characteristics from

those in the free molecular regime and continuum regime [21] . This difference occurs because the GSDs in the free molec-

ular regime and continuum regime are unchanged values [9,11,22,36] , whereas in the continuum-slip regime, particularly in

the near-continuum regime from Kn = 0.10 0 0 to Kn = 5.0 0 0 0, the GSD always varies, even though the variance is limited to

a notably small range, as reported in [21] . In the literature, the study on the constant GSD in both the continuum regime

and free molecular regime is called the self-preserving theory, which was first proposed in [22] . In the continuum-slip

regime, however, the GSD is not always constant, and, therefore, the size distribution of an aerosol in this regime was called

a pseudo-self-preserving size distribution [36] . In this case, the asymptotic solution, which assumes GSD to be constant,

becomes invalid [37] . 

To verify the newly proposed analytical solution in the near-continuum regime, the RE%s of the analytical solution to the

TEMOM for M 0 and M 2 are presented in Fig. 3 (a) and (b), where there are nine representative cases with Kn from 5.0 0 0 0

to 0.10 0 0 (5.0 0 0 0, 4.0 0 0 0, 3.0 0 0 0, 2.0 0 0 0, 1.0 0 0 0, 0.50 0 0, 0.30 0 0, 0.20 0 0, and 0.10 0 0). In addition, to gather additional

evidence for the conclusion from Fig. 3 , the RE%s with much denser Kn (5.0 0 0 0, 4.50 0 0, 4.0 0 0 0, 3.50 0 0, 3.0 0 0 0, 2.50 0 0,

2.0 0 0 0, 1.50 0 0, 0.80 0 0, 0.70 0 0, 0.60 0 0, 0.50 0 0, 0.40 0 0, 0.30 0 0, 0.20 0 0, 0.10 0 0, and 0.010 0)are displayed in Supplementary

Fig. 1 (a) and (b), where the data in Supplementary Data1 are used. The characteristics of the initial size distribution for the

investigated cases are determined using three key quantities: Kn , GSD, and GMD, which are displayed in Table 1 . These cases

are selected to continuously span the entire near-continuum regime. In these cases, the GSDs are the values of pseudo-self-

preserving aerosols [28] . 

In Fig. 3 (a) and (b), the abscissa is operated with a log scale to clearly distinguish the curves. For both M 0 and M 2 ,

their RE%s vary in a notably limited range, and their absolute values are always below 0.0200. The same conclusion is

further verified in Supplementary Fig. 1 (a) and (b), which contain much denser Kn numbers. For both M 0 and M 2 , the RE%s

approach their asymptotic values at approximately τ = 1 . 0 0 0 0 and subsequently remain at these values in the late stage,

which indicates that the RE%s of the analytical solution to the referenced TEMOM are not amplified with time. This new

characteristic of the proposed analytical solution ensures that the PBE dominated by Brownian coagulation can be very
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Table 1 

Characteristics of the investigated cases when the calculation is performed 

up to τ = 100 . (GSD denotes the geometric standard deviation; GMD de- 

notes the geometric mean diameter (unit: nanometer); Kn denotes the 

Knudsen number. 

No. GMD GSD Kn 

1 27 .3653 1 .3236 5 .0 0 0 0 

2 34 .2067 1 .3169 4 .0 0 0 0 

3 45 .6089 1 .3079 3 .0 0 0 0 

4 68 .4133 1 .2986 2 .0 0 0 0 

5 136 .8266 1 .2888 1 .0 0 0 0 

6 273 .6532 1 .2904 0 .50 0 0 

7 456 .0887 1 .2950 0 .30 0 0 

8 684 .1330 1 .30 0 0 0 .20 0 0 

9 1368 .2660 1 .3065 0 .10 0 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

accurately solved using the proposed analytical solution, especially within a dimensionless time of 10 0.0 0 0 0. In fact, for

the physical parameters in Section 3 , a dimensionless time of 10 0.0 0 0 0 corresponds to a real time of 6.7056 × 10 4 s, when

the initial total particle number concentration is 1.0 0 0 0 × 10 13 #/m 

3 , which is the typical concentration in nanoparticle

synthesis engineering [38,39] . 

In the continuum regime, the variance of the RE%s of the proposed analytical solution to the referenced TEMOM for M 0 

and M 2 are represented in Fig. 4 (a) and (b), respectively. In this figure, the representative initial Kn (i.e., 0.100, 0.080, 0.060,

0.040, 0.020, 0.010, 0.005, and 0.001) are selected to cover the entire continuum regime. Similar to those in the previously

investigated near-continuum regime, the RE%s for both M 0 and M 2 in Fig. 4 quickly approach their asymptotic values and

remain at these values in the late stage. Although the absolute values of the RE%s for both M 0 and M 2 are always notably

small (0.006 for M 0 and 0.005 for M 2 ), the variance of the RE%s with the initial Kn exhibits regularity. When the initial Kn

decreases, the absolute value of the RE%s also decreases. Therefore, in the continuum regime, the precision of the proposed

analytical solution increases with a decrease of the initial Kn . This result causes the GSD in the continuum regime to slowly

approach a constant value of 1.3200 when the Kn decreases from 0.10 0 0 which is consistent with the GSD findings in [21] .

We compared Figs. 3 and 4 and discovered that the proposed analytical solution is more precise in the continuum regime

than in the near-continuum regime. The main reason is that the GSD always varies with the Kn in the near-continuum

regime, whereas in the continuum regime, it is nearly constant [34] . Notably, the division between the continuum regime

and the near-continuum regime is slightly different from that reported in [34] regarding the Kn number. In this paper, the

Kn , 0.10 0 0, is defined as the division point for these two regimes following the work displayed in [24] , whereas in [34] , the

Kn is lower than 0.10 0 0. 
a b

Fig. 4. Variance of the RE%s of the analytical solution to the referenced numerical solution for M 0 (a) and M 2 (b) that are relevant to the dimensionless 

time in the continuum regime. 
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a b

Fig. 5. Relative errors of the analytical method to the referenced numerical method for M 0 (a) and M 2 (b) with different initial GSDs when the initial Kn 

is 5.0 0 0 0. 

a b

Fig. 6. Relative errors of the analytical method to the numerical method for M 0 (a) and M 2 (b) with different initial GSDs when the initial Kn is 1.3683. 

 

 

 

 

 

 

 

 

4.2. Non-self-preserving aerosols 

To study the deviation of the analytical solution from the TEMOM for non-self-preserving aerosols, two Kn of 5.0 0 0 0 and

1.3683 are selected as the representative cases of the near-continuum regime, and three Kn of 0.010 0, 0.0 010, and 0.0 0 01

are selected as the representative cases of the continuum regime. 

The RE%s of the analytical solution to the referenced TEMOM for both M 0 and M 2 when the initial Kn is 5.0 0 0 0 are

displayed in Fig. 5 (a) and (b), respectively, where eight initial GSDs are investigated. The initial GSDs in the figure con-

tinuously span the entire validated GSD range from 1.0 0 0 0 to 1.6583. Similarly, the RE%s of the analytical solution to the

referenced TEMOM for both M 0 and M 2 are presented in Fig. 6 (a) and (b), respectively, when the initial Kn is 1.3683. No-

tably, because the investigated aerosol is self-preserving, the GSD is 1.3236 in Fig. 3 and 1.2913 in Fig. 4 . Both Figs. 5 and 6

illustrate that higher absolute values of the RE%s for M and M are generated when the GSD deviates from the value of the
0 2 
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a b

Fig. 7. Relative errors of the analytical method to the numerical method for M 0 (a) and M 2 (b) with different initial GSDs when the initial Kn number is 

0.0100. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

self-preserving aerosols, and there are asymptotic values when the GSD is below 1.50 0 0. When the initial GSD is equal to

or greater than 1.60 0 0, the absolute values of the RE%s for M 0 do not converge to an asymptotic value with time; therefore,

it is not necessary to determine the scope of the errors that are generated by the analytical solution. The analytical solution

is not recommended for use in the near-continuum regime for non-self-preserving aerosols, particularly when the GSD is

equal to or greater than 1.60 0 0. 

The RE%s of the analytical solution to the referencedTEMOM for both M 0 and M 2 for the initial Kn 0.0100 are illustrated

in Fig. 7 (a) and (b), respectively. The RE%s for the initial Kn 0.0010 and 0.0001 are not displayed in this figure because the

curves for the three Kn of 0.010 0, 0.0 010, and 0.0 0 01 always overlap for each initial GSD, which cannot be distinguished from

one another. Hence, the effect of the Kn on the RE% value is negligible in the continuum regimewhen the Kn is below 0.0100.

In Fig. 7 (a) and (b), the asymptotic values of theRE%s for both M 0 and M 2 clearly exist for all initial GSDs; in particular, higher

absolute values of the RE% are generated when the aerosol deviates more from its self-preserving status. Notably, the GSD

at the self-preserving status is approximately 1.3200 in the continuum regime [11,21] . Because the RE%s only depend on the

initial GSD, the relationship between the RE%s and the initial GSD must be determined to modify the analytical solution by

introducing the RE%s to the original Eq. (11) . 

To identify the relationship between the initial GSD and the RE%, up to 36 GSDs are investigated for the Kn 0.0010.The

RE%s of the analytical solution to the referenced TEMOM that are relevant to the initial GSDs are illustrated in Fig. 8 (a)

and (b) for M 0 and M 2 , respectively. The data for the initial GSDs and the corresponding RE %s are attached online under

the name “Supplementary-Data2.”The relationship between the initial GSD and the RE % is represented by a mathematical

equation by performing a 7th-degree polynomial fitting technique. In mathematics, the fitting function fits the initial data

much more accurately if the selected polynomial degree has a higher value. Here, the mathematical equations that relate

the initial GSD for both M 0 and M 2 to the RE% are, 

f 
(
σg0 

)
m 0 

= 0 . 0 0530 ω 

7 + 0 . 0260 0 ω 

6 + 0 . 0390 0 ω 

5 + 0 . 0230 0 ω 

4 + 0 . 0270 0 ω 

3 

+0 . 0390 0 ω 

2 − 0 . 0230 0 ω − 0 . 0140 0 , (16) 

f 
(
σg0 

)
m 2 

= −0 . 0023082 ε7 + 0 . 019183 ε6 − 0 . 0 6 6531 ε5 − 0 . 13502 ε4 − 0 . 19577 ε3 

−0 . 19769 ε2 − 0 . 071352 ε + 0 . 0093324 , (17) 

with ω = ( σg0 − 1 . 40 0 0 0 ) / 0 . 190 0 0 and ε = ( σg0 − 1 . 4829 ) / 0 . 19323 . f ( σ g 0 ) m 0 and f ( σ g 0 ) m 2 are functions of σ g 0 that repre-

sent the relationship between the initial GSD and the RE% over the effective range of TEMOM ODEs. Correspondingly, the

residuals in the curve-fitting performance are also illustrated in Fig. 8 , the absolute values of which are always less than

2 ×10 −3 for M 0 and 4 ×10 −4 for M 2 , which indicates that fitting Eqs. (9) and ( 10 ) are highly reliable. After Eqs. (16) and

( 17 ) are introduced into Eq. (11) , the errors of the proposed analytical solution for non-self-preserving aerosols are largely

reduced, and their precision can be ensured. The treatment is actually an asymptotic solution because it is only valid after

the aerosol evolves over a long period of time, which is the same as in [37] . 
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Fig. 8. Variance of the RE% of the analytical solution to the referenced numerical solution with the initial GSD and the residuals generated in the perfor- 

mance of the 7th-degree polynomial fitting operation for M 0 (a) and M 2 (b). 
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5. Conclusions 

A new analytical solution for solving the PBE was first proposed, which is applicable to fractal-like agglomerates under-

going Brownian coagulation in the continuum-slip regime. The reliability of the new solution was verified by comparison

with two highly accurate numerical solutions, namely the TEMOM and QMOM, with the mass fractal dimension specified as

1, 2, and 3. The solution indicates that, as the mass fractal dimension number increases, the difference between the analyt-

ical solution and the TEMOM decreases. The Kn number was discovered to play a crucial role in determining the accuracy

of the new solution in this regime. For pseudo-self-preserving aerosols, the new analytical solution was verified as a very

highly precise solution with very minor relative errors for both the zeroth and second moments. The proposed analytical

solution was also verified as being able to solve the PBE for non-self-preserving aerosols with Kn below 0.0100 with highly

reliable precision. For non-self-preserving aerosols with Kn greater than 0.0100, the new solution can be further improved

by incorporating a GSD-dependent correction factor into the original mathematical formula. The newly developed solution

was finally verified to have the potential to replace the numerical solution in the continuum-slip regime. 
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