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Abstract
Spontaneous imbibition in porous media is common in nature, imbibition potential is very
important for understanding the imbibition ability, or the ability to keep high imbibition rate for
a long time. Structure parameters have influence on imbibition potential. This work investigates
the process of spontaneous imbibition of liquid into a fractal tree-like network, taking fractal
structure parameters into consideration. The analytical expression for dimensionless imbibition
rate with this fractal tree-like network is derived. The influence of structure parameters on
imbibition potential is discussed. It is found that optimal diameter ratio β is important for
networks to have imbibition potential. Moreover, with liquid imbibed in more sub-branches,
some structures of parameter combinations will show the characteristic of imbibition potential
gradually. Finally, a parameter plane is made to visualize the percentage of good parameter in
all possible combinations and to evaluate the imbibition potential of a specific network system
more directly. It is also helpful to design and to optimize a fractal network with good imbibition
potential.

Keywords : Porous Media; Imbibition; Fractal; Tree-Like Network.

‡Corresponding author.

1650035-1

Fr
ac

ta
ls

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 P
U

R
D

U
E

 U
N

IV
E

R
SI

T
Y

 o
n 

08
/1

0/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.

http://dx.doi.org/10.1142/S0218348X16500353


2nd Reading

August 8, 2016 15:30 0218-348X 1650035

C. Li et al.

1. INTRODUCTION

The spontaneous imbibition in dendritic structures
of natural networks is a common phenomenon in
nature.1–3 In early studies, imbibition was inves-
tigated in single capillary or a collection of par-
allel tubes. Imbibition in vertical tube was first
introduced by Lucas4 and Washburn5 in 1921, they
derived an analytical relationship between imbibi-
tion distance and imbibition time, called Lucas–
Washburn (LW) equation. In the following years,
Martic et al.6 pointed out that the contact angle
in LW equation should be used as a dynamic con-
tact angle. Cupelli et al.7 pointed out that the iner-
tia of liquid should be taken into account. Fries
and Dreyer8 researched analytic solution of cap-
illary rise in inclined tube. Kim and Whitesides9

researched capillary rise in noncircular capillaries.
Recently, Cai et al. studied the effect of tortuosity
on capillary rise10 and introduced fractal theory to
modify the LW equation11 as well as developed a
more generalized model for spontaneous imbibition
based on Hagen–Poiseuille flow in tortuous capillar-
ies with variably shaped apertures.12 Yun et al.13

investigated flow rate for power-law fluids in tor-
turous capillary tube by fractal geometry.

Tree-like network model is a tube system with
fractal characteristic. It has been used to describe
river basins, reservoirs, vein in leaves, economic sys-
tems, porous nanofibers, porous media,14–16 etc.
Many natural porous media are fractal, shown
by numerous experimental studies. Katz and
Thompson17 might give the first experimental evi-
dence for the fractal features of sandstone sam-
ples across three to four orders of magnitude.
Studies in the following decades have enhanced
this conclusion.17,18–20 Fractal tree-like network is
a proper simplification for porous media. In this
network, the diameter and length of the tubes
in each branch are developed by fractal law and
their ratio between neighboring level is determinis-
tic, which indicates its self-similar properties. The
flow and transport phenomenon in this fractal tree-
like network have been studied for a long time.
Xu et al.21–23 have studied the heat conduction
and permeability of this network system, and gave
the analysis expression of effective permeability of
tree-like network model. Additionally, Xu et al.24–26

enhanced the tree-like network model to a disk-
shaped branched network to investigate transport
and heat conduction properties. The disk-shaped
network model has been well simulated radial flow

near wellbore of oil well. Based on the tree-like
fractal model above, Wang and Yu discussed low
velocity non-Darcy percolation for fractal tree-
like network,27–29 Zheng et al. derived the effec-
tive permeability and diffusion coefficient of gas in
point-to line tree networks.30,31 Cai32–34 developed
analytical expressions for imbibition process based
on fractal characters of porous media and discussed
the effect of parameters on imbibition mass and
imbibition potential. Pence and Enfield35,36 com-
puted the pressure and temperature distributions of
this fractal-like branching network. The imbibition
property of this network system is another interest-
ing area.

Imbibition potential is the probable high imbi-
bition speed for a specific structure of porous
media as imbibition time increases. This poten-
tial is important to describe imbibition ability. In
shale plays, hydraulic fracturing is often used due
to the relatively low porosity and permeability,
which is related to many parameters. Blocked frac-
turing liquid in pore structures is critical for gas
production.37–41 For pore structures of shale with
high imbibition potential, non-wetting liquid will
be absorbed and diffused into gas-saturated porous
media with high speed as time goes by, displacing
shale gas for a long time and unblocking main flow
path of gas. The gas production rate in these forma-
tions will not drop abruptly during the production.
Optimal pore structures can accelerate the rate of
liquid absorption. Recently, Shou et al.42–45 investi-
gated the best structure for the fastest capillary flow
in tree-like networks and derived the expression of
minimum penetration time in the structure, which
verified that optimal pore structures can accelerate
rate of liquid absorption.

This work focuses on the imbibition process in
fractal tree-like network system. The imbibition
potential is represented as the change of imbibition
rate in the whole network as imbibition front going
into smaller sub-branches. The analytical expres-
sion of the imbibition potential is derived and the
relationship between the imbibition potential and
the structure parameters of the network system is
discussed.

2. FRACTAL TREE-LIKE
NETWORK SYSTEM

Figure 1 shows the basic structure of fractal
tree-like network system, which is generated by
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Fig. 1 Schematic of equivalent model of fractal network
system.

self-repeating. Each branch of the network is a
smooth cylinder. Each cylinder branches into sev-
eral sub-tubes in the next stage and the diameter
and length of tubes in each level decrease gradu-
ally. Water is absorbed from the main channel (left
tube) and then flow into branches (right) asymptot-
ically. To make some simplifications, we assume the
flow as incompressible ideal fluid flowing in cylin-
der s. Some parameters are needed to describe this
model. k represents the branching level (e.g. the
main channel is level 0, k = 0). A typical branch at
some intermediate level k has length lk and diam-
eter dk. Supposing the ratio of adjacent level in
length and diameter are α and β, these factors are
introduced as22

α = lk+1/lk, β = dk+1/dk, (1)

lk = l0a
k, dk = d0β

k. (2)

By the fractal characteristic of network, α and
β remain unchanged. Supposing that every channel
is divided into n (branching number) branches at
the next level. Level k has N branches, it can be
represented as

N = nk. (3)

According to the fractal characteristics of the
structure,46 n can be expressed as22

n = α−Dt = β−Dd , (4)

where Dl and Dd represent the fractal dimension
of throat length and diameter. Fractal dimension
varies from 1 to 3. α and Dl can represent the diam-
eter distribution. β and Dd can represent the length
distribution.

In natural porous media, the flow channel is not
always straight. To take touristy into consideration,
Yu47,48 introduces fractal dimension to represent
the tortuosity of capillaries as:

lk = d1−DT
k LDT

k , (5)

where lk refers to the length of fluid pathline in kth
tube, Lk straight length of tube. DT refers to the
fractal dimension of a tortuous capillary and ranges
from 1 to 3. A higher DT value represents that the
capillary is more tortuous and the flow path is also
longer.

With the driving of capillary force, liquid imbibes
from left to right in this network. The sum of cap-
illary force increases in thinner tubes and with
the growing number of tubes. As time goes on,
imbibition rate will change due to characteristic
of network. Under some circumstances, when the
network is well developed, capillary force may be
strong enough to overcome the crease of resistance
in branch tubes, and then imbibition rate in the net-
work will increase. In this paper, when imbibition
rate in first level increases over its average imbibi-
tion rate at the beginning of imbibition, this struc-
ture is considered to have imbibition potential. The
imbibition rate is defined as the liquid volume flow-
ing through any intersecting surface in unit time,
or Q = d(V )/dt, then dimensionless parameter Q+,
defined as the ratio of imbibition rate when liquid
flowing in ith level (Qi) to initial imbibition rate
(Q0), Q+ = Qi/Q0, can be regarded as a parameter
to represent imbibition potential. When Q+ > 1
at some branching level, the imbibition speed at
this level is bigger than the initial imbibition speed,
which means this network has the ability to enhance
imbibition speed as time goes by.

3. IMBIBITION IN FRACTAL
TREE-LIKE NETWORK

Due to the incompressible liquid, the volume flow
rate in every level is equal, when imbibition front
goes out of the kth level, volume flow rate is

Q =
Pk+1 − P0∑k

i=0 Ri

. (6)
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Capillary pressure in every tube of the kth level
is expressed as

Pk+1 =
4σ cos θ

dk
. (7)

According to Hagen–Poiseuille equation, the flow
rate in every tube of kth level is

Qks =
πd4

k

128µlk
(Pk+1 − Pk), (8)

Rkz =
128µlk
πd4

k

.

The total flow rate in tube of kth level is

Qk = nkQks = nk πd4
k

128µlk
(Pk+1 − Pk). (9)

Equation (9) can be mathematically rearranged
as

Qk =
Pk+1 − Pk

128µlk/(nkπd4
k)

. (10)

Compared to Eq. (6), the total flowing resistance
in kth level Rk is

Rk =
128µlk
nkπd4

k

. (11)

When kth channel is filled with liquid, the flow-
ing resistance can be expressed as Eq. (11). From
Eqs. (8) and (11), it is shown that flowing resistance
in every tube in kth level Rkz is nk times as large
as the parallel total resistance in kth level Rk, or
Rkz = nkRk.

Imbibition is dynamic. Flowing tube is increasing
as imbibition front goes. So the total flow rate in
fractal network system can be expressed as:

Qk =
Pk+1 − P0∑k

i=0 Ri

=
Pk+1 − P0∑k

i=0
128µli
niπd4

i
+ Rk(t)

. (12)

Expressing Eq. (12) in other form, from the pres-
sure drop theory, the total pressure drop in system
is equal to pressure outlet Pk+1 minus pressure inlet
P0. It can be expressed as:

Pk+1 − P0 = ∆pk + ∆pk−1 + · · · + ∆p0

= QkRk(t) + QkRk−1 + · · · + QkR0

= Qk

(
k∑

i=0

Ri

)
,

where Rk(t) is total flowing resistance in kth level,
when imbibition process is undergoing in kth level.

It can be expressed as

Rk(t) =
128µlk(t)

nkπd4
k

=
128µ
nkπd4

k

Vk(t)
πd2

kn
k/4

, (13)

where Vk(t) is the volume of fluid in channel of kth
level. According to the definition of flow rate, we
have

Qk = dVk(t)/dt. (14)

Integrating Eqs. (12) and (13) to Eq. (14), intro-
ducing initial condition as Vk|t=0 = 0, Eqs. (1)
and (2), we have:

Vk(t) =

√
2A
C

t +
B2

C2
− B

C
, (15)

where A = Pk+1 − P0, B = 128µl0
πd4

0

1−[α/(nβ4)]k

1−α/(nβ4)
,

C = 128µ
πnkd4

0β4k
1

πd2
knk/4

.
To simplify this equation, during the period from

tk(the time when fluid flowing into kth channel) to
tk+1(the time when fluid flowing out of kth chan-
nel), we define average flow rate in kth channel as

Qk =
Vk(tk+1) − Vk(tk)

tk+1 − tk
. (16)

According to mass equation:

vk|t=tk = 0, vk|t=tk+1
= lkπd2

kn
k/4. (17)

The gauge pressure of atmosphere this model at
the entrance is P0 = 0. Combining Eqs. (15), (1),
(2) and (7) with Eq. (16), average flow rate can be
expressed as Eq. (18) in kth channel

Qk =
4σ cos θ

d0βk

πd4
0

128µl0

×
{

1
2

(
α

nβ4

)k

+
1 − [α/(nβ4)]k

1 − α/(nβ4)

}−1

. (18)

To focus on structural factors, fluid effects should
be excluded by using dimensionless method. The
initial average flow rate is needed. According to
Hagen–Poiseuille equation, flow rate in the first
level is

Q =
P1 − P0

128µl/(πd4
0)

, (19)

where the relationship between Q and imbibition
time t is

Q =
dV

dt
=

πd2
0

4
dl

dt
, (20)

where V means fluid volume in capillary. Integrat-
ing Eq. (20) to Eq. (19), taking the initial condition
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as l|t=0 = 0, explicit expression is given as

l =

√
P1 − P0

16µ/d2
0

t. (21)

When the imbibition front reaches the end capil-
lary of first level, we have

l0 =

√
P1 − P0

16µ/d2
0

t0. (22)

According to definition, average flow rate in cap-
illary of first level is

Q0 =
πd2

0

4
l0
t0

. (23)

Combining Eqs. (22) and (23), the initial average
flow rate is

Q0 =
πd4

0(P1 − P0)
64µl0

. (24)

In the end, combining Eqs. (2), (18) and (24),
dimensionless average imbibition flow rate Q+ in
capillary of kth level is

Q +
k =

Qk

Q0

=
1
βk

1 − α/(nβ4)
2 − [α/(nβ4)]k[1 + α/(nβ4)]

.

(25)

Or can be expressed with fractal dimension of
throat length and diameter distribution as

Q +
k =

Qk

Q0

= n−k/Dd

× 1 − n4/Dd−1−1/Dl

2 − n4k/Dd−k−k/Dl(1 + n4/Dd−1−1/Dl)
.

(26)

It is shown that Q +
k is only related to the struc-

ture of the model.

4. EXPERIMENT VERIFICATION

To exam the validation of this model, an exper-
iment of imbibition in tree-like model has been
made. In this section, tree-like fractal network is
carved in plastic board by laser engraving machine.
The structure and composition of laser engraving
machine is shown in Figs. 2a and 2b. Also, Fig. 2b
shows the working state of laser engraving machine.
The power of laser gun is 2W. After focusing of
laser, this laser gun can generate temperature more
than 500◦ C on the surface of object. Two stepping

Stepping motor X

Stepping motor Y

Mainboard

USB port

Plastic board

Laser gun

(a) (b)

(c) (d)

Fig. 2 Laser engraving machine and contact angle meter. (a) Basic structure of laser engraving machine, (b) working status
of laser engraving machine, (c) contact angle meter and (d) result of contact angle test.
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t0=2.8s t1=7s

Blocked 

channels

t3=10s

(a) (b) (c) (d)

Fig. 3 Kerosene diffusing in tree-like fractal network. (a) Empty network, (b) the first level branch is filled with kerosene,
(c) the second level branch is filled with kerosene and (d) the network is almost filled with kerosene, by some accident, a
small fraction of the last stage is not filled by kerosene. From the video calculation, the time spent in the first level is about
2.8 s, or ∆t0 = 2.8 s, and so on, ∆t1 = 7 s, ∆t2 = 9 s, ∆t3 = 10 s. However, due to the blocked channels in the last level, t3 is
calculated by average pass-through time without blocked channels.

motors (on direction X and Y) can drive the laser
gun move at the same height. The angle-position
precision of motors are 0.9a. These motors are con-
trolled by mainboard connecting to computer with
USB port. We programmed the movement of laser
gun on computer by G code. A plastic board is
set under the laser gun. High temperature gener-
ated by laser melted and scorched the plastic and
curved tree-like fractal network on plastic board.
We covered and pasted the curved board with a
transparent plastic board to observe the imbibition
process in tree-like fractal network. In this work,
we generated a tree-like network with parameters
as α = 0.5, β = 1, n = 2, k = 4, l0 = 28.5 mm and
d0 = 1mm. The imbibition liquid is kerosene. Its
viscosity is 0.91 mPas and density is 0.8×103 kg/m3

. The contact angle between kerosene and plastic is
measured by contact angle meter, shown in Figs. 2c
and 2d, the result is 16.54◦.

To verify the accuracy of our imbibition equation,
we video the process of imbibition and calculate the
average time spent in every stage of channel. The
environment temperature during imbibition pro-
cess is 18.6◦ C. As shown in Fig. 3, the imbibi-
tion front can be observed clearly. At every branch-
ing point, imbibition front split and flow into two
sub-channels. Calculated from the recorded video,
the time spent in the first level is about 2.8 s, or
∆t0 = 2.8 s, and ∆t1 = 7 s,∆t2 = 9 s,∆t3 = 10 s.
Unfortunately, with the contingency and uncontrol-
lability of experimental environment, a small frac-
tion of channels in the last level are blocked, so ∆t3
is calculated by average pass-through time with-
out blocked channels, which makes ∆t3 not actually
very accurate. Anyway, we calculated average flow
rate in each level by Eq. (27) and dimensionless flow

rate by Eq. (28).

Qk =
Vk

∆tk
, (27)

Q +
k =

Qk

Q0

. (28)

Meanwhile, we compare the experimental data
with theoretical data calculated by Eq. (25). The
result is shown in Fig. 4. It shows that most of
the theoretical data coordinate well with the exper-
imental data from k = 0 to 2, which validates our
calculation of dimensionless average imbibition flow
rate in capillary of kth level, or Eq. (25). Because
of the roughness of channel wall and contingency of
liquid, it is hard to control fluid in every channel

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

k

Q
+

theoretical data
experimental data

Fig. 4 Validation of tree-like fractal model. Most of the the-
oretical data well coordinate with experimental data. With
some channels blocked in the last level, Q+ is deviated from
theoretical data at k = 3.
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reach its branching point simultaneously, especially
in the last level, the deviation at k = 3 is not uni-
versal.

5. RESULTS AND DISCUSSIONS

In this section, the influence of the geometrical
structures on the dimensionless imbibition rate is
discussed. Figure 5 shows the dimensionless imbi-
bition rate Q +

k versus the branching level k with
different structure parameters. These parameters
have length ratios α, the diameter ratios β and the
branching number n. Generally, Q +

k reduces with k

at the beginning of imbibition, with the increase of
k, Q +

k may increase (Figs. 5a and 5b). That means
imbibition rate generally decreases when imbibition
front is absorbed in smaller tubes. But when α is
small enough or β is big enough, like α = 0.4 or
β = 0.7, Q +

k will become bigger as k increases. Dl

and Dd are another way to express α and β accord-
ing to Eq. (4). So the trend in Figs. 5c and 5d are
similar to that in Figs. 5a and 5b. When n increases,
Q +

k in latter levels increases obviously (Fig. 2e).
To sum up, dimensionless imbibition rate generally
decreases as imbibition front moves in smaller tubes
at first, but when α is small enough, imbibition

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

k

Q
+

α=0.4
α=0.5
α=0.6
α=0.7

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

k

Q
+

β=0.5
β=0.6
β=0.7
β=0.8

(a) (b)

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

k

Q
+

Dl=1.0
Dl=1.5
Dl=2.0
Dl=2.5

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

k

Q
+

Dd=1.0
Dd=1.5
Dd=2.0
Dd=2.5

(c) (d)

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

k

Q
+

n=1
n=2
n=3
n=4

(e)

Fig. 5 The curve of dimensionless average imbibition rate versus imbibition branching level. (a) β = 0.6 n = 2,
(b) α =0.6 n = 2, (c) Dd = 2 n = 2, (d) Dl = 1.2 n = 2 and (e) α = 0.6 β = 0.6.
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front is easier to go to the next level. That means
more branches will be filled with water, so Q +

k may
increase. Larger n can accelerate this process. If β is
not too small, the advantage of increasing branch-
ing number will compensate the disadvantage of the
decreasing pore size. So smallerand not too small β
in pore structure will have good imbibition perfor-
mance, like Fig. 5e.

Structure parameters have influence on dimen-
sionless imbibition rate within the same branching
level (k = 5) (Fig. 6). When β is not too small,
smaller α and bigger n will obviously increase Q +

k
(e.g. α < 0.4 and n > 3). Otherwise when β is too
small (e.g. β < 0.4), Q +

k remains low no matter how
α and n change (Figs. 6a and 6b). This is because
pore diameter will be too thin in next level, then
resistance will obviously increase, more branches
and higher capillary force cannot compensate the
energy loss of fluid. There is a set of optimum com-
bination of parameters when β ranges between 0.6
and 1. When α < 0.2, β and n have impact on Q +

k ,
if α grows bigger than 0.6, fluid will take long way
to enter the next level, which have a negative effect
on the imbibition process.

There are two prerequisites for fractural tree-like
network having imbibition potential, or having pos-
sibility to gain faster imbibition rate in imbibition
process. One is that it has good parameter combi-
nation of structure, or the coordination of Dl,Dd

(or α, β) and n. The other is that branches are well
developed, or branching level k is large enough. To
investigate the percentage of good parameter in all
possible combinations, a parameter plane can be
made, which is a flat filled with all possible Q +

k
when n and k are stable, with two axes Dl and
Dd. Parameter combinations making Q+

k > 1 are
called good parameter combinations (to have imbi-
bition potential), while the parameter combination
making biggest Q +

k is called best parameter com-
bination (to have imbibition potential). Moreover,
this parameter plane helps not only to evaluate how
many combinations are good in all possible com-
binations but also to evaluate a specific parameter
combination by what zone it falls in. When it falls in
Q+

k > 1, the fractural tree-like network having this
parameter combination has imbibition potential,
otherwise it has not. Additionally, when it comes to
optimizing a fractal network, this parameter plane
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Fig. 6 Impact of structure parameters on dimensionless imbibition rate within the same branching level. (a) k = 5 n =2,
(b) k =5 α = 0.6, (c) k =5 n =2 and (d) k =5 β =0.6.
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(a) (b)

(c) (d)

Fig. 7 Parameter plane of different branching numbers at the same branching level. (a) k =5 n = 3, (b) k = 5 n = 3,
(c) k =5 n =4 and (d) k = 5 n =4.

will make this work more efficient because the best
parameter combination can be found directly. By
fraction theory, Q+

k should be under the boundary
condition of 1 < Dt < 3, 1 < Dd < 3.

Figure 7 shows a parameter plane of different
branching numbers at the same branching level,
Figs. 7b and 7d is the result of deleting Q+

k < 1 the

combinations in Figs. 7a and 7c. It denotes that
with branching number n increasing from 3 to 4,
parameter combinations to have imbibition poten-
tial increases from 11.9% to 30.0%. It is expected
because larger branching number can make more
branches, which increases the sum of capillary force
and makes more combinations become potential.

(a) (b)

Fig. 8 Parameter plane of different branching levels at the same branching number. (a) k = 4 n = 3, (b) k = 5 n = 3,
(c) k = 6 n = 3 and (d) k = 7 n = 3.
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(c) (d)

Fig. 8 (Continued)

The best parameter combination locates in small
Dl and appropriate or not too small Dd, this is con-
sistent with conclusions in Fig. 5.

Figure 8 shows parameter plane of different
branching levels at the same branching number.
Similarly, the combinations Q+

k < 1 of are deleted
from this figure. It shows that, with the increas-
ing of branching level k, parameter combinations to
have imbibition potential increases from 6.24% to
27.56%. That is to say, with liquid imbibe in more
sub-branches (or with time increases), some struc-
tures will have imbibing potential. In this process,
at the zone of best parameter combinations, dimen-
sionless imbibition rate increases sharply.

6. CONCLUSIONS

In this paper, the process of spontaneous imbibition
of liquid into a fractal tree-like network is inves-
tigated, taking structure parameters into consid-
eration. An analytical expression of dimensionless
imbibition rate in this fractal tree-like network is
derived, given by Eqs. (25) and (26). It is found that
generally speaking, the smaller the length ratio α
is, the higher imbibition potential the tree-like net-
work may have. With smaller α, the length of sub-
channels will decrease sharply. It makes easier for
liquid to flow into sub-channels and spread away,
which are positive to imbibition potential. And
larger diameter ratio β makes wider sub-channels
for liquid, which also makes easier for liquid to flow
into sub-channels. Larger branching number n and
branching level k can help the network to have imbi-
bition potential because these two parameters can
surge the number of sub-channels in spontaneous
imbibition process. The imbibition potential of the
network will be negligible when β is too small, no

matter how α and β change, because small β will
lead sub-channels too thin to flow. Thin channels
increase the flowing residence, which is negative to
imbibition potential. Besides, when β > 0.4, a slight
change of α and n will make a significant influ-
ence on imbibition potential. Moreover, with liq-
uid imbibing into more sub-branches, some struc-
tures will show positive characteristic to imbibition
potential gradually.

Additionally, with the fractal characteristics, α
and β can be represented by fractal dimension Dl

and Dd, respectively. A parameter plane is made
to visualize the percentage of good parameter in
all possible combinations and to evaluate the imbi-
bition potential of a specific network system more
directly, which is useful. Also, this plane can help
the work of designing and optimizing a fractal net-
work with good imbibition potential.
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