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Abstract In this study,we examine thewaterwave radiation
by arrays of truncated circular cylinders. Each cylinder can
oscillate independently in any rigid oscillation mode with a
prescribed amplitude, including translational and rotational
modes such as surge, sway, heave, pitch, roll, and their com-
binations. Based on the eigenfunction expansion and Graf’s
addition theorem for Bessel functions, we developed an ana-
lytical method that includes the effects of evanescent modes
in order to analyze such arrays of cylinders. To investi-
gate the effects of several influential factors on convergence,
our objective is to dramatically reduce the number of tests
required and determine the influencing relationships between
truncation number and convergence behavior for different
factor combinations. We use the orthogonal test method to
fulfill the objective. Lastly, we present our results regarding
the effects of evanescent modes on hydrodynamic coeffi-
cients.

Keywords Radiation · Water wave · Arrays of truncated
circular cylinders oscillating independently · Translational
oscillation · Rotational oscillation

1 Introduction

In recent years, various offshore floating structures designed
for the exploitation of space and ocean resources have drawn
increasing attention. These structures mainly comprise a sin-
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gle circular cylinder or an array of circular cylinders, such as
deep-sea platforms, floating bases for wind power devices,
or wave power extraction devices with oscillating cylinders
[1–6].

Many studies have focused on the hydrodynamic inter-
actions between cylinders in waves, using numerical and
analytical methods. For example,Wang et al. [7] investigated
radiation by a group of cylinders using a finite-element-based
numerical method. Zhou et al. [8] investigated the nonlinear
radiated waves generated by a floating structure in forced
motion by using a higher-order boundary element method
(HOBEM). Babarit [9] investigated the energy absorption
problem in both regular and irregular waves, and considered
wave interactions in arrays of two surging or heaving cylin-
ders,whose hydrodynamic coefficientswere calculated using
the boundary element method (BEM). In addition, Williams
et al. [10,11] used a modified plane-wave approach to inves-
tigate the diffraction and radiation problems associated with
an array of truncated circular cylinders. Furthermore, Kage-
moto and Yue [12] presented an accurate algebraic method
(including the interactions of evanescent waves) for multi-
ple bodies by combining and extending the matrix method
and the multiple-scattering concept, based on the diffrac-
tion characteristics of the isolated member. Also, Linton
and Evans [13] developed an exact theory for wave dif-
fraction by vertical circular cylinders and achieved a major
simplification. Additionally, Yilmaz [14] obtained analytical
solutions for the wave scattering and radiation of truncated
cylinders using the accurate algebraic method developed
by Kagemoto and Yue [12]. Moreover, Siddorn and Eatock
Taylor [15] also used an exact algebraic method to study
radiation and diffraction in an array of cylinders oscillat-
ing independently. Then, Chatjigeorgiou [16] investigated
wave diffraction by arrays of truncated elliptical cylin-
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ders subjected to regular waves and presented an analytical
solution.

In this study, we classify arrays of floating cylinders into
two categories. The first is an “array of cylinders with no
relative motion” (hereafter referred to as the “C1 array”)
because the connection between the cylinders is so strong
that the cylinders can be regarded as being rigidly connected
as a whole. The second array category is an “array of cylin-
ders with relative motions” (hereafter referred to as the “C2
array”) because there is no rigid connection between the com-
ponent members and each component member can oscillate
independently.

Studies of the hydrodynamic interactions between cylin-
ders have mainly focused on the “C1 array,” and there are
relatively few studies of the “C2 array” (especially using
analytical methods). Published results for the “C2 array”
are mainly concerned with concrete examples in which each
cylinder oscillates in translational modes (i.e., surge, sway,
heave) rather than there being an array of cylinders oscil-
lating independently in rotational modes (i.e., roll or pitch),
let alone in multiple modes that include both translation and
rotation.Asmore andmore “C2array” characteristics emerge
in new offshore structures, further investigation is mer-
ited regarding the hydrodynamic interactions of “C2 array”
oscillations with multiple modes, including both translation
and rotation. Therefore, in this study, we investigate water
wave radiation and diffraction by the “C2 array” in the con-
text of linear wave theory.

With respect to computation, the infinite series in equa-
tions must be truncated, so it is important to determine the
appropriate number of terms retained in the expansion after
truncationwith less than about 1%error. An isolated cylinder
does not require much computation to obtain the appropriate
truncation number by trial and error. However, it would be
onerous and time consuming to do so for an array of cylin-
ders, because the hydrodynamic problems are much more
complex and there are more factors influencing convergence
behavior. For the same reasons, it is very hard to obtain
explicit mathematical expressions to analyze convergence
behavior. If convergence were to be examined by trial and
error for cases involving different factors, the costs would
be prohibitive. Therefore, another alternative must be sought
to determine the relationships between different influential
factors and convergence behaviors. In this study, we adopted
the orthogonal test method to determine these relationships.

The orthogonal test (experimental design) method is an
efficient testing strategy for identifying the relationships
between influential factors and the test index, as well as
for differentiating the primary from the secondary factors in
fewer trials. Since the 1940s, this method has been adopted
by industry and academia [17–21], and has found world-
wide applications. There aremany examples of the successful
application of the orthogonal design. For example, Azouzi

andGuillot [22] examined the feasibility of an intelligent sen-
sor fusion to estimate on-line surface finish and dimensional
deviations with the orthogonal arrays used for experiments
planning. In addition, Green et al. [23] applied orthogonal
arrays to conjoint analysis in marketing. Also, Lee et al.
[24] used an iterative optimization algorithmwith orthogonal
arrays in discrete space for structure design. The feasibility
of a method that combines orthogonal experiment theory
with the finite element method (FEM) was discussed by
Wang et al. [25], who used this method to compute and
evaluate the three dimensional (3-D) natural stress field. In
view of the high efficiency of orthogonal design in reduc-
ing the number of required tests or computations, we use
this method in this study to investigate the effect of different
influential factors (e.g., oscillation mode and water depth) on
convergence behaviors and to identify primary and secondary
factors. Using the orthogonal test method, with a relatively
small amount of calculation, we can identify how the num-
ber of items retained in the expansion affects the convergence
behavior in circumstances with different parameter combi-
nations. Accordingly, we can then develop more reasonable
calculation procedures for other cases.

2 Solutions for velocity potentials

Due to the axial symmetry of a circular cylinder, the yaw
motion introduces no hydrodynamic forces in a perfect fluid.
Therefore, only five modes—surge, sway, heave, roll, and
pitch—are considered in this study.

The radius and draught of an isolated truncated cylinder
are a and h, respectively, and the water depth is d. The fluid
is divided into two regions (core and exterior), as depicted in
Fig. 1.

Figure 2 shows the six oscillation modes of a single trun-
cated circular cylinder.

The array (Fig. 3) consists of N vertical truncated circular
cylinders. We employ a right-handed Cartesian space fixed
coordinate system XOY with the plane xoy coinciding with
the still-water level (SWL), and the positive z-axis point-
ing vertically upwards. The coordinate of the origin Oi of
each cylinder in the overall coordinate system is (xi , yi ). The
radius of each cylinder is ai , i = 1, 2, ..., N . The local cylin-
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Fig. 1 Sketch of a single truncated circular cylinder
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Fig. 2 Array of truncated cylinders and six oscillation modes
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Fig. 3 Local cylindrical coordinate system for an array of truncated
circular cylinders

drical coordinate system Oiriθi z is centered on the origin of
each cylinder. The coordinate of the origin Oj of cylinder j
in the cylindrical coordinate system centered on the origin
Oi of cylinder i is (Li j , αi j , z), i, j = 1, 2, ..., N .

Assuming that the fluid is inviscid and incompressible
and that the flow is irrotational, we can employ the potential
theory. We can consider the linear steady-state oscillations
since the wave steepness and amplitudes of motion are small
enough. Therefore, physical quantities such as the velocity
potentials and displacements are periodic functions of time
with angular frequency ω0. Then, the total velocity potential
can be written as the product of the space and time factors,
as follows

ΦRD(x, y, z, t) = Re
{
ϕRD(x, y, z)e−iω0t

}
. (1)

The potential ϕRD for an array of cylinders with inde-
pendent prescribed motions is the sum of the radiation and
scattering potentials, which can be written as

ϕRD = ϕ( j)
D1

+
5∑

s=1

ϕ( j)
Rs

+
N∑

i=1,i �= j

(
ϕ(i)
D1

+
5∑

s=1

ϕ(i)
Rs

)

=
N∑
i=1

(
ϕ(i)
D1

+
5∑

s=1

ϕ(i)
Rs

)
. (2)

The velocity potential in a linear water wave problem can
be decomposed into the incident potential (due to environ-
mental waves or other sources, such as waves emanating
from other cylinders due to wave diffraction or radiation),
diffraction potential (fixed cylinder but an incident wave),
and radiation potential (oscillating cylinder without incident
wave). For the problem considered in this study, ϕ( j)

D1
is the

diffraction potential of cylinder j;ϕ( j)
Rs

is the radiation poten-

tial of cylinder j ; with
∑N

i=1,i �= j

(
ϕ(i)
D1

+∑5
s=1 ϕ(i)

Rs

)
—the

sum of the potential of waves emanating from other cylinders
(i = 1, 2, . . ., N , except cylinder j) due to wave diffraction
and radiation—acting as the incident potential on cylinder j .

The instantaneous displacement of cylinder i in small-
amplitude periodic oscillation with angular frequency ω0 is

Ξ(i)
s (t) = Re

{
ζ (i)
s e−iω0t

}
, (3)

where ζ
(i)
s represents the oscillation amplitude of mode s for

cylinder i . The corresponding velocity is

Ξ̇ (i)
s (t) = Re

{
−iω0ζ

(i)
s e−iω0t

}
. (4)

When cylinder i oscillates independently with amplitude
ζ

(i)
s in mode s, the corresponding radiation potential is

Φ(i)
Rs

(x, y, z, t) = Re
{
ϕ(i)
Rs

(x, y, z)e−iω0t
}

. (5)

According to the impermeable condition on the body sur-
face, the normal velocity of the cylinder is equal to that of
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the adjacent fluid, and the equation is written as

∂Φ(i)
Rs

∂n
= V (i)

sn , (6)

where V (i)
sn is the normal velocity on the surface of the cylin-

der i in the s-th mode. The positive normal vector points
outward from the fluid domain. The body surface condition
differs according to whether or not the centroid of the cylin-
der is at SWL.

Suppose the coordinate of the centroid of the cylinder is
(0, 0, z̄). As shown in Fig. 1, the fluid domain is divided into
two regions: the core region and exterior region.The radiation
potentials ϕ

(i)
Rs−E for the exterior region and the ϕ

(i)
Rs−C for

the core region satisfy the impermeability conditions on the
body surface, as follows

∂ϕ(i)
Rs−E
∂r = v

(i)
s · fs(z)

∞∑
m=−∞

λmseimθ , ri = ai ,−h � z � 0,

∂ϕ(i)
Rs−C
∂z = v

(i)
s · gs (ri )

∞∑
m=−∞

λmseimθ , z = −h, ri � ai ,

(7)

where v
(i)
s = −iω0ζ

(i)
s is the velocity of cylinder i in the s-th

mode, s = 1, 2, 3, 4, 5. The expressions for fs(z), gs(ri ),
and λms are shown in the following:

fs(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, s = 1, 2,

0, s = 3,

− (z − z̄) , s = 4,

(z − z̄) , s = 5,

gs (ri ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, s = 1, 2,

1, s = 3,

ri , s = 4,

−ri , s = 5,

λ1s =

⎧⎪⎨
⎪⎩

λ11 = λ15 = 1
2 ,

λ13 = 0,

λ12 = λ14 = 1
2i ,

λ0s =

⎧⎪⎨
⎪⎩

λ01 = λ05 = 0,

λ03 = 1,

λ02 = λ04 = 0,

λ−1s =

⎧⎪⎨
⎪⎩

λ−11 = λ−15 = 1
2 ,

λ−13 = 0,

λ−12 = λ−14 = − 1
2i ,

λms = 0 , m �= 0,±1.

(8)

Apart from the body surface conditions, the velocity
potentials for the exterior and core regions must satisfy
Laplace’s equation, the free-surface condition, the seabed
condition, and the radiation condition at infinity, respectively,
as follows

∇2ϕ(i)
Rs−E

= 0,

∂ϕ(i)
Rs−E
∂z − ω2

0
g ϕ(i)

Rs−E
= 0, z = 0, ai < ri < ∞

∂ϕ(i)
Rs−E
∂z = 0, z = −d, ai < ri < ∞,

lim
r→∞

√
r

(
∂ϕ(i)

Rs−E
∂r − ik0ϕ(i)

Rs−E

)
= 0, outgoing at infinity,

∇2ϕ(i)
Rs−C

= 0,

∂ϕ(i)
Rs−C
∂z = 0, z = −d, 0 � ri � ai ,

ϕ
(i)
Rs−E = ϕ

(i)
Rs−C, ri = ai , −d � z � −h,

∂ϕ(i)
Rs−E
∂r =

⎧⎪⎨
⎪⎩

∂ϕ(i)
Rs−C
∂r , ri = ai , −d � z � −h,

v
(i)
s · fs(z)

∞∑
m=−∞

λmseimθ , ri = ai , −h � z � 0.

(9)

Thephysical significanceof lim
r→∞

√
r

(
∂ϕ(i)

Rs−E
∂r − ik0ϕ(i)

Rs−E

)

= 0 is that, at infinity, the waves behave like progressive
waves moving away from the cylinder (considering the time
factor e−iω0t ), with the wave amplitude attenuated at a rate
of 1/

√
r .

The radiation potential ϕ(i)
Rs−E

of cylinder i in the s-thmode
for the exterior region is

ϕ(i)
Rs−E

= −iω0ζ
(i)
s

∞∑
m=−∞

[
R(i)
0ms Z0(z)Hm(k0ri )+

∞∑
n=1

R(i)
nms Zn(z)Km(knri )

]
eimθi , (10)

where Hm = Jm + iYm is an m-th-order Hankel function of
the first kind. Jm and Ym are m-th-order Bessel functions of
the first and the second kinds, respectively. Km is a modified
Bessel function of the second kind.

The wave number k0 and the angular frequency ω0 satisfy
the usual dispersion relation

k0tanh(k0d) = ω2
0/g. (11a)

The eigenvalues kn (n = 1, 2, …) are the positive real
roots of the following equations

kn tan(knd) = −ω2
0/g, n = 1, 2, · · · . (11b)

In Eq. (10), Z0(z) and Zn(z), R
(i)
0ms and R(i)

nms are expressed
as

Zn(z) =
{ cosh[k0(z+d)]

cosh(k0d)
, n = 0,

cos[kn(z + d)], n ≥ 1,
(12)

R(i)
nms =

⎧⎪⎨
⎪⎩

Ds
0m

cosh(k0d)

H ′
m (k0ai )N

1/2
0

, n=0,m=±1 (s=1, 2, 4, 5),m=0 (s=3),

Ds
nm

K ′
m (knai )N

1/2
n

, n>0,m=±1 (s=1, 2, 4, 5),m=0 (s=3).

(13)

Ds
0m and Ds

nm in Eq. (13) can be solved using Eq. (A1) in the
appendix

N0 = 1

2

[
1 + sinh(2k0d)

2k0d

]
, Nn = 1

2

[
1 + sin(2knd)

2knd

]
.
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Equation (10) can be expressed in matrix form as

ϕ(i)
Rs−E

= −iω0ζ
(i)
s RT

isψ
D−E
i = −iω0ζ

(i)
s RT

isT i jψ
I
j , (14)

where “D-E” is short for “diffraction-exterior region” and
ψD−E

i represents the column vector of the partial radiation
waves in the exterior region of cylinder i (except for the
amplitude, the function form of radiation and diffraction par-
tial waves are the same in the exterior region, so we adopt
the notation ψD−E

i for both radiation and diffraction partial
waves in this paper).

ψD−E
i (n,m) =

{
Z0(z)Hm(k0ri )eimθi , n = 0,

Zn(z)Km(knri )eimθi , n � 1.
(15)

Using Graf’s addition theorem for the Bessel functions
(valid for r j < Ri j ) and replacing l by−l, Eq. (15) is rewrit-
ten as

ψD−E
i (n,m)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∞∑
l=−∞

Hm−l (k0Li j )eiαi j (m−l) · Z0(z)Jl (k0r j )eilθ j , n = 0,

∞∑
l=−∞

Km−l (kn Li j )eiαi j (m−l)(−1)l · Zn(z)Il (knr j )eilθ j , n � 1,

(16)

where Il is the l-th-order modified Bessel function of the first
kind and Eq. (16) can be expressed in matrix form as

ψD−E
i = T i jψ

I
j , (17)

Ti j (n,m, l) =
{
Hm−l(k0Li j )eiαi j (m−l), n = 0,

Km−l(knLi j )eiαi j (m−l)(−1)l , n � 1,

(18)

ψ I
j is an n0(2l0 + 1) column vector representing incident

partial-wave functions written as

ψ I
j (n, l) =

{
Z0(z)Jl(k0r j )eilθ j , n = 0,

Zn(z)Il(knr j )eilθ j , n � 1.
(19)

The diffraction potential of the exterior region in the vicin-
ity of cylinder i , which is generated from radiation waves
emanating from other cylinders, is

ϕ
(i)
D1−E =

∞∑
m=−∞

[
A(i)
R0m Z0(z)Hm(k0ri )+

∞∑
n=1

A(i)
Rnm Zn(z)Km(knri )

]
eimθi , (20)

and its matrix form is

ϕ
(i)
D1−E = AT

Riψ
D−E
i = AT

RiT i jψ
I
j , (21)

where ARi is an unknown column vector of n0(2m0 + 1)
elements, and each element is A(i)

Rnm , representing the ampli-
tudes of the partial diffraction waves in the exterior region
caused by cylinder oscillations.

The total incident potential in the vicinity of cylinder j is
the sum of the radiation potentials caused by the independent
oscillation of other N−1 cylinders and the diffraction poten-
tials due to the hydrodynamic interactions between cylinders,
as follows

ϕI
j =

N∑
i=1,i �= j

ϕ
(i)
Rs−E

∣∣∣∣
j

+
N∑

i=1,i �= j

ϕ
(i)
D1−E

∣∣∣∣
j

=
N∑

i=1,i �= j

5∑
s=1

(
−iω0ζ

(i)
s RT

is

)
T ijψ

I
j +

N∑
i=1,i �= j

AT
RiT ijψ

I
j

=
N∑

i=1,i �= j

[
5∑

s=1

(
−iω0ζ

(i)
s RT

is

)
+ AT

Ri

]
T ijψ

I
j

=
N∑

i=1,i �= j

∞∑
m=−∞

{ ∞∑
l=−∞

[
5∑

s=1

(
−iω0ζ

(i)
s R(i)

0ls

)
+A(i)

R0l

]
×

Hm−l(k0Li j )e
iαi j (m−l) · Z0(z)Jl(k0r j )e

ilθ j +
∞∑
n=1

∞∑
l=−∞

[
5∑

s=1

(
−iω0ζ

(i)
s R(i)

nls

)
+A(i)

Rnl

]
×

Km−l(knLi j )e
iαi j (m−l)(−1)l · Zn(z)Il(knr j )e

ilθ j

}
.

(22)

For cylinder j , the diffraction potential ϕ
( j)
D1−E (Eq. (21))

and the total incident potentialϕI
j (Eq. (22)) can be connected

by the diffraction transfer matrix BE
j in the exterior region as

AR j = BE
j

N∑
i=1,i �= j

TT
i j

[
5∑

s=1

(−iω0ζ
(i)
s Ri j ) + ARi

]
,

j = 1, 2, . . ., N , (23)

where BE
j is obtained by solving the diffraction problem of

a single truncated circular cylinder with progressive waves
and evanescent cylindrical waves. The details of AR j , BE

j ,
T i j , Ris are given in the appendix.

Given the prescribed amplitude ζ
(i)
s and the known BE

j
and Ris values, the unknown vector AR j (n,m) can be solved
from Eq. (23).

123



778 X. Zeng et al.

Thus, the total exterior potential in the vicinity of cylin-
der j as each cylinder oscillates in different modes (s =
1, 2, 3, 4, 5) is obtained as

ϕ( j)
RD−E

=
[

5∑
s=1

(
−iω0ζ

( j)
s RT

js

)
+ AT

R j

]
ψD−E

j +

N∑
i=1,i �= j

[
5∑

s=1

(
−iω0ζ

(i)
s RT

is

)
+ AT

Ri

]
T i jψ

I
j .

(24)

The total core potential of cylinder j is

ϕ( j)
RD−C

=
5∑

s=1

[
−iω0ζ

( j)
s · ϕC

Rs
(r j , θ j , z)

]
+

⎧⎨
⎩

N∑
i=1,i �= j

[
5∑

s=1

(
−iω0ζ

(i)
s RT

is

)
+ AT

Ri

]
T i j

⎫⎬
⎭×

(BC
j )

TψD−C
j , (25)

where ϕC
Rs

(r, θ, z) is the core potential of a single cylinder
with unit-velocity oscillations, which can be expressed as
follows

ϕC
Rs

(r j , θ j , z)

=
∞∑

m=−∞

⎧⎨
⎩
Cs
0m

2

(r j
a

)|m| + Λsλms+

∞∑
p=1

Cs
pm

Im
(
pπ r j
d−h

)

Im
(
pπ a
d−h

) cos

[
pπ (z + d)

d − h

]⎫⎬
⎭ · eimθ j

Λs =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, s = 1, 2,

1
2(d−h)

[
(z + d)2 − r2j

2

]
, s = 3,

r j
2(d−h)

[
(z + d)2 − r2j

4

]
, s = 4,

− r j
2(d−h)

[
(z + d)2 − r2j

4

]
, s = 5.

(26)

C0m and Cnm in Eq. (26) are obtained from Eq. (A1) in
the appendix. ψD−C

j in Eq. (25) is the column vector of the
partial-wave functions in the core region

ψD−C
j (p,m) =

{
r |m|
j eimθ j , p = 0,

Im(
pπ r j
d−h )eimθ j , p � 1.

(27)

BC
j in Eq. (25) is the diffraction transfer matrix for cylinder

j in its core region, representing the amplitudes of the partial

diffraction waves caused by unit-amplitude partial incident
waves, which can also be found in the appendix.

Therefore, we obtain the velocity potential adjacent to
cylinder j as each cylinder simultaneously oscillates with
independent amplitude ζ

(i)
s (s = 1, 2, 3, 4, 5). In Eq. (24),

ϕ
( j)
RD−E is the velocity potential for the exterior region in the

vicinity of cylinder j . In Eq. (25), ϕ
( j)
RD−C is the velocity

potential for the core region of cylinder j .

3 Hydrodynamic forces and moments

After ϕ( j)
RD−E

and ϕ( j)
RD−C

are obtained, the first-order pressure
on the surface of cylinder j can be given as

p( j)
RD

= Re

{
−ρ

∂Φ( j)
RD

∂t

∣∣∣∣r j=a j

}
. (28)

Then, we can obtain the horizontal hydrodynamic forces
F ( j)
kRD(k = 1, k = 2) on cylinder j as each cylinder oscillates

in different modes

F ( j)
kRD

= −ρ

∫∫

Sb

[
−iω0ϕ

( j)
RD−E

]
· n( j)

k dS, K = 1, 2. (29)

The vertical hydrodynamic force F ( j)
kRD(k = 3) on cylinder

j is

F ( j)
kRD = −ρ

∫∫

Sbh

[
−iω0ϕ

( j)
RD−C

]
· n( j)

k dS, K = 3. (30)

The hydrodynamicmomentM ( j)
kRD about the centroid (z =

z̄) of cylinder j in the rotational direction is

M ( j)
kRD =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ
[∫∫

Sb

(
−iω0ϕ

( j)
RD−E

)
(z − z̄) n( j)

2 dS−
∫∫

Sbh

(
−iω0ϕ

( j)
RD−C

)
yn( j)

3 dS
]
, k = 4,

−ρ
[∫∫

Sb

(
−iω0ϕ

( j)
RD−E

)
(z − z̄) n( j)

1 dS−
∫∫

Sbh

(
−iω0ϕ

( j)
RD−C

)
xn( j)

3 dS
]
, k = 5,

(31)

where Sb is the side surface of a cylinder, with unit
normal vector written as n( j)

k = (n( j)
1 , n( j)

2 , n( j)
3 ) =

(− cos θ j ,− sin θ j , 0); Sbh is the bottom surface, with unit

normal vector n( j)
k = (n( j)

1 , n( j)
2 , n( j)

3 ) = (0, 0, 1).

4 Comparisons and verifications

Based on the method developed in the preceding sections,
we wrote a computer program and then verified the program
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Fig. 5 Comparisons of hydrodynamic coefficients in pitch mode between present study and that of Ali and Khalil [26]. a Added mass. bDamping
coefficients

prior to performing further calculations for the hydrodynamic
interactions between truncated circular cylinders in an array
with some oscillating cylinders.

Note that Siddorn and Eatock Taylor [15] provided an
example of the hydrodynamic interactions of an array of
cylinders caused by one cylinder oscillating in translational
mode with a prescribed amplitude. We then compared the
results of our study with those of Siddorn and Eatock Tay-
lor (Fig. 14 in Ref. [15]), as shown in Fig. 4a and b, in
which the circular and square points denote the results of Sid-
dorn and Eatock Taylor [15], and the solid and dashed-dotted
lines denote the results of our study. Using the nomenclature
adopted by Siddorn and Eatock Taylor [15], i– j designates
interactions between cylinders i and j . For example, the label
1–4 heave–surge refers to the heave force on cylinder 1 due
to unit surge velocity of cylinder 4. We observe good agree-
ment, as the results of our study and Ref. [15] are almost
identical, with maximum differences of 0.2%.

We also compared the results from this study with those
from previous studies using the numerical method (3-D
source-sink method) from Ali and Khalil [26]. For the cases
shown in Fig. 5a and b, the square and triangular points

denote the results of Ali and Khalil [26] and the solid lines
denote the results of this study. Comparisons of the results
of this study with those of Ali and Khalil (Fig. 14 in Ref.
[26]) are shown in Fig. 5a and b, respectively. For the cases
shown in Fig. 5a and b, there are three cylinders, and M55

21
refers to the pitch moment on cylinder 2 due to the unit pitch
velocity of cylinder 1. We can see that the variation trends
of the present and reference studies are identical, with the
majority of differences in the results ranging from 0.2 % to
9.9%. The numerical 3-D source-sink method was adopted
in Ref. [26] and the accuracy of their results is dependent on
many factors (such as the mesh discretization). The results
of our study agree well with those of Ref. [26].

5 Investigations of truncation number using
orthogonal test method

For an array of truncated cylinders, there are many factors
that can affect convergence behavior, such as column num-
ber, column spacing, oscillation mode, water depth, draught,
and wave number, and the appropriate truncated number
(corresponding to convergent results) for different factor
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combinations also differs. It is very difficult to obtain explicit
mathematical expressions suitable for an analysis of con-
vergence. The trial-and-error examination of convergence
for cases with different factor combinations would involve
prohibitive costs. Therefore, we introduce the orthogonal
test method in this study, which investigates (with a mini-
mum number of tests) the relationships of influence between
different influential factors and convergence behaviors, and
identifies the primary and secondary factors. In this section,
we present concrete examples for an array consisting of four
cylinders placed at the vertices of a square.

For this study, we use the mixed-level orthogonal array
L50 (510 × 101), where L denotes a Latin square, 50 is the
number of level combinations, 510 indicates that there are ten
factors and five levels per factor, and 101 indicates that there
is one factor that has ten levels.

After carrying out the tests according to the orthogonal
array, we analyzed the data using a direct analytical method
known as range analysis. The range (generally denoted by
R) is the maximum average numerical difference of each
factor at each level. Because the factors have different levels,
a conversion coefficient is needed (generally denoted by d).
Then the formula of the revised range (denoted by R′

A) is
R′
A = √

rA×d×RA, where rA is the frequency of occurrence
of factor A in one column according to each level. Thus the
primary and secondary factors can be analyzed by comparing
the sizes of R′

A. Table 1 shows the conversion coefficient d
for different levels.

The influence of different factors (oscillation mode, water
depth, draught, column spacing, and wave number) and
their combinations on convergencemust be comprehensively
investigated. In the array, the wave number has ten levels and
other factors have five, respectively. Table 2 shows the fac-
tors, which are dimensionless, as well as their levels.

Once the factors and their levels in the corresponding posi-
tion are filled in the orthogonal array, then the calculation is
carried out according to the orthogonal array (here, we select

Table 1 Conversion coefficients

Levels 2 3 4 5 6 7 8 9 10

d 0.71 0.52 0.45 0.40 0.37 0.35 0.34 0.32 0.31

Table 2 Factors and their levels

aii d/a h/d L/a k0a

a11 (surge) 5 0.1 5 1.0–1.9 (step 0.1)

a22 (sway) 10 0.3 10

a33 (heave) 15 0.5 12

a44 (roll) 20 0.6 15

a55 (pitch) 30 0.8 20

columns 1, 2, 4, 7, and 11 in the orthogonal array). We note
that to investigate the convergence of the results, we com-
pare the results solved from smaller truncation items (m = 6,
n = 25, p = 25) with those from large enough truncation
items (m = 6, n = 60, p = 60). Before introducing the
orthogonal test method to determine the appropriate trun-
cated number, we performed many calculations by trial and
error, and the results show that there is almost no difference if
the value ofm is greater than 6. The maximum error between
m = 6 andm = 7 is about 0.0002% in the region of interest,
so 6 is a sufficient value for m. The orthogonal array and
calculation results are listed in Table 3. With the same trun-
cation items, cases with large percentage errors require more

Table 3 Orthogonal array and calculation results

Test
number

k0a aii L/a d/a h/d Percentage
error

N1 1 1 5 5 0.1 0.77382

N2 1.7 1 10 15 0.8 0.13464

N3 1.1 1 12 30 0.6 0.22591

N4 1.8 1 15 15 0.5 0.21264

N5 1.9 1 5 20 0.3 0.51399

N6 1.2 1 20 10 0.8 0.11689

N7 1.3 1 10 10 0.6 0.16055

N8 1.5 1 12 5 0.3 0.28941

N9 1.4 1 15 30 0.1 1.96127

N10 1.6 1 20 20 0.5 0.2317

N11 1.6 2 5 30 0.6 0.24781

N12 1.4 2 20 5 0.3 0.25896

N13 1 2 10 10 0.3 0.31186

N14 1.7 2 12 20 0.1 2.09372

N15 1.1 2 15 5 0.8 0.10185

N16 1.8 2 20 20 0.6 0.19893

N17 1.2 2 5 15 0.1 0.93455

N18 1.9 2 10 30 0.5 0.30104

N19 1.3 2 12 15 0.8 0.13134

N20 1.5 2 15 10 0.5 0.19691

N21 1.3 3 15 20 0.1 0.87799

N22 1.5 3 20 15 0.6 2.0439

N23 1.4 3 5 10 0.5 1.09353

N24 1.6 3 10 5 0.8 0.69864

N25 1 3 12 15 0.5 1.58281

N26 1.7 3 15 30 0.3 0.33193

N27 1.8 3 5 30 0.8 5.13177

N28 1.1 3 20 10 0.1 0.3033

N29 1.2 3 10 20 0.3 0.64151

N30 1.9 3 12 5 0.6 0.61366

N31 1.2 4 12 30 0.5 0.73702

N32 1.9 4 15 10 0.8 0.34031
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Table 3 continued

Test
number

k0a aii L/a d/a h/d Percentage
error

N33 1.5 4 5 20 0.8 0.3917

N34 1.3 4 20 30 0.3 1.30392

N35 1.4 4 10 15 0.6 0.47721

N36 1.6 4 12 10 0.1 4.06503

N37 1 4 15 20 0.6 0.50995

N38 1.7 4 20 5 0.5 0.6758

N39 1.1 4 5 15 0.3 1.10808

N40 1.8 4 10 5 0.1 1.26567

N41 1.1 5 10 20 0.5 0.63162

N42 1.8 5 12 10 0.3 1.15633

N43 1.2 5 15 5 0.6 0.52652

N44 1.9 5 20 15 0.1 5.1458

N45 1.3 5 5 5 0.5 0.70821

N46 1.5 5 10 30 0.1 4.60682

N47 1.4 5 12 20 0.8 0.39247

N48 1.6 5 15 15 0.3 1.11562

N49 1.7 5 5 10 0.6 0.45706

N50 1 5 20 30 0.8 0.45113
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a
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Fig. 6 Index fluctuation when k0a changes

truncation items to achieve the same convergence accuracy,
which means a slower convergence rate.

We drew the following diagrams after processing the data
in Table 3, since it is easier to observe from a diagram the
index fluctuation when each factor’s level changes.

Figures 6–10 illustrate the mean error of each factor over
the range of corresponding levels, respectively. Taking Fig. 6
as an example, it was drawn by calculating the mean value of
the results (percentage error) at each level in the k0a column
of Table 3. The above figures show that the convergence rate
of a case with smaller wave numbers is significantly faster
than that with larger wave numbers; the convergence rate of
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Fig. 7 Index fluctuation when aii changes
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Fig. 9 Index fluctuation when d/a changes

123



782 X. Zeng et al.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0
I h/

d
/1

0

h/d

Fig. 10 Index fluctuation when h/d changes

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

h/dd/aL/aaii

Factors

R'

R'

k0a

Fig. 11 Primary and secondary factors

the case in surge or sway mode is faster than those in heave
and rotational modes; the convergence rate of a case with a
column spacing of 15a is much faster than cases with other
column spacings in the defined range; the convergence rate
increases significantly by increasing the draught-to-water-
depth ratio.

The range R of each factor can be obtained by processing
the data in Figs. 6–10, which helps to further analyze the
primary and secondary factors. Since the wave-number level
differs from that of the others, we calculated the revised range
R′ to compare each factor’s effect on the index.

Figure 11 indicates that both the oscillation mode and the
ratio of the draught to water depth have greater influence on
the convergence rate than wave number and column spacing
do.

Next, we designed a test case in which four cylinders are
located at the vertexes of a square, with column spacing 5a,

and water depth 20a, to verify the rule given above. First, we
investigated the surge and pitch modes for a ratio of draught
to water depth of 0.1, and then for the surge mode for ratios
of 0.1 and 0.6.

We can observe fromFig. 12a–c that the oscillationmodes
and the draught-to-water-depth ratio have a remarkable influ-
ence on the convergence rate; the convergence rate of the
surge mode is faster than the pitch mode; the convergence
rates of cases in which the draught-to-water-depth ratio is
0.6 are faster than those with the ratio 0.1.

Thus far, there is no effective way to properly estimate
the truncated indices apart from trial and error. The above
rule simplifies the investigation of convergence in the cases
discussed below. Based on the conclusions drawn in this sec-
tion, cases with rotational modes or smaller ratios of draught
to water depth should be given priority when investigating
truncated features. If the value of some truncated items in
the above cases satisfies the precision requirement, then the
same value will satisfy cases with higher convergence rates,
such as those with translational modes or larger ratios of the
draught to water depth. As such, there is no need to perform
trials for every case with different parameter combinations,
which improves efficiency and saves a lot of time.

6 Results for several cases and discussion

6.1 Hydrodynamic coefficients: the effects of evanescent
modes

As mentioned above, there are some solutions available for
arrays of circular cylinders that use large-spacing approx-
imation, neglecting the evanescent modes in the velocity
potential of emanating waves. In this study, the solutions
include evanescent modes. Therefore, the effects of evanes-
cent modes on the hydrodynamic interactions can be evalu-
ated. In this subsection, we use two different algorithms to
calculate the hydrodynamic forces of an array of cylinders:
one includes evanescent modes and the other does not. Then
we demonstrate the effects of evanescent modes by compar-
ing the two sets of results.

6.1.1 Two cylinders

First, we recalculated the hydrodynamic coefficients for two
cylinders (case 1 in Williams and Abul-Azm [11], where
cylinder 1 oscillates and cylinder 2 is fixed). Then, we
compared the two sets of results (including and without
evanescent modes) with that using a modified plane-wave
technique based on a large-spacing approximation (Williams
and Abul-Azm [11]), as shown in Figs. 13 and 14.

In Figs. 13a, b and 14a, b, the triangular points denote
the results of Williams and Abul-Azm [11], the solid lines
denote the results of this study that include evanescentmodes,
and the dashed lines denote the results of this study without
evanescent modes. aksi j /b

ks
i j refers to the real/imaginary part
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Fig. 13 Comparisons of hydrodynamic coefficients on cylinder 1 between the present study (including andwithout evanescentmodes) andWilliams
and Abul-Azm [11], L = 3a. a Added mass. b Damping coefficients

of the hydrodynamic force in the k-direction on cylinder i
due to oscillation in the s-mode of cylinder j .

We can see that the results without evanescent modes
are in good agreement with those of Williams and Abul-
Azm [11],which are based on a large-spacing approximation.
For the damping coefficient, the two sets of results (includ-
ing and without evanescent modes) in this study nearly
coincide with each other. However, there are evident differ-
ences in the solutions of added mass for results including
or without evanescent modes, especially for added mass
on cylinder 2, which reveals the effects of evanescent
modes.

6.1.2 Array consisting of five circular cylinders: four in a
straight line, the other on a perpendicular bisector of
the line

Next, we investigated a cylinder array consisting of five
truncated circular cylinders with a special geometry configu-
ration, as shown in Fig. 15. The configuration of the cylinder
array is symmetric about the x-axis. The shaded and hol-
low circles in Fig. 15 denote oscillating and fixed cylinders,
respectively.

In Fig. 15, we see that cylinder 1 oscillates in surge, heave
or pitch mode, and the others remain still. We calculated
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the hydrodynamic coefficients of cylinders 1 and 3, includ-
ing and without evanescent modes, with a water depth d =
20a, draught h = 10a, and column spacings L = 2.4a, 3a,
5a. The results are shown in Figs. 16–21, where “cylinder
1/3-x/z/pitch-direction (cylinder 1 surge/heave/pitch and 2,
3, 4, 5 fixed)” represents the hydrodynamic coefficients of
cylinder 1/3 in the x/z/pitch-direction as cylinder 1 oscil-

lates in surge/heave/pitch mode while other cylinders remain
still.

In Figs. 16–21, the solid and hollow symbols, respec-
tively, represent the two sets of results (including andwithout
evanescent modes) for the hydrodynamic coefficients of
cylinder 1 or 3 for the configurations shown in Fig. 15
with column spacings L = 2.4a, 3a, and 5a. Figures 16a, b
and 17a, b, respectively, show the added mass and damping
coefficients of cylinders 1 and 3 in the x-direction as cylin-
der 1 oscillates in surge mode. Figures 18a, b and 19a, b,
respectively, show the added mass and damping coefficients
of cylinders 1 and 3 in the z-direction as cylinder 1 oscil-
lates in heave mode. Figures 20a, b and 21a, b, respectively,
show the added mass and damping coefficients of cylinders
1 and 3 in the pitch-direction as cylinder 1 oscillates in pitch
mode.

We can see from Figs. 16–21 that there are evident
differences between the two sets of solutions for added
mass (including or without evanescent modes), especially
for cylinder 3. The differences increase with a decrease in
column spacing. This reveals the effects of the evanescent
modes. When the column spacing is L = 2.4a, when the
cylinder is oscillating in surge mode, the maximum differ-
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Fig. 19 Hydrodynamic coefficients of cylinder 3−z-direction (cylinder 1 heave and 2, 3, 4, 5 fixed). a Added mass. b Damping coefficients

ence between the two sets of solutions for the added mass for
cylinder 1 is 23%, and themaximumdifference for cylinder 3
is 147%. For pitchmode (with the same column spacing), the
differences are even greater than those of the surge or heave
mode. It appears that the effects of the evanescent modes
are more pronounced for cases in which the cylinder oscil-
lates in rotational mode than in translational mode; and these

effects are more significant for a fixed cylinder. When the
cylinders are located close together, no matter which oscil-
lation mode is considered, the effect of evanescent modes on
the added mass is significant and should not be neglected.
However, even if the cylinders are located close together,
there is little effect by the evanescent modes on the damping
coefficients.
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Fig. 21 Hydrodynamic coefficients of cylinder 3-pitch-direction (cylinder 1 pitch and 2, 3, 4, 5 fixed). a Added mass. b Damping coefficients

6.2 Array consisting of six circular cylinders: five
arranged at the vertices of a regular pentagon
inscribed in a circle and the sixth at the center of the
circle

Another geometric configuration investigated in this paper is
an array of six truncated circular cylinders, five of which are
arranged at the vertices of a regular pentagon inscribed in a
circle and the sixth at the center of the circle, as shown in
Fig. 22, with d = 20a, h = 10a, and L= 5a.

For this situation, cylinder 1 oscillates in surge mode,
cylinders 2 and 5 in roll and pitch modes, cylinders 3 and 4 in
heavemode, and cylinder 6 remains still. Cylinder 2 oscillates
in phase (in antiphase) with cylinder 5 in the pitch (roll)-
direction. The prescribed amplitudes of the oscillation are

ζ
(1)
1 = 1, ζ

(2)
4 = 1

h
, ζ

(2)
5 = 1

h
, ζ

(3)
3 = 1, ζ

(4)
3 = 1,

ζ
(5)
4 = −1

h
, ζ

(5)
5 = 1

h
.

For ζ
( j)
s , j represents the cylinder number and s the oscil-

lation mode, with j = 1, 2, 3, 4, 5, and s = 1, 2, 3, 4, 5.

5

4

3

2

1

x

y

6

L L

L
L

L

Fig. 22 Geometric configuration of six cylinders

The hydrodynamic pressure distributions on each cylin-
der at different depths are shown in Fig. 23a–f, where A
represents wave amplitude. We can see that the pressure dis-
tributions of cylinder 2 (3) and those of cylinder 5 (4) are
symmetric with respect to the x-axis because of the sym-
metry of the geometric configuration and oscillation modes.
For the same reason of symmetry, the curves of the pressure
distributions on cylinder 1 (6) are self-symmetric about the
x-axis.
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Fig. 23 Pressure distributions on each cylinder for oscillation situation in subsection 6.2. a Cylinder 1. b Cylinder 2. c Cylinder 3. d Cylinder 4.
e Cylinder 5. f Cylinder 6

7 Conclusions

In this study, we investigated the hydrodynamic interactions
of arrays of truncated circular cylinders with relativemotions
(“C2 arrays”) in which each cylinder can oscillate indepen-
dently in any rigid oscillation mode (including translational
and rotational modes, such as surge, sway, heave, pitch, roll,
and their combinations) with an arbitrarily prescribed ampli-

tude, including evanescent modes. In addition, we used the
orthogonal test method to investigate the effects of several
factors influencing convergence in different combinations,
and assessed the significances of these different factors. The
results illustrate the effects of evanescent modes on hydro-
dynamic coefficients. Our conclusions are summarized as
follows
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(1) The calculation results reveal that in the hydrodynamic
features of an array of cylinders, as each cylinder oscil-
lates in various modes, there are significant differences
in values and variation rules. It appears that the effects
of evanescent modes are more pronounced for cases in
which the cylinder oscillates in rotational mode than
those that oscillate in translational mode; such effects
are more pronounced for the fixed cylinder in the array.
When the cylinders are located in close proximity, no
matter which oscillation mode is considered, the effect
of the evanescent modes on the addedmass is significant
and should not be neglected. However, even if the cylin-
ders are located in close proximity, there is little effect
of the evanescent modes on the damping coefficients.

(2) We employed the orthogonal test method in this study,
which can dramatically reduce the number of required
tests, and we obtain the relationships between dif-
ferent influential factors and convergence behaviors
for different factor combinations. The main results
can be summarized as follows: the oscillation mode
and draught-to-water depth ratio have more significant
effects on the convergence rate than wave number and
column spacing do; the convergence rates of cases in
surge or sway mode are faster than those in heave and
rotational modes; the convergence rate increases with
a rise in the draught-to-water-depth ratio. The above
results canplay an important role in improving efficiency
in obtaining convergent results when analyzing arrays of
circular cylinders in various arrangements and oscilla-
tion modes.
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Appendix

The unknown radiation coefficientsCs
pm, Ds

nm can be solved
from the equation set

Cs
pm +

∞∑
n=0

Fm
pnD

s
nm = Rpm

s , (A1a)

Ds
nm −

∞∑
p=0

Gm
npC

s
pm = Snms . (A1b)

The expressions of the known coefficients in Eq. (A1a, A1b)
are

Fm
p0 = − 2

d − h

∫ −h

−d

Hm (k0a)

N 1/2
0 H′

m (k0a)
cosh[k0 (z + d)]

cos

[
pπ (z + d)

d − h

]
dz

= −2Hm (k0a) k0(d − h) (−1)p sinh[k0(d − h)]
H′
m (k0a) N 1/2

0

[
k20(d − h)2 + (pπ)2

] , (A2a)

Fm
pn = − 2

d − h

∫ −h

−d

Km (kna)

N 1/2
n K′

m (kna)
cos[kn (z + d)]

cos

[
pπ (z + d)

d − h

]
dz

= −2Km (kna) kn(d − h) (−1)p sin[kn(d − h)]
K′
m (kna) N 1/2

n
[
k2n(d − h)2 − (pπ)2

] , (A2b)

G(m)
00 = 1

k0d

∫ −h

−d

|m|
2a

Z0(z)dz

= m · sinh k0(d − h)

√
2 · a · d · k20

[
1 + sinh(2k0d)

2k0d

]1/2 , n = 0, p = 0,

(A3a)

G(m)
n0 = 1

knd

∫ −h

−d

|m|
2a

Zn(z)dz

= m · sin[kn(d − h)]
√
2 · a · d · k2n

[
1 + sin(2knd)

2knd

]1/2 , n � 1, p = 0,

(A3b)

G(m)
0p = 1

k0d

∫ −h

−d

pπ

d − h

I′m
(

pπ a
d−h

)

Im
(

pπ a
d−h

) cos

[
pπ (z + d)

d − h

]
Z0(z)dz

=
I′m
(

pπ a
d−h

)√
2pπ(d − h)(−1)p · sinh[k0(d − h)]

Im
(

pπ a
d−h

)
· d ·

[
1 + sinh(2k0d)

2k0d

]1/2 · [k20(d − h)2 + p2π2]
,

n = 0, p � 1, (A3c)

G(m)
np = 1

knd

∫ −h

−d

pπ

d − h

I′m
(

pπ a
d−h

)

Im
(

pπ a
d−h

) cos

[
pπ (z + d)

d − h

]
Zn(z)dz

=
I′m
(

pπ a
d−h

)√
2pπ(d − h)(−1)p · sin[kn(d − h)]

Im
(

pπ a
d−h

)
· d ·

[
1 + sin(2knd)

2knd

]1/2 · [k2n(d − h)2 − p2π2]
,

n � 1, p � 1, (A3d)

Rpm
s = − 2

d − h

∫ −h

−d
λmsΛs (a, z) cos

[
pπ (z + d)

d − h

]
dz, (A4a)

Snms = λms

kqd

∫ −h

−d

∂Λs (a, z)

∂r
Zn(z)dz + λms

knd

∫ 0

−h
fs(z)Zn(z)dz.

(A4b)

The diffraction transfer matrices of the truncated single
cylinders BE

j and BC
j are obtained following the procedure
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given in Kagemoto and Yue [12], the elements of BE
j (or

BC
j ) are the amplitude of the q-th (or p-th) partial wave of the

diffraction potential due to a single unit-amplitude incidence
of mode n on cylinder j , which are listed below

BE
j (0, 0,m) = − J′m(k0a)

H′
m(k0a)

+ Dm
0 cosh(k0d)

H′
m(k0a)N 1/2

0 eim(π/2−β)
,

n = 0, q = 0, (A5a)

BE
j (q, 0,m) = Dm

q

K′
m(kqa)N 1/2

q eim(π/2−β)
,

n = 0, q � 1, (A5b)

BE
j (0, n,m) = D[n]m0 cosh(k0d)

H′
m(k0a)N 1/2

0

, n � 1, q = 0 (A5c)

BE
j (q, n,m) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

D[n]mq
K′
l (kqa)N1/2

q
,

n � 1, q � 1, q �= n,

− I′m (kqa)

K′
m (kqa)

+ D[n]mq
K′
m (kqa)N1/2

q

n � 1, q � 1, q = n,

(A5d)

BC
j (0, 0,m) = Cm

0

2a|m|im
, n = 0, p = 0, (A6a)

BC
j (p, 0,m) = Cm

p

Im [pπa/(d − h)] im
· cos

[
pπ(z+d)

d−h

]
,

n = 0, p � 1, (A6b)

BC
j (0, n,m) = C[n]m0

2a|m| , n � 1, p = 0, (A6c)

BC
j (p, n,m) = C[n]mp

Im [pπ a/(d − h)]
· cos

[
pπ(z+d)

d−h

]
,

n � 1, p � 1. (A6d)

Coefficients such asC[n]mp , D[n]mq are determined by lin-
ear algebraic equations having the same form as Eq. (A1a,
A7b), which can be found in Ref. [27] and are not detailed
here.

The details of AR j , BE
j , T i j , Ris are given in Eq. (A7a-

d). For computation, the infinite terms are truncated to
m0, l0, q0, n0 terms, where m0, l0, q0, n0 are the upper limit
values of the truncation numbers for m, l, q, n. For clarity,
parentheses are inserted in the subscript of element of col-
umn vector shown in Eq. (A7a, A7b), which are omitted in

Eqs. (20) and (13) in the main body of the manuscript.
The element BE

j (λ, χ,m) in Eq. (A7c) can be obtained
using Eq. (A5), as follows

if λ = 0 and χ = 0, then BE
j (λ, χ,m)

= − J′m(k0a)

H′
m(k0a)

+ Dm
0 cosh(k0d)

H′
m(k0a)N 1/2

0 eim(π /2−β)
;

if λ = 0 and χ � 1, then BE
j (λ, χ,m)

= D[χ ]m0 cosh(k0d)

H′
m(k0a)N 1/2

0

;

if λ � 1 and χ = 0, then BE
j (λ, χ,m)

= Dm
λ

K′
m(kλa)N 1/2

λ eim(π /2−β)
;

if λ � 1, χ � 1, λ �= χ, then BE
j (λ, χ,m)

= D[λ]mχ
K′
l(kχa)N 1/2

χ

;

if λ � 1, χ � 1, λ = χ, then BE
j (λ, χ,m)

= − I′m(kχa)

K′
m(kχa)

+ D[λ]mq
K′
m(kχa)N 1/2

χ

.

The element Ti j (n,m, l) in Eq. (A7d) is as follows

if n = 0, then Ti j (n,m, l) = Hm−l(k0Li j )eiαi j (m−l) ;
if n�1, then Ti j (n,m, l)=Km−l(knLi j )eiαi j (m−l)(−1)l .

AT
R j =

[
A( j)
R(0,−m0)

A( j)
R(0,−m0+1)A

( j)
R(0,−m0+2) . . . A( j)

R(0,m0−2)

A( j)
R(0,m0−1)A

( j)
R(0,m0)

A( j)
R(1,−m0)

A( j)
R(1,−m0+1) · · ·

A( j)
R(1,m0−1)A

( j)
R(1,m0)

· · · A( j)
R(n0−1,−m0)

A( j)
R(n0−1,−m0+1) · · · A( j)

R(n0−1,m0−1)A
( j)
R(n0−1,m0)

]
, (A7a)

RT
is =

[
R(i)

(0,−m0,s)
R(i)

(0,−m0+1,s)R
(i)
(0,−m0+2,s) · · ·

R(i)
(0,m0−2,s)R

(i)
(0,m0−1,s)R

(i)
(0,m0,s)

R(i)
(1,−m0,s)

R(i)
(1,−m0+1,s) · · ·

R( j)
(1,m0−1,s)R

( j)
(1,m0,s)

· · · R(i)
(n0−1,−m0,s)

R(i)
(n0−1,−m0+1,s) · · ·

R(i)
(n0−1,m0−1,s)R

(i)
(n0−1,m0,s)

]
. (A7b)
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,
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. . .

. . .
. . .
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,
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0
)
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,
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⎞ ⎟ ⎟ ⎟ ⎟ ⎠

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦.
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