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Apreconditionedmethodwith characteristic boundary conditions for Navier–Stokes equations is implemented for

flowfield analysis of a high-lift configuration at lowMach number. A preconditioned Harten-Lax-van Leer-Einfeldt-

Wada scheme is adopted for the spatial discretization, and the dissipation term of which is rededuced to reduce the

overlarge numerical dissipation. Preconditioned characteristic boundary conditions for the far field are derived

based on theWeiss–Smith preconditioner and are demonstrated to bemore reliable and accurate when coupled with

the preconditionedmethod. ApreconditionedLower-Upper SymmetricGauss-Seidel implicit time-marchingmethod

ismodifiedaccording to thepreconditioned Jacobianmatrix.The applications of the currentmethodonboth two- and

three-dimensional high-lift configurations indicate that the use of the preconditioned spatial and time discrete

schemes and the derived preconditioned characteristic boundary conditions is capable of improving the robustness,

efficiency, andaccuracy of the computational-fluid-dynamics solver for low-Mach-numberaerodynamic simulations.

Nomenclature
~A = Jacobian matrix of preconditioned system
c = speed of sound
H = total enthalpy
M∞ = inflow Mach number
p = pressure
~T = eigenvector matrix of preconditioned system
U = contravariant velocity
Ur = reference velocity

Ŵ = primitive variable vector
α = angle of attack, deg
Γ = preconditioner
γ = ratio of specific heats
~ΛΓ = eigenvalue matrix of preconditioned system
ρ = density

Subscripts

b = value on boundary
d = value in computational domain
Γ = value in preconditioned system
∞ = freestream value

I. Introduction

T HE efficiency of high-lift devices is critical for the performance

of civil aircraft, especially for the payload limits. The multi-

element configuration complicates the flow physics around the

high-lift devices withmassive flow separations, boundary-layer transi-

tions, and wake interactions, which makes accurate aerodynamic

predictions using the computational fluid dynamics (CFD) solver quite
challenging.
CFD solvers based on Navier–Stokes (NS) equations in the

conservative form have been successfully applied in the simulations
of transonic and supersonic flows. However, the use of those solvers
for low-Mach-number flows often has convergence problems due
to the large disparity between convective and acoustic wave
velocities and therefore does not work well for incompressible
flow problems. Inspired by Chorin’s [1] artificial compressibility
method, Turkel [2] proposed a preconditioned method for the low-
Mach-number flow problem. The basic idea of the preconditioned
method is to reduce the disparity between the convective and acoustic
wave velocities through the modification of the eigensystem of the
governing equations, which can be achieved by multiplying the
preconditioningmatrix to the time-derivative term.Various formsof the
preconditioningmatrices are proposed byTurkel [2], vanLeer et al. [3],
Weiss and Smith [4], and Venkatakrishnan [5] for inviscid and
viscous flows.
Unfortunately, the improvements in the convergence rate and

accuracy are obtained by reducing the robustness of the solver, which
becomes an inhibitory factor of the preconditioned methods for
engineering applications. The stability of the preconditioned method
is sensitive to the preconditioned parameter, especially in stagnation-
point regions and boundary-layer regions. Choi and Merkle [6] sug-
gested reducing preconditioning in such regions to gain better ro-
bustness.Many efforts have been focused on defining limiting factors
and prescribing cutoff values for the preconditioned parameter to
increase the stability of preconditioned methods [6–10].
The boundary conditions (BCs) on the far fields are another im-

portant factor that may significantly affect the stability and accuracy
of the preconditioned method. Investigations [11–13] show that the
performance of the flow solver can be deteriorated by the reflection of
spurious waves on the truncated domain boundaries; therefore, the
implementation of nonreflecting boundary conditions for the far-
field boundaries is necessary. One typical solution is the use of
Riemann BCs, which are based on the one-dimensional character-
istics to eliminate the spurious reflecting waves. A characteristic
form of the preconditioned system of equations has been given
[11,14,15], and preconditioned characteristic BCs are proposed for
the preconditioned methods proposed by Ref. [12]. Simplified BCs
[11,16] and standard Riemann BCs [12] are adopted on the far-field
boundaries in many implementations of the preconditioned method.
However, the simplified BCs and the standard Riemann BCs may not
yield the optimal performance for the preconditioned system because
the characteristic features of the governing equations have been altered
by the preconditioning. It is essential then that the preconditioned
characteristic BCs are used for the specific preconditioner to ensure the
stability and accuracy of the solver.
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In the current study, we developed a cell-centered, finite-volume,
three-dimensional Navier–Stokes flow solver with the Weiss–Smith
preconditioner. A preconditioned Harten-Lax-van Leer-Einfeldt-
Wada (HLLEW) scheme is adopted for the spatial discretization
[17,18], and the dissipation term of which is rederived to reduce the
overlarge numerical dissipation. Preconditioned characteristic BCs
based on the Weiss–Smith preconditioner are derived at the far-field
boundaries, the effect of which is assessed by the comparisons
with the simplified BCs and the standard Riemann BCs. The
preconditioned Lower-Upper Symmetric Gauss-Seidel (LU-SGS)
implicit time-marching method is adopted to improve the
convergence rate of the solution. To evaluate the stability and
accuracy of the solver, flows over the two-dimensional National
Aerospace Laboratory (NLR) 7301 airfoil with flap and three-
dimensional high-lift trap-wing configuration [19–21] in the First
AIAA CFD High-Lift Prediction Workshop [22] are analyzed and
validated by the experimental data.

II. Preconditioned Formulation

The preconditioned method for Reynolds-averaged Navier–
Stokes (RANS) equations can be obtained by multiplying the
preconditioner Γ to the time derivative terms in NS equations. It can
be shown that, although the propagation velocities of the equation
system will be changed, the steady solutions remain unaffected. The
preconditioned governing equations can be written as follows:

Γ
∂Ŵ
∂t

� ∂Ê
∂ξ

� ∂F̂
∂η

� ∂Ĝ
∂ζ

� ∂Êv

∂ξ
� ∂F̂v

∂η
� ∂Ĝv

∂ζ
(1)

where Ŵ is the primitive variable vector and has various forms
depending on different choices of the preconditioner Γ. In this paper,
the preconditioner proposed by Weiss and Smith [4] is adopted:

Γ �

0
BBBB@

Θ 0 0 0 ρT
Θu ρ 0 0 ρTu
Θv 0 ρ 0 ρTv
Θw 0 0 ρ ρTw

ΘH − 1 ρu ρv ρw ρTH � ρCp

1
CCCCA (2)

Accordingly, the primitive variable vector is taken as Ŵ �
�p u v w T �T . In the previous preconditioner,

ρT � ∂ρ
∂T

����
p

Θ �
�

1

U2
r

−
ρT
ρCp

�

and Ur is the reference velocity given by

Ur � Mrc (3)

whereMr is the preconditioner parameter and c is the speed of sound.
The stability of the preconditioned method is sensitive to the

preconditioner parameter Mr, especially in the stagnation-point
regions and the boundary-layer regions. Many efforts have been
focused on defining limiting factors and prescribing cutoff values for
Mr to increase the stability of the preconditioned method [7–10].
However, for a cell-centered finite-volume solver, the Mr on the
interface of adjacent cells is interpolated based on the centroids of
neighbor cells. TheMr sometimes has different values on each side of
the interface, especially in the regions where the cutoff and limiting
works. This disparity of Mr values across the interface will signif-
icantly reduce the robustness of the flow solver. The uniform
preconditioner parameter is used to eliminate the inconsistency
caused by discretization and to enhance the stability of the solver.

III. Numerical Discretization

A. Preconditioned Spatial Discretization Scheme

The preconditioned governing equations of Eq. (1) are discretized
in space using a cell-centered finite-volume method based on the
structured meshes. The discrete inviscid flux vectors on cell faces are
evaluated by the preconditioned HLLEW flux-difference splitting
scheme. In the ξ direction, for example, the flux vector with the
preconditioned HLLEW scheme in RANS equations is given by

Êi�1∕2;j;k �
1

2
�Êi;j;k � Êi�1;j;k� −

1

2
j ~Aji�1∕2;j;k�Q̂i�1;j;k − Q̂i;j;k�

(4)

where the subscripts L and R represent the left and right sides of the
cell face, respectively. The Jacobian matrix ~A is given by ∂Ê∕∂Q̂. In
the preconditioned governing equations, eigenvalues of the equation
system are adjusted, and thus the dissipation term in Eq. (9) needs to
be modified accordingly:

j ~AjΔQ̂ � Γ� ~Tj ~ΛΓj ~T−1Ŵ� (5)

where ~ΛΓ is the diagonal matrix of the preconditioned system, and ~T
is the eigenvectorsmatrix. The eigenvalues aremodified to reduce the
numerical dissipative of the scheme and to enhance the resolution at
contact discontinuities [17]:

�ΛΓ � b�R � b−L
b�R − b−L

Λ − 2
b�R b

−
L

b�R − b−L
I (6)

~ΛΓ � diag��λ1 − 2δ min�b�R ; b−L�; �λ2 − 2δ min�b�R ; b−L�;
�λ3 − 2δ min�b�R ; b−L�; �λ4; �λ5� (7)

where

δ � min

�
~ρ

jσ1j
;
1

2

�

σ1 � Δρ −
Δp
~c2

and b�R and b−L stand for wave propagating speeds:

b�R � max�U 0 � C 0; U 0
R � C 0

R; 0�
b−L � min�U 0 − C 0; U 0

L − C 0
L; 0� (8)

For the isentropic flow, the scheme will be reduced into the
standard upwind-biased Roe scheme. In nonlinear regions, the
scheme satisfies the entropy and positive conditions and can enhance
the resolution to a level comparing with the Roe scheme.

B. Time-Marching Method

For steady-state problems, the time derivative term is discretized
by the first-order forward-difference scheme. Inviscid flux terms are
discretized implicitly, and the explicit treatment is adopted for the
viscous flux terms. Thus, a semidiscrete governing equation for the
preconditioned system is obtained:

ΓI;J;K

Ŵn�1
i;j;k − Ŵn

i;j;k

Δτ
� δ�Ê� F̂� Ĝ�n�1

i;j;k � δ�Êv � F̂v � Ĝv�ni;j;k
(9)

Then,we can linearize the inviscid flux vectors inEq. (9) andneglect
high-order terms; the resultant equations can be written as follows:
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Γn
i;j;k

Δt
ΔŴn

i;j;k��AΓΔŴ�ni�1∕2;j;k

− �AΓΔŴ�ni−1∕2;j;k��BΓΔŴ�ni;j�1∕2;k

− �BΓΔŴ�ni;j−1∕2;k��CΓΔŴ�ni;j;k�1∕2− �CΓΔŴ�ni;j;k−1∕2 � R̂n
i;j;k

(10)

In the previous equation, R̂n
i;j;k � δ�Ê� F̂� Ĝ�ni;j;k − δ�Êv�

F̂v � Ĝv�ni;j;k is the residual vector. AΓ, BΓ, and CΓ are the Jacobian

matrices for the inviscid flux vectors Ê, F̂, and Ĝ, based on the

primitive variables Ŵ. Decomposing the left-hand side inEq. (17)with

an approximate lower upper decomposition method, using the

symmetricGauss–Seidelmethod, the linearized equation canbe solved

iteratively in a two-step process. For viscous flow, the contribution of

the viscous flux terms is taken into consideration to ensure the stability

of the method.

IV. Far-Field Boundary Conditions

Numerical simulation of external flows is usually conducted within

a bounded domain. Because of its elliptic nature, the preconditioned

system for subsonic flow is sensitive to the far-field BCs. Simplified

BCs and standard Riemann BCs are adopted on the far-field bound-

aries in many implements of the preconditioned method. However,

these two types of BCs may not yield the optimal performance for the

preconditioned system because the characteristic features of the

governing equations have been altered by the preconditioning. There-

fore, implementation of nonreflecting BCs for the far-field boundaries

is necessary. Preconditioned characteristic BCs based on the Weiss–

Smith preconditioner are derived at the far-field boundaries, the effect

of which is assessed by the comparisons with the simplified BCs and

the standard Riemann BCs.
Referring to the preconditioned governing equations in Eq. (1), the

one-dimensional governing equation on the boundary can be written

as follows:

∂W
∂t

� Γ−1AΓ
∂W
∂n

� 0 (11)

where n is normal distant to the boundary. Considering that

Γ−1AΓ � RΓΛΓR
−1
Γ , Eq. (11) can be transformed as

R−1
Γ

∂W
∂t

� ΛΓR
−1
Γ

∂W
∂n

� 0 (12)

For the Weiss–Smith preconditioner, the eigenvector matrix is

determined as

R−1
Γ �

0
BBBBBBBB@

− 1
ρCp

0 0 0 1

0 − nxnz
n2

− nynz
n2

n2x�n2y
n2

0

0 − nxny
n2

n2x�n2z
n2

− nynz
n2

0

r
4ρc 0Cp

− nxU
2
r

2c 0Cp
− nyU

2
r

2c 0Cp
− nzU

2
r

2c 0Cp
0

− s
4ρc 0CpQ

nxU
2
r

2c 0Cp

nyU
2
r

2c 0Cp

nzU
2
r

2c 0Cp
0

1
CCCCCCCCA

(13)

Substituting R−1
Γ into Eq. (12), the preconditioned compatibility

equations and the corresponding characteristic line equations are

obtained:

dR1 �
dp

ρCp

� dT;
dx1
dt

� U

dR2 � nxnz du� nynz dv − �n2x � n2y� dw;
dx2
dt

� U

dR3 � nxny du − �n2x � n2z� dv� nynz dw;
dx3
dt

� U

dR4 �
2c 0 − �M2

r − 1�U
2ρM2

rc
2

dp − dU;
dx4
dt

� U 0 − c 0

dR5 �
2c 0 � �M2

r − 1�U
2ρM2

rc
2

dp� dU;
dx5
dt

� U 0 � c 0 (14)

where R1, R2, R3, R4, R5 are the characteristic invariants of the

preconditioned governing equations. For calorically perfect gas, the

first compatibility equation can be integrated as

p

ργ
� C0 (15)

It shows that entropy remains conserved along the first

characteristic line. From Eq. (15), we have the following:

dp � 2γ

γ − 1

p

c
dc (16)

Then, the last two compatibility equations can be rearranged as

follows:

dR4 �
2c 0 − �M2

r − 1�U
M2

rc�γ − 1� dc − dU

dR5 �
2c 0 � �M2

r − 1�U
M2

rc�γ − 1� dc� dU (17)

For subsonic flow, the propagation velocity on the characteristic

line 4 is less than zero; thus, the flow variables on boundary are

determined by the freestream conditions. As to characteristic line 5,

the flow variables depend on those in the computational domain

because propagation velocity is positive. Hence, the variables on the

boundary can be determined as

Ub −U∞ −
2c 0

∞ − �M2
r − 1�U∞

M2
rc∞�γ − 1� �cb − c∞� � 0

Ub −Ud −
2c 0

i − �M2
r − 1�Ui

M2
rci�γ − 1� �cb − cd� � 0 (18)

Solving the previous linear equations, the contravariant velocity

and the speed of sound on the boundary can be obtained:

Ub � AB�cd − c∞� � BU∞ � AUd

A� B

cb � Ac∞ � Bcd − U∞ �Ud

A� B
(19)

with

A � 2c 0
∞ − �M2

r − 1�U∞

M2
rc∞�γ − 1�

B � 2c 0
d − �M2

r − 1�Ud

M2
rcd�γ − 1� (20)

For three-dimensional problems, the definition of each velocity

component is required. According to the compatibility equations

of the characteristic lines 2 and 3, combining the definition of the

contravariant velocity:
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nxnzdu� nynzdv − �n2x � n2y�dw � 0

nxnydu − �n2x � n2z�dv� nynzdw � 0

nxdu� nydv� nzdw � dU (21)

Solving the previous linear equations, the following relation is
obtained:

du � nxdU

dv � nydU

dw � nzdU (22)

As a result, the velocity components on the boundary can be
determined as

ub � uref � nx�Ub −Uref�
vb � vref � ny�Ub −Uref�
wb � wref � nz�Ub −Uref� (23)

By setting the preconditioned parameterMr � 1, the expression of
flow variables for the preconditioned system recovers to that of the
standard Riemann BCs.

V. Results and Discussion

In this section, three different simulations are presented to evaluate
the accuracy, robustness, and efficiency of the current preconditioned
method. First, the Royal Aircraft Establishment (RAE) 2822 transon-
ic flow was tested to assess the effect of the derived preconditioned
characteristic BCs by the comparisons with the simplified BCs
and the standard Riemann BCs. Then, the simulations of the two-
dimensional (2-D) NLR 7301 airfoil with flap and the three-
dimensional (3-D) high-lift trap-wing configuration are presented as
applications of our method for 2-D and 3-D geometries.
In the simulations, the two-equation k-ω shear-stress transport

turbulence model is adopted to compute the eddy viscosity coeffi-
cient. In each iteration, the turbulence model equations are solved
decoupled from the governing equations. Both groups of the equa-
tions are solved with the same time step to ensure that they are
advanced synchronously. The convergence rate is measured by the
L2 norm of the density residual, which is determined by Eq. (15).

A. Transonic Flow over Royal Aircraft Establishment 2822 Airfoil

The computational domain of the RAE 2822 airfoil case is shown
in Fig. 1. A C-type structured mesh is used, and the mesh size is
64 × 368. The freestream Mach number isM∞ � 0.729, Reynolds

number based on the chord length is 6.5 × 106, and the angle of attack
(AOA) is 2.31 deg. The minimum distance from the far-field

boundary to the airfoil is more than 20 times the chord length.

The convergence behaviors of different boundary conditions are

displayed in Fig. 2. The residuals in this figure are computed with the

preconditioner parameter of Mr � 0.5. It is shown that the

preconditioned method with the simplified BCs has the slowest

convergence rate because the reflection waves from the far-field

boundaries affect the flowfield near the wall. The waves from the far

field and the wall reflect several times until the flowfield converges,

which may significantly slow down the convergence rate of the

solution. The use of the preconditioned characteristic BCs can speed

up the convergence rate significantly, though efficiency improvement

is slightly less than that of the standardRiemannBCs for the transonic

flows. The preconditioned method reduces the eigenvalues of the

governing equations; thus, the spreading speed of the wall distur-

bance decreases accordingly, as a result of which the convergence

rate of preconditioned characteristic BCs is not as efficient as that of

standard Riemann BCs.

The pressure distributions on the wall surface are validated by

the experimental data in Fig. 3. On the lower surface, the pressure

predictions are in good agreement with the measurement data for

all the three BCs. On the upper surface, disparities appear near the

leading edge and in the nonlinear region. At the leading edge, the

preconditioned characteristic BCs and the standard Riemann BCs

Fig. 1 Computational mesh of RAE 2822 airfoil.

Fig. 2 Comparison of convergence rate with different boundary
conditions.

Fig. 3 Comparison of pressure coefficient distribution on surface.
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provide better pressure predictions than the simplified BCs. In the
shock region, the preconditioned characteristic BCs have the best
performance in capturing the shock wave compared to the experi-

mental data.
Figure 4 depicts the convergence history of lift coefficients calcu-

lated by simulations with different BCs for RAE 2822 transonic flow.

The predicted lift coefficient using the preconditioned characteristic
BCs and the simplified BCs are 0.7374 and 0.7383, respectively. The
relative error of these two simulation results with respect to the
experimental data, which is 0.7429, is less than 1%. However, the lift
coefficient predicted using the standardRiemannBCs is 0.7170,which
is not as accurate as that of the preconditioned characteristic BCs,

because the standard Riemann BCs do not eliminate the boundary
reflection of the spurious waves for the preconditioned system.
The study shows that the BCs on the far-field boundaries have an

important influence on the performance of the flow solver. The
preconditioned characteristic BCs eliminate the reflection spurious
waves on the far-field boundaries; thus, the solution efficiency is
improved, and more accurate results are obtained.

B. National Aerospace Laboratory 7301 Wing with Flap

Simulation results for low-speed flow over a two-dimensional
multi-element high-lift configuration are presented in this section.

The main element is NLR 7301 supercritical airfoil. A flap with
20 deg deflection angle is used, and the gap between the airfoil and
the flap is 2.6% chord length of the main element. The experiment is
carried out in the NLR 3 × 2 m low-speed wind tunnel, with the
inflow Mach number of 0.185. The Reynolds number based on the
chord length is 2.51 × 106, and the AOA is 6 deg.
Two simulations are performed with the traditional compressible

RANS method and the preconditioned method, respectively. The
preconditioned characteristic BCs for far-field boundaries are
adopted, and the preconditioner parameter is taken asMr � 0.4.
The convergence histories of the lift coefficient are plotted in Fig. 5.

The lift coefficient convergences when the fluctuation between two
adjacent iterations is less than 1 × 10−5. It shows that the result of the
preconditionedmethod converges after about 4000 iterations, whereas
the lift coefficient given by the compressible RANS method does
not converge until 7000 iterations. The lift coefficient predicted by the
traditional compressible RANS method is 2.4656, which is over-
predicted compared with the experimental value of 2.41. The result
provided by the preconditioned method is 2.3945 and is in better
agreementwith the experimental data. Figure 6 depicts the comparison
of the pressure coefficient distribution on the wall surface. Pressures
predicted by both methods are in good agreement with the experi-
mental data.
The velocity profiles are plotted at four typical locations in the

boundary layer, the positions of which are sketched in Fig. 7. Points 1

Fig. 4 Convergence history of lift coefficient with different boundary
conditions.

Fig. 5 Lift coefficient convergence history: a) time history, and b) fluctuation history.

Fig. 6 Distribution of pressure coefficient on surface.
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and 2 are located on the upper surface of the main element,

monitoring the velocity at 60% chord length of the airfoil and at the

trailing edge, respectively. Points 3 and 4 are located on the upper

surface of the flap, monitoring the velocity at the 60% chord length of

the flap and at the trailing edge, respectively. The predicted results are

compared with the measurement data in Fig. 8.
The thickness of the boundary layer grows along the flow direction

on the main element (at positions 1 and 2), and an obvious velocity

defect in the wake of the main element appears at positions 3 and 4.

Results of both methods are similar and agree well with the experi-

mental data.
The comparison of the pressure distribution on the wall and

velocity profiles in the boundary layers show that both of the solvers

provide preferable results compared with the experimental data.

Compared with the traditional compressible RANS method, the

preconditioned solver with the preconditioned characteristic BCs

significantly speed up the convergence rate of the simulation.

C. High-Lift Trap-Wing Configuration

Low-Mach-number flow over a 3-D high-lift trap-wing configu-

ration is analyzed with the preconditioned method to validate its

ability to solve complex problems. The complex geometry shape

of the configuration makes the flow physics challenging for CFD

solvers. Those challenges include massive flow separations on the

flap, boundary-layer transitions, wake interactions, and the wing-tip

vertical flow due to the changes of working conditions. The tradi-

tional compressible RANS solver performs terrible convergence

behavior for such problems; thus, a robust and accurate CFD solver is

essential for the study of the configuration.
Two test cases are analyzed in this section. In case 1, flow around

the configuration at the AOA of α � 13 deg is simulated with two

meshes (the coarsemesh has 5.96million cells, and themediummesh

has 20.1 million cells). Then, deflection predictions at four angles of

attack ranging from α � −3.834 deg to α � −28 deg are computed

on the coarse mesh. For both of the test cases, the inflow Mach

number is M∞ � 0.2, and the Reynolds number based on the mean

aerodynamic chord length is Re � 4.3 × 106. The preconditioner

Fig. 7 Positions of the boundary-layer measurement stations.

Fig. 8 Velocity profiles at typical stations.

Fig. 9 Comparison of flap separation for different meshes: a) coarse mesh, and b) medium mesh.
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Fig. 10 Surface pressure distribution at different stations: a) 17% spanwise, b) 41% spanwise, c) 65% spanwise, and d) 95% spanwise.

Fig. 11 Lift coefficient convergence history: a) time history, and b) fluctuation history.
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parameter is taken asMr � 0.4, and the preconditioned characteristic
BCs are implemented on the far-field boundaries.
Figure 9 shows the comparison of surface streamlines on the flap at

AOA of α � 13 deg . The separation region on the flap trends to be
larger when the mesh is refined, and a similar phenomenon exists for
the separation region at the flap root. Figure 10 plots the pressure
distribution over high-lift surfaces on four different cross sections.
Results provided by both the coarse and the mediummesh agreewell
with the experimental data on the lower surface. On the upper surface,
the medium mesh provides better prediction compared with the
measurement data.
The lift coefficient convergence histories at the AOA of 13 deg for

both the meshes are plotted in Fig. 11. It shows that the result of the
coarse mesh converges after about 10,000 iterations, and the lift
coefficient predicted by the mediummesh converges at about 15,000
iterations. The lift given by the coarse mesh is 2.0079, and the
mediummesh is 2.0137. The lifts of both the meshes agree well with
the experiment data, which is given as 2.0468.
The aerodynamic forces with respect to the AOA are plotted in

Fig. 12. The predicted lift coefficients agree well with the measure-
ment with the AOAs less than 13 deg. The result at α � 28 deg is
much underpredicted, with a deviation of 3.4%. A similar trend can
be found for the drag coefficients; the drag coefficient at α � 28 deg
is underpredicted, whereas results at other angles of attack agreewell
with the measurement data.

VI. Conclusions

A cell-centered finite-volume, three-dimensional preconditioned
flow solverwith theWeiss–Smith preconditioner is developed for low-
Mach-number flow simulations. A preconditioned HLLEW scheme
with modification of its dissipation term is rederived to reduce the
overlarge numerical dissipation. Preconditioned characteristic BCs
based on the Weiss–Smith preconditioner are derived at the far-field
boundaries, and the preconditioned LU-SGS implicit time-marching
method is adopted to improve the convergence rate of the solution.
Flow over the RAE 2822 airfoil is simulated to assess the effect of the
preconditioned characteristic BCs, and two high-lift configurations in
2-D and 3-D are analyzed with the solver.
The effect of the preconditioned characteristic BCs is assessed

by the comparisons with the simplified BCs and the standard
RiemannBCs. It is found that the boundary conditions on the far-field
boundaries have an important influence on the performance of the
flow solver. The study indicates that the preconditioned characteristic
BCs eliminate the influence of the reflection spurious waves on
the far-field boundaries and significantly increase the efficiency of
the solver compared with the simplified BCs. Compared with the
standard Riemann BCs, the preconditioned characteristic BCs gives

better prediction results, though its efficiency improvement is inferior
to that of the standard Riemann BCs.
Compared with the traditional compressible RANS solver, the

preconditioned solver with the preconditioned characteristic BCs
significantly speed up the convergence rate of the simulation for low-
speed flows around high-lift configurations. The comparison of the
pressure distribution on the wall and the velocity profiles in the
boundary layers shows that both of the solvers provide preferable
results compared with experimental data. For the high-lift configu-
ration with complex geometry, the preconditioned flow solver with
the preconditioned characteristic BCs can provide accurate predic-
tion with efficiency and achieve better robustness, whereas the
compressible RANS solver led to diverged solutions with the same
computational conditions.
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