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a b s t r a c t

Sandwich panels with truss cores have been widely investigated due to their superior mechanical per-
formances. When being used in the thermal protection system of a high-speed aircraft, sandwich panels
are usually subjected to intense thermal loading and may fail due to various mechanisms. This paper
presents a theoretical and numerical analysis on the failure mechanisms and optimal design of metallic
sandwich panels with truss cores subjected to uniform thermal loading. Five failure modes are con-
sidered: global buckling, face sheet buckling, face sheet yielding, core member buckling and core
member yielding. Failure maps of sandwich panels with several truss core topologies are developed
based on these failure modes. Taking the five failure modes as constraint conditions, sandwich panels
with truss cores are optimally designed for the minimum weight at given thermal loadings. It is found
from the optimal analysis that sandwich panels with Kagome and X-type truss cores are more efficient
than those with tetrahedral and pyramidal truss cores. Sandwich panels with fully-clamped boundary
conditions have superior thermal loading resistance than those with simply-supported boundary con-
ditions.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Sandwich panels with truss cores (SPTCs) are a class of novel
structures that can be applied as both load bearing components
and other functionality, such as thermal management, energy
absorption and blast resistance [1–5]. A prominent characteristic
of SPTCs is that their macroscopic mechanical behavior can be
designed or tailored through the configuration, arrangement and
material of mesostructure, of the lattice truss. There have been a
variety of configurations of lattice truss materials, such as pyr-
amidal [6,7], tetrahedral [8–11], Kagome [12,13] and recently
proposed X-type [14–17]. Compared with closed or open foams,
which are bending-dominated configuration, the stretching-
dominated lattice truss material that have high degree of nodal
connectivity is much stiffer and stronger [18]. When being used as
thermal protection systems of high speed vehicles, sandwich pa-
nels typically experience a large temperature change. The high-
temperature degraded properties together with intense thermal
loading may lead to a failure of various mechanisms. Therefore, the
failure behavior of sandwich panels to thermal loading becomes a
driving design parameter before they can be applied into practice.
There have been some studies on the structural response of
SPTCs at room temperature. In some cases, SPTCs have been tested
in various shear and bending modes [8,9,19]. To study the in-plane
compressive behaviors, Cote et al. [7] carried out experimental and
theoretical analysis on the response of metallic sandwich columns
with pyramidal truss cores made from AISI 304 stainless steel.
Failure maps of the sandwich column are constructed based on
three failure mechanisms: Euler buckling, shear buckling and face
sheet wrinkling. For all-composite sandwich columns, face sheet
crushing will appear besides the three failure modes considered in
metallic sandwich columns [20]. Wicks and Hutchinson [21] car-
ried out theoretical analysis on the optimal design of sandwich
panels with either planar trusses or solid face sheets with a single
material subjected to prescribed combinations of bending and
transverse shear loading. Four failure modes are considered in
their analysis: face yielding, face buckling, core member yielding
and core member buckling. Based on these failure modes, Zok
et al. [22] obtained the failure mechanism map of sandwich beams
with pyramidal truss cores and compared with the three point
bending test. Then, Rathbun et al. [23] conducted an systematic
optimal analysis on sandwich beams with several core topologies,
including pyramidal and tetrahedral truss cores, square honey-
combs, and corrugated sheets. In their works, the optimal design is
obtained at the confluence of three failure mechanisms. However,
it should be noted that for a nonlinear system, the global optimal
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Fig. 1. Schematic of sandwich panels with truss cores.
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result is not necessarily in the intersection of constraint equations,
which have obvious nonlinear characteristics in nature. In this
case, the numerical programming of the optimization model is
imperative.

When structures are subjected to high temperature environ-
ments, one of the undesirable effect is the development of thermal
stresses, which is often happened at temperatures below those
that impair the material properties considerably [24]. Compressive
thermal stresses arise either from non-uniform temperature dis-
tributions or from supports which constrain the thermal expan-
sion even when heating is uniform. The behavior of global buck-
ling induced by the compressive thermal stresses is an important
failure mode for the slender or thin-walled structure, and has been
studied extensively for shells and general sandwich plates in the
theoretical analysis [25–30]. Rakow and Waas [31] also carried out
experimental analysis on the thermal buckling behavior of sand-
wich panels with foam cores. For SPTCs, Yuan et al. [32] obtained
the eigenvalue buckling and post buckling behavior of fully-
clamped (CCCC) and simply-supported (SSSS) SPTCs subjected to
uniform thermal loading. Later on, Yuan et al. [33] also performed
experimental study on the thermal buckling behavior of SPTCs,
and the full field buckling history of the panel under uniform high
temperature environments was obtained. It is found that, due to
defects during fabrication, the sandwich panel deformed in
asymmetric mode in high temperature environments. However, it
should be noted that due to the complexity of the structure, both
the face sheet and the core member of the SPTC may fail in various
modes, besides global buckling.

Within the authors' knowledge, there has been little theoretical
analysis reported on the failure behaviour of SPTCs subjected to
uniform thermal loading. In the present paper, five failure me-
chanisms are considered to obtain the high temperature failure
maps of SPTCs, they are global buckling (GB), face sheet buckling
(FB), face sheet yielding (FY), core member buckling (CB) and core
member yielding (CY). The objective of this paper is to construct
failure mechanism maps as well as to estimate the minimum
weight design of SPTCs at a given thermal loading with the com-
peting failure modes. The outline of the paper is as follows. Firstly,
analytical expressions for critical loads of five failure modes are
derived for the CCCC and SSSS SPTCs made from a single metallic
material. Based on these expressions, failure mechanism maps are
constructed with dimensionless geometrical parameters of SPTCs.
Finally, minimumweight designs are obtained for sandwich panels
with different truss core topologies by using the numerical opti-
mal program model based on Lingo. It is verified that for this
nonlinear problem, the confluence of constraint equations for
various failure modes is not the optimal design.

In the present paper, failure maps of SPTCs subjected to uni-
form thermal loading are developed by comparing the load ca-
pacity in these mechanisms. In addition, optimal designs of the
SPTC are obtained by using the failure modes of SPTCs as con-
straint conditions, and the dimensionless weight as objective
function. Therefore, analytical expressions of SPTCs under the five
failure modes should be deduced.
2. Failure modes of metallic SPTCs

Before proceeding, performance evaluation criteria for SPTCs
are needed. In an optimization process, one needs to ascertain the
minimumweight of SPTCs that can maintain structural integrity at
a given thermal loading. Therefore, two dimensionless parameters,
one is based on weight and the other based on load, are con-
sidered. The pertinent load index for strength-based designs can
be expressed as
∏ = Δ ( )a T 1t

where α and ΔT are the coefficient of thermal expansion of the
material of the SPTC and the temperature rise respectively. The
dimensionless weight per unit area of the sandwich panel is [21]

Ψ
ρ

=
( )

W
L 2

whereW is the structural weight per unit area and ρ is the density
of the solid material.

As illustrated in Fig. 1, consider a square SPTC of length L
subjected to uniform thermal loading. The sandwich panel is
composed of solid face sheets and truss cores, and the cross sec-
tion of core member is square. Both face sheets and truss cores are
made from the same metallic material. Truss core configurations of
SPTCs studied in the present paper, as Table 1 shows, are pyr-
amidal, tetrahedral, X-type and Kagome, respectively. In general,
the SPTC is characterized by five independent parameters: face
sheet thickness t, cores thickness hc, core member thickness tc, the
angle between the core member and the face sheet θ, and the
length of the square sandwich panel L. For the pyramidal, X-type,
tetrahedral and Kagome configuration, θ are 45°, 45°, 55.7° and
55.7° respectively. The core member length lc is correlated to core
thickness hc by

θ
= ( )l

h
sin 3c

c

2.1. Global buckling (GB)

For the SPTC which has a thin thickness, global buckling is the
main failure mode. Two kinds of boundary conditions are con-
sidered: SSSS and CCCC. By ignoring the flexural rigidity of the
core, and considering the shear stiffness of the sandwich panel is
only contributed by truss cores, equilibrium equations of the
sandwich panel with truss cores subjected to uniform thermal
loading can be expressed as [32]
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where u, v and w are displacements in x, y, and z directions, while
ϕx and ϕy are rotations of the normal in the xz and yz planes,



Table 1
Schematics of SPTCs with the four types of truss core configurations.
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Fig. 2. Boundary conditions of SSSS SPTCs when x¼a and y¼b.
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respectively. N is the in-plane compressive force. D is the flexural
stiffness of the SPTC, which can be computed as

μ
=

( + )

( − ) ( )
D

E h t t

2 1 5
c f fc

2

2

where Ec and μ are the elastic modulus and poisson's ratio of the
solid material. And the shear stiffness of the four configurations of
SPTCs illustrated in Table 1 is given by

θ
= =

( )−C C
E A

h
sin

6apyramid X type
c c

3

c

θ
= =

( )
C C

E A

h

sin
3 6b

tet Kagome
c c

c

3

where Ac is the cross-sectional area of the core member.

2.1.1. GB load for SSSS condition
As shown in Fig. 2, The SSSS condition is given by

ϕ= = = ( )x a w0, : 0 7ax

ϕ= = = ( )y b w0, : 0 7by

and the following virtual displacement modes are assumed

ϕ α β= ( )u x ycos sin 8ax k l0

ϕ β α= ( )v y xcos sin 8by l k0

α β= ( )w w x ysin sin 8ck l0

where u0, v0 and w0 are Fourier constant coefficients, αkand βl are
πk
a

and πl
b
respectively. Substituting Eqs. (8a–8c) into equilibrium

Eqs. (4a–4c), the critical buckling temperature of SPTCs can be
obtained
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2.1.2. GB load for CCCC condition
For SPTCs under CCCC conditions, the critical buckling tem-

perature of global buckling cannot be analytically solved as those
under SSSS conditions, since governing equations for the de-
formation mode are complicated due to complex boundary con-
ditions. Therefore, displacement solution functions were assumed
in the form of two sets of double Fourier series expansions, which
can be expressed as
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where Amn, Bmn and Cmn are Fourier constant coefficients, and αm

and βn are defined as πm
a

and πn
b

respectively. The characteristic

equations of the SPTC can be obtained by eliminating the un-
known variables [32].

To obtain the critical buckling temperature of the SPTC under
CCCC condition, a computer program with Fortran code is devel-
oped by calling the subroutine GVCRG of IMSL, which is used to
solve Eigen value problems.
2.2. Face sheet buckling (FB)

When the face sheet is relatively thin and the overall sandwich
panel is relatively thick, the face sheet will buckle under com-
pressive thermal stresses. As shown in Fig. 3, the face sheet is
assumed to buckle with the node lines illustrated in the figure. The
effect of rotation restraint of core members on the face sheet at the
point of attachment is neglected to obtain the critical buckling
temperature, and this will underestimate somewhat the buckling
load. According to geometric configurations of truss cores, the
critical load of FB mode can be obtained
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where the subscript denotes the type of truss core configuration.
2.3. Face sheet yielding (FY)

For SPTCs with thick face sheets, FY will be the main failure
mode. The temperature rise leading to the FY can be computed as



Fig. 3. Node lines of the FB for SPTCs. A “þ ” within node lines denotes an upward deflection and A “–” within node lines denotes an downward deflection. □ bottom face
sheet attachment point, ● top face sheet attachment point, ○ core members attachment point (a) pyramidal truss core, (b) X-type truss core, (c) tetrahedral truss cores, (d)
Kagome truss core.
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α
Δ =

ϵ
( )T 12

y

where εy is the yield strain of the sandwich panel.

2.4. Core member buckling (CB)

For the sandwich panel with SSSS and CCCC boundary condi-
tions subjected to uniform thermal loading, the deformation of the
core member along the out-of-plane direction of the panel is free,
nevertheless, the in-plane deformation is constrained. Therefore,
the deformation of the core member can be derived by the geo-
metric deformation relation. As shown in Fig. 4, the deformation of
the core member produced by the mechanical stress can be ex-
pressed as

α α θΔ = Δ − Δ ( )l Tl Th sin 13c c
To obtain of the critical load, truss joints are idealized as pin
joints offering no rotational resistance between the core member
and the face sheet. This assumption is widely used in the SPTC
analysis [21,22]. However, the assumption underestimates the
buckling resistance of the core member, and overestimates the
weight of SPTC. The critical buckling temperature of the core
member with different configurations can be expressed as
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2.5. Core member yielding (CY)

For sandwich panels with stubby core members, CY will be the
main failure mode instead of CB. According to the deformation of
the core member, the critical temperature rise that leads to CY is
given by

( )α θ
Δ =

ϵ

− ( )
T

1 sin 15

y

2

It can be found from the comparison of Eq. (12) and Eq. (15)
that the core member will never yield before the failure mode of
FY. Therefore, this failure mode needs not to be considered in
following sections.
Table 2
Parameters for constraint and objective functions in SSSS condition.

Configurations Pyramidal Tetrahedral X-type Kagome

Global buckling β 1 3 1 3
Face buckling ϕ 12 54/7 24/5 14/27
Cores buckling φ 24 24 6 6
Weight function η 2 2 3 /3 2 2 3 /3
3. Failure mechanism maps of SPTC under thermal loading

3.1. SSSS boundary condition

The preceding analysis on the failure behavior of SPTCs can be
employed to generate failure mechanism maps. It is assumed that,
in constructing such a map, the operative failure mode is one as-
sociated with the lowest critical temperature rise. When normal-
ized by the edge length of the sandwich panel, dimensionless
parameters can be expressed as

λ = ( )t L/ 16ac c
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The corresponding weight index from Eq. (2) is
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And the constraint based on the failure mode of SSSS SPTCs can
be expressed as
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Dimensionless values of β , ϕ, φ and η are governed by the topology
of truss cores, which are summarized in Table 2.
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To generate failure mechanism maps, the core member thick-
ness λc should be eliminated from constraint functions, making
the maps rendering in coordinates face sheet thickness λf and core
thickness Λc. When the weight index is fixed at 0.02, the core
member thickness can be written as

( )
λ

λ Λ θ

η θ
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−

( )

0.02 2 sin

tan 19
c

f c2
2

By sequentially equating pairs of constraint functions, domain
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Fig. 6. Failure mechanism maps of different co
boundaries are obtained. With each domain, the load bearing ca-
pacity is calculated by Eqs. (18a–18d). In addition, failure maps of
SSSS sandwich panel with pyramidal truss cores subjected to
uniform thermal loading are shown in Fig. 5 when the yield strain
εy is 0.001, 0.004 and 0.007 respectively. It should be noted that
the yield strain εy significantly influences the location of bound-
aries between failure modes. The area of FY located in the center
increases as the yield strain grows. Moreover, the increase of core
thickness Λc yields an improved resistance of global buckling, so
the failure mode turns to FB from GB when the sandwich panel
has small dimensionless face sheet thickness λf . When the face
sheet thickness is large, CB will be the active failure mode for
sandwich panel with higher core thickness.

Fig. 6 shows failure mechanism maps of SSSS sandwich panels
with different truss core configurations when the yield strain is
0.007. It can be found that the failure mode of FB is more likely
happened in sandwich panels with pyramidal and tetrahedral
truss cores than those with X-type and Kagome configurations.
This may due to additional connecting nodes between core
members, which decrease the possibility of FY failure. And like-
wise, thermal stresses in pyramidal and tetrahedral truss cores
more easily leads to CB failure, due to the longer core member (no
intermediate nodes in the core member).

3.2. CCCC boundary condition

For the CCCC sandwich panel, only critical temperature of GB is
different from those in SSSS conditions. As mentioned above, the
critical load of GB cannot be solved by analytical expressions.
Therefore, boundaries between the failure mode of GB and the
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other three failure modes described by Eqs. (18b–18d) are solved
by a numerical program in Fortran code.

Fig. 7 shows failure maps of CCCC sandwich panels with pyr-
amidal truss cores, when the yield strain εy is 0.001, 0.004 and
0.007. Fig. 8 shows failure mechanism maps of CCCC sandwich
panels with different truss core configurations when the yield
strain is 0.007. Under CCCC conditions, not only in-plane and out-
of-plane motions but also rotations at edges are restricted.
Therefore the stability of SPTCs under CCCC condition is
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Fig. 8. Failure mechanism maps of different co
significantly improved [32]. The critical temperature of GB for the
sandwich panel under CCCC condition is much higher than that
under SSSS condition. As a result, global buckling is not easily
happened in the sandwich panel with CCCC boundary condition.
4. Optimal design of SPTCs

4.1. Optimization methods

The analysis is extended to obtain the entire family of optimal
designs for SPTCs subjected to uniform thermal loading. The goal
is to find the minimum weight of SPTCs that can maintain struc-
tural integrity at a given thermal loading. However, it can be found
from Eq. (18c) that the failure mode of FY is irrelevant to the
geometrical configuration of SPTCs. It means when the tempera-
ture rise is lower than the critical temperature of FY, this con-
straint equation can be removed from the optimization model.

4.1.1. Sequence linear programming (SLP) method
It has been reported in some works that the optimal design of

sandwich panel can be obtained by solving the confluence of
various failure mechanisms [22,23,34]. This method may be ap-
propriate for a linear problem. However, governing equations of
different failure mechanisms (Eq. (18a–18d)) are nonlinear in
nature. The global optimal result may not necessarily in the in-
tersection of constraint equations for nonlinear programming
problems and the numerical optimization method is imperative.
Therefore, SLP method based on Lingo software is used in the
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present paper to obtain an optimal design of SPTCs.
SLP is one of the most approximation optimization algorithms.

By using Taylor expansions of the objective and constraint func-
tions, the optimization is obtained through solving a series of
approximate optimization problems. The general mathematic
model of structure optimization is given by

( ) ( )f xMin 20a

( ) ≤ = … ( )h x i Ms.t. 0, 1, , 20bi

where ( )f x and ( )h xi are objective functions and constraint func-
tions respectively, M and x are the number of constraint functions
and the design variable.

For the nonlinear optimization problem of Eq. (20), x0 is as-
sumed to be the initial estimated value. The objective function and
constraint functions are expanded by Taylor series at the point of
x0.

( ) ≈ ( ) + ∇ ( )( − ) = ( ) ( )f x f x f x x x f x 21aT0 0 0 0

( ) ≈ ( ) + ∇ ( )( − ) = ( ) ( )h x h x h x x x h x 21bi i
T

i i
0 0 0 0

Then, the linear optimization related to the nonlinear optimi-
zation problem of Eq. (20) is obtained

( ) ( )f xMin 22a0

( ) ≤ = … ( )h x i Ms.t. 0, 1, , 22bi
0

The optimal solution of the linear optimization problem x1 can
be obtained by solving Eq. (22). To obtained a better approximate
solution, the functions of nonlinear optimization problem are ex-
panded at the point of x1, and another linear optimization problem
is acquired. Finally, a series of approximate solutions xk can be
obtained by repeating the process above. The iteration is assumed
to be convergent when

ε‖ − ‖ ≤ ( )−x x 23k k 1

where ε is the tolerance of sufficient small.

4.1.2. Comparison of optimization methods
In order to compare different optimization methods, the con-

fluence of the three failure modes of SSSS SPTCs are also solved by
setting the three associated constraint equations Eqs. (18a–18b)
and Eq. (18d) equal to unity. Fig. 9 shows optimal normalized
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Fig. 9. Normalized weight per unit area for optimally designed SPTCs.
weights obtained by the two methods. It can be found that results
from SLP are obviously lower than those from the confluence of
the three failure modes, especially for the X-type and Kagome
configuration. Therefore, the confluence of various failure modes is
not the optimal design in the present case.

For CCCC SPTCs, the critical temperature of GB cannot be ana-
lytical solved. Therefore, the optimal design is obtained through
the interaction between the software of Lingo and the numerical
program in Fortran code. The model was created automatically by
calling the file of Fortran Dynamic Link library, which was used to
compute the critical temperature rise of CCCC SPTCs.

4.2. 2 Results and discussions

Fig. 10 shows optimal designs of SSSS and CCCC sandwich pa-
nels with different configurations of truss cores from the numer-
ical optimization model, when the yield strain is 0.007. As men-
tioned above, the resistance to GB of a CCCC SPTC is higher than
that in SSSS condition [32]. Besides, critical bucklling loads of
SPTCs under other four failure mechanisms are irrelevant to the
constraint of rotations at the boundaries. Therefore, the weight per
unit area of the CCCC sandwich panel is smaller. Due to the effect
of intermediate nodes in the core member, sandwich panels with
Kagome and X-type truss cores have higher strength to CB.
Therefore, the normalized weight of sandwich panels with Ka-
gome and X-type truss cores are dramatically lower than those
with tetrahedral and pyramidal truss cores. Some similar conclu-
sions also can be found on the behavior of SPTCs under com-
pressive and bending loadings [15,16,35]. In addition, the dis-
tribution of nodes between cores and the face sheet influences the
critical load of FB and then affect the optimal weight of the SPTC.
The performance of configurations in the order of decreased
minimum weight is: pyramidal, tetrahedral, X-type and Kagome.
Fig. 11 shows the normalized geometrical parameters for optimally
designed SPTCs with SSSS and CCCC conditions. It can be found
that, as shown in Fig. 11a, the variations of optimal normalized
face sheet thickness λf are nearly linear to the uniform thermal
loading Πt . And, λf of SSSS SPTCs is obviously larger than those in
CCCC condition. Similar conclusions can be obtained in the ana-
lysis of the core member thickness, as Fig. 11b shows. However the
normalized core thickness Λc, which has a nonlinear relationship
with the thermal loading Πt , is an exception. As the thermal
loading increases, the growth rate for the core thickness is
decreasing.

Moreover, the contribution of the truss core is independent of
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the face sheet, and it is given by

Ψ η
λ θ
Λ θ

= ⋅
( )

tan
sin 24cores

c

c

2 2

The result of optimal normalized core weight versus the ther-
mal loading is plotted in Fig. 12a. The weight of truss cores has a
nonlinear relationship with the thermal loading. In contrast to the
core thickness, the core weight grows more rapidly with the in-
crease of the thermal loading. Therefore, as Fig. 12b shows, the
truss core weight fraction increases when the thermal loading
grows. It means that the sandwich panel should have a higher
fraction of truss core weight relative to the total panel weight
when subjected to a more severe thermal loading.

Fig. 13a shows the ratio of normalized core member thickness
of the optimal design to that from the critical buckling tempera-
ture rise from Eqs. (14a–14d). It can be found that, to obtain the
optimal design of SPTCs subjected to uniform thermal loading, the
core member thickness should greater than the critical thickness.
However, as shown in Fig. 13b, it should be critical value for the
core thickness and the face sheet thickness.

Deterioration of mechanical properties of the metallic material,
in particular the yield stress and elastic modulus, is an obvious
effect of high temperature on a structure. The coefficient of ther-
mal expansion α is less affected by the temperature and will not be
considered. It can be found from Eqs. (18a–18d) that critical loads
are irrelevant to variations of mechanical properties with tem-
peratures, except for the failure mode of FY. When considering the
variation of mechanical properties, the constraint equation of FY
become

αΔ
ϵ ( + Δ )

≤
( )

T
T T

1
25y 0



0.000 0.002 0.004 0.006 0.008
0

2

4

6

8

10

12
CCCC-boundary

 pyramidal
 X-type
 tetrahedral
 Kagome

SSSS-boundary
 pyramidal
 X-type
 tetrahedral
 Kagome

K

T

0.000 0.002 0.004 0.006

1.4

1.2

1.0

0.8

0.6

2 2
c c,critical=K

2 2
,critical=f fK

T

K

2 2
,=c c criticalK

Fig. 13. Ratios of normalized geometric parameters for optimally designed SPTCs to
critical values. (a) core member thickness, (b) core thickness and face sheet
thickness.

W. Yuan et al. / International Journal of Mechanical Sciences 115-116 (2016) 56–6766
Where T0 is the room temperature. Taken AISI304 stainless steel as
an example, the yield strain versus temperatures can be written in
a polynomial function

ε = + + + + ( )P P T P T P T P T 26y 0 1 2
2

3
3

4
4

where P0, P1, P2, P3, and P4 are constant coefficients of the poly-
nomial function. The critical load of the FY can be obtained by
solving Eq. (25) and Eq. (26). Then, failure mechanism maps and
the optimal design of SPTC made of AISI304 stainless steel can be
obtained according to this critical load. This method is applicable
to SPTCs made of other metallic materials.
5. Conclusions

The response of SPTCs subjected to uniform thermal loading
has been studied analytically and numerically. Analytical formulae
are developed for the failure strength of the SPTC and five possible
failure modes for the four different configurations of truss cores
are identified. Failure mechanism maps for the SPTC made from a
single metallic material are developed when the dimensionless
weight index are fixed. Using these failure modes as constraint
conditions, sandwich panels with different configuration truss
cores are optimally designed by the numerical optimization model
based on Lingo. Due to the high strength to the GB, SPTCs with
CCCC boundary conditions are more efficient than those with SSSS
boundary conditions. The performance of sandwich panels with
Kagome and X-type truss cores are superior to the other two
configurations. In addition, sandwich panels should have a higher
fraction of truss cores when subjected to a more severely thermal
loading. The core member thickness should be larger than the
critical value to reduce the weight of the SPTC.
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