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a b s t r a c t 

The surface effect in the bending of nanowires (nanobeams), including cantilever nanowires and fixed- 

fixed ones, is investigated in this paper with a recently developed elastic theory for nanomaterials, in 

which only the bulk surface-energy density and the surface-relaxation parameter are involved as two 

independent parameters to characterize the surface effect. Closed-form solutions of the maximum deflec- 

tion and the effective elastic modulus in both kinds of nanowires are achieved. It is found that, com- 

paring to the prediction of the classically elastic beam theory, the cantilever nanowire is softened, while 

the fixed-fixed one is stiffened by the surface effect in nanoscales, consistent well with the existing ex- 

perimental measurements. Furthermore, an increasing aspect ratio of nanowires can further enhance the 

stiffening behavior of fixed-fixed nanowires and the softening behavior of cantilever ones, respectively. 

The present result should be helpful not only for explaining different surface effects in nanowires with 

different boundary conditions, but also for the design of nano-structures and nano-devices related to 

nanowires. 

© 2016 Elsevier Ltd. All rights reserved. 
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1. Introduction 

The mechanical property of nanowires has attracted consider-

able interests due to their potential applications in nanostructures

and nano-devices, such as sensors and resonators in nano-electro-

mechanical systems ( Craighead, 20 0 0; Xie et al., 2012 ) and rein-

forcing phases in advanced nanocomposites ( Lee et al., 2011; Gong

et al., 2013 ). Similar to the other nanomaterials, nanowires have

a size-dependently mechanical behavior due to a large surface-to-

volume ratio ( Liang and Upmanyu, 2005 ). 

Static bending experiment has been widely adopted to explore

the surface effect (size effect) in nanowires’ elastic properties. The

effective elastic modulus of fixed-fixed nanowires is found to in-

crease with a decreasing diameter of nanowires ( Cuenot et al.,

2004; Chen et al., 2006; Jing et al., 2006; Tan et al., 2007; Chan

et al., 2010; Celik et al., 2011 ). While for cantilever nanowires, the

effective elastic modulus has an oppositely size-dependent behav-

ior ( Nam et al., 2006; Gavan et al., 2009; Sadeghian et al., 2009,

2010 ). All these experimental results provide us a direct under-

standing of the surface effect (size effect) in nanoscales. 

Similar to the size effect in micro-scaled beam bending, which

can not be predicted by the classical continuum mechanics, but

depends on the strain gradient (for examples, Fleck and Hutchin-

son (1993, 1997) ; Gao et al., (1999); Chen and Wang (20 0 0) ;
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ao and Huang, (2001); Chen and Wang (2002) , the classical

eam theory is also invalid to predict the bending behavior of

anowires. Therefore, an elastic theory considering the surface ef-

ect (also addressed as size effect in nanoscales) in nanomateri-

ls should be developed. Fortunately, based on the framework of

he surface elasticity theory ( Gurtin and Murdoch, 1975, 1978 ),

any investigations on the size-dependently elastic behavior of

anowires have been carried out. Steigmann and Ogden (1997) and

hhapadia et al. (2011) introduced a surface flexural stiffness

nto the Gurtin–Murdoch (G-M) model in order to describe the

urvature-dependent surface energy of bending nanowires. A sim-

lar method was also adopted by Chiu and Chen (2011) . He and

illey (2008) applied a generalized Young–Laplace (Y-L) model pro-

osed by Wang and Feng (2007) to study the static bending behav-

or of nanowires, in which the effect of surface stress induced by

 curvature was taken into account. Wang et al. (2010) modeled a

ending nanowire as a core-shell composite system, which consists

f a surface elastic layer and a core part. Song et al. (2011) im-

roved the Y-L model by considering the in-plane surface stress

angential to the side surface of nanowires. Li et al. (2014) ex-

ended the Y-L model to the Timochenko nanobeam case. In ad-

ition, the molecular dynamics simulation method, as a major nu-

erical approach, was also adopted to study the bending behavior

f nanowires ( Park et al., 2005; Chhapadia et al., 2011; Moham-

adi and Sharma, 2012; Georgakaki et al., 2014 ). 

The surface elasticity theory as well as its extensions has be-

ome a unique and popular model to investigate the surface effect

http://dx.doi.org/10.1016/j.mechmat.2016.06.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/mechmat
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mechmat.2016.06.005&domain=pdf
mailto:chenshaohua72@hotmail.com
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Fig. 1. Schematic of a surface unit cell in the initial (reference), relaxed and current configurations, where a local coordinate system (1, 2) coincides with the two bond 

directions. 
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n the mechanical behavior of nanowires. However, almost all the

esearchers can not avoid looking for the surface elastic constants

nvolved in the surface elasticity theory, in order to give a pre-

ise comparison with the experimental result. Such a process is

hallenging because no experiment is valid to measure the surface

lastic constant till now. Only a few molecular simulations can pro-

ide some numerical data ( Miller and Shenoy, 20 0 0; Shenoy, 20 05;

i et al., 2008; Chhapadia et al., 2011 ). Some physical problems of

ow to achieve the surface elastic constant in molecular simula-

ions still exist and many factors will show significant influences

n the numerical data. For example, how many atomic layers in

 numerical model should be chosen as the surface of nanoma-

erials? Is the calculated surface elastic constant affected by the

ize of the numerical model or the potential energy function? The

omputational model is atomically continuous in molecular simu-

ations, but an interruption exists between the surface layer and

he inside part in most of the theoretical models. Furthermore, a

egative value of the surface elastic constant is often found in the

olecular simulations ( Shenoy, 2005; Mi et al., 2008 ). 

In view of the above problems, a new theory for nanomaterials

as been developed recently within the framework of continuum

echanics ( Chen and Yao, 2014 ), in which the surface elastic con-

tant is no longer involved. Instead, a surface-induced traction to

haracterize the surface effect in nanomaterials is derived, which

epends only on the Eulerian surface-energy density. Considering

he relationship between the Eulerian surface-energy density and

he Lagrangian one yields that only two kinds of material con-

tants are needed in the new elastic theory, i.e., the bulk surface-

nergy density and the surface-relaxation parameter. The former is

he surface energy density of a bulk solid while the latter is the

atio of the surface lattice length after and before a spontaneous

urface relaxation ( Ouyang et al., 2006; Chen and Yao, 2014 ). 

In the present paper, the new theory is further used to ana-

yze the surface effect in the bending of nanowires. Both a can-

ilever nanowire and a fixed-fixed one are investigated, in which

losed-form solutions of the bending deflection and the effective

lastic modulus of nanowires are given. Comparison of the theo-

etical prediction and the experimental result is carried out. The

tiffening and softening mechanisms of nanowires with different

oundary conditions are further discussed. 

. Brief introduction of the elastic theory for nanomaterials 

An elastic theory to characterize the surface effect in nanoma-

erials was proposed by Chen and Yao (2014) recently, which was

ased on the surface energy density of nanomaterials. Assuming

hat a nano-solid has an idealized crystal structure, the initial state

s regarded as a reference configuration, which will transform into

 current one under an external loading. A Lagrangian coordinate

ystem is attached to atoms on the surface with principal axes 1

nd 2 parallel to the two basic vectors of a surface unit cell as

hown in Fig. 1 ( Nix and Gao, 1998 ). a 01 and a 02 represent lat-

ice lengths in the two principal directions, respectively. β denotes
n angle between the two basic vectors. Due to a spontaneous

urface relaxation, two lattice lengths become a r 1 and a r 2 , respec-

ively. Both of them further change to be a 1 and a 2 in the current

onfiguration when an external loading is added on the nano-solid.

The potential energy function � of the nano-solid in the cur-

ent configuration can be written as 

(u ) = 

∫ 
V −S 

ψ(ε) d V + 

∫ 
S 

φd S −
∫ 

V −S 

f · u dV −
∫ 

S p 

p · u d S (1)

here ψ is the elastic strain energy density, φ is the Eulerian

urface-energy density in the current configuration, f and p are the

ody force and external surface traction, respectively. u and ɛ are

he displacement and strain induced by f and p . V and S denote

he volume and the surface of the nano-solid. 

The variation analysis of Eq. (1) yields the following equilibrium

quation and stress boundary conditions, 

 

σ · ∇ + f = 0 ( in V − S) 
n · σ · n = p · n − γn n ( on S) 
(I − n � n ) · σ · n = (I − n � n ) · p − γt ( on S) 

(2) 

here σ is the bulk Cauchy stress tensor, ∇ is a spatial gradient

perator in the current configuration, n is the unit normal vector

erpendicular to the surface S of the nano-solid, I is a unit tensor;

n and γ t are the normal and tangential components of an addi-

ionally surface-induced traction vector, respectively, which charac-

erizes a force disturbance at boundaries due to the surface effect.

ased on an infinitesimal element, the virtual work method yields

he surface-induced traction as ( Chen and Yao, 2014 ), 

t = ∇ s φ, γn n = φ
(

1 

R 1 

+ 

1 

R 2 

)
n = φ(n · ∇ s ) n (3)

here ∇ s is a surface gradient operator in the current configura-

ion, R 1 and R 2 are the two principal radii of curvature of a curved

urface. 

Relation between the Eulerian surface-energy density φ and the

agrangian surface energy density φ0 satisfies 

= 

φ0 

J s 
(4) 

here J s is a Jacobean determinant characterizing the surface de-

ormation from the reference configuration to the current one. Eq.

4) can also be found in Nix and Gao (1998) and Huang and Wang

2006) . 

Thus, the equilibrium equations can be rewritten as ( Chen and

ao, 2014 ), 

 

 

 

 

 

 

 

σ · ∇ + f = 0 ( in V − S) 

n · σ · n = p · n − φ0 (n · ∇ s ) 

J s 
( on S) 

(I − n � n ) · σ · n = (I − n � n ) · p + 

φ0 ( ∇ s J s ) 

J 2 s 

− ∇ s φ0 

J s 
( on S) 

(5) 
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Fig. 2. Bending model of a nanowire (nanobeam) with a global coordinate system ( x, y, z ). (a) A cantilever nanowire; (b) A fixed-fixed nanowire; (c) Cross-sections of the 

two kinds of nanowires. 
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The Lagrangian surface energy density φ0 in the reference con-

figuration consists of a structural part φstru 
0 

related to the surface

strain energy and a chemical part φchem 

0 
originating from the sur-

face dangling-bond energy ( Ouyang et al., 20 06, 20 08; Mi et al.,

2008 ), 

φ0 = φstru 
0 + φchem 

0 

φstru 
0 = 

E b 
2 sin β

2 ∑ 

i =1 

a 0 i ηi { [3 + ( λi + λi ε si ) 
−m − 3( λi + λi ε si )] 

×[ λ2 
i ε 

2 
si + ( λi − 1) 2 + 2 λi ( λi − 1) ε si ] } 

φchem 

0 = φ0 b 

(
1 − w 1 

D 0 

D 

)
, η1 = a 01 / a 02 , η2 = a 02 / a 01 (6)

where φ0 b is the surface energy density of bulk materials, D 0 is

a critical size ( D 0 = 3 d a for nanoparticles and 2 d a for nano-thin

films, where d a is the atomic diameter), D is a characteristic scale

of nanomaterials (e.g., thickness, diameter, etc.). w 1 is a param-

eter governing the size-dependent behavior of φchem 

0 
( Chen and

Yao, 2014 ). E b is the Young’s modulus of bulk materials, λi = a ri / a 0 i 
denotes the surface relaxation parameter, ε si = ( a i − a ri ) / a ri is the

surface strain induced only by the external loading. m is a parame-

ter describing the dependence of bond lengths on the binding en-

ergy ( m = 4 for alloys or compounds and m = 1 for pure metals)

( Sun, 2003 ). 

In contrast to the G-M theory ( Gurtin and Murdoch, 1975 ), the

new theory no longer requires the surface elastic constant. The

Lagrangian surface-energy density φ0 in the reference configura-

tion serves as a unique quantity characterizing the surface effect of

nanomaterials, which depends on the bulk surface-energy density

and the relaxation parameter. Both parameters have clearly phys-

ical meanings and can be determined very easily through experi-

ment and simple MD simulation. 

3. Surface effect in the bending of nanowires 

Fig. 2 shows a nanowire of length L with the longitudinal axis

in the x direction and the bending deflection in the z direction. The

cross section of the nanowire can be rectangular with a height h

and a width b ( b ≥ h ), or circular with a diameter d . Both a can-

tilever nanowire and a fixed-fixed one are analyzed in this paper

by the elastic theory for nanomaterials. 
.1. The potential energy function of a bending nanowire 

According to Timoshenko and Gere (1972) , the relation among

he axial displacement u x , the bending deflection w and the axial

train ɛ x for an Euler–Bernoulli beam, can be expressed as 

 x = −z 
dw 

dx 
, ε x = −z 

d 2 w 

d x 2 
, 0 ≤ x ≤ L (7)

The variation of the bulk strain energy U can be written as 

U = δ

∫ 
V 

1 

2 

σx ε x dV = δ

∫ L 

0 

1 

2 

E b I ( 
d 2 w 

d x 2 
) 

2 

dx = 

∫ L 

0 

E b I 
d 2 w 

d x 2 
d 2 (δw ) 

d x 2 
dx 

(8)

here I = 

∫ 
A nw 

z 2 dA is the inertia moment and A nw 

denotes the

rea of nanowires’ cross-section. 

The variation of the surface energy can be written as ( Zhang et

l., 2010 ) 

� = 

∫ 
S nw 

γ · δu dS = 

∫ L 

0 

dx 

∫ 
C nw 

( γt · δu t + γn δu n ) dC (9)

here S nw 

represents the lateral surface of the nanowire, C nw 

is the

erimeter of the nanowire’s cross section. δu t and δu n are the tan-

ential and normal displacement components of δu , respectively.

he vector γ t can be decomposed into a component γ x in the ax-

al direction and a component γ c in the circumferential direction

n the surface. For a thin nanowire, the latter is often neglected

 Chen and Chiu, 2011; Song et al., 2011 ). Combining Eqs. (3) , ( 4 )

nd ( 7 ) leads to 

t · δu t = γx δu x = 

∂φ

∂x 

[
−z 

d(δw ) 

dx 

]
= 

(
1 

J s 

∂ φ0 

∂x 
− φ0 

J 2 s 

∂ J s 
∂x 

)[
−z 

d(δw ) 

dx 

]
(10)

A real nanowire may have different crystal facet orientations

n its lateral surfaces from its axially oriented surface. For exam-

le, a < 100 > axially oriented nanowire may have {111} and {112}

ateral surface orientations. In this case, the surface energy den-

ity of different crystal surfaces leads to different surface-induced

ractions as given by Eq. (3) . On some crystal surfaces, the atomic

pacing and relaxation in two bond directions may not be the same

e.g. {110} surface) also. For such a nanowire with anisotropic sur-

aces, the total surface energy should be characterized by the sum

f surface energies of different oriented facets. For simplicity, a

100] axially-oriented nanowire with the same crystal facet lat-

ral surfaces is considered, which has an equal atom spacing in
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S

oth bond directions ( He and Lilley, 2008; Chhapadia et al, 2011;

ong et al, 2011 ) and is assumed as a perfectly and isotropically

ylindrical surface in the theoretical analysis, as done in the sur-

ace elasticity models ( Wang and Feng, 2007; He and Lilley, 2008;

ong et al., 2011; Wolfer, 2011 ). As a result, we have β = 90 ◦ and

 01 = a 02 = 

√ 

2 a 0 / 2 , where a 0 is the lattice constant of a bulk

aterial. The surface relaxation in both bond directions is the

ame, i.e., λ1 = λ2 = λ ( Ouyang et al, 2006 ). Meanwhile, the sur-

ace strain ɛ si ( i = 1 , 2) in both bond directions equals ɛ x /2 (Details

re given in Appendix ). For a metallic nanowire, we have m = 1 ,

 = d or h , D 0 = 3 d a and w 1 = 1 / 4 ( Jiang et al., 2001; Sun, 2003;

iang et al., 2010 ). Then, Eq. (6) is rewritten as 

0 = φ0 b 

(
1 − 3 d a 

4 D 

)
+ 

√ 

2 E b a 0 
2 

[
3 + 

1 

λ(1 + ε x / 2) 
− 3(λ + 

λε x 
2 

) 

]

×
[
λ2 ε 2 x 

4 

+ 2 λ(λ − 1) 
ε x 
2 

+ (λ − 1) 2 
]

(11) 

The Jacobean determinant related to the surface deformation is

 s = λ2 (1 + ε x / 2) 2 . Combining Eqs. (3) , ( 7 ), ( 10 ), ( 11 ) and using Tay-

or series approximation yield the surface-induced traction γ x , 

x = 

[ 

C 0 z + C 1 z 
2 d 

2 w 

d x 2 
+ C 2 z 

3 

(
d 2 w 

d x 2 

)2 
] 

d 3 w 

d x 3 
(12) 

here 

C 0 = φ∗
0 (5 − 4 λ) −

√ 

2 E b a 0 A 2 (3 − 2 λ) 

2 

C 1 = 2 φ∗
0 + 

√ 

2 E b a 0 A 1 (3 − 2 λ) −
√ 

2 E b a 0 A 2 (5 − 4 λ) 

2 

C 2 = 

√ 

2 E b a 0 A 1 (7 − 4 λ) 

2 

−
√ 

2 E b a 0 A 2 , φ
∗
0 = φ0 b 

(
1 − 3 d a 

4 D 

)

+ 

√ 

2 E b a 0 
2 

(λ − 1) 2 

 1 = 

1 − 10(λ − 1) − 17 (λ − 1) 
2 

4 

, A 2 = (λ − 1) − 5 (λ − 1) 2 (13) 

Considering Eqs. (3) , ( 4 ), ( 11 ) and using the curvature κ = −(n ·
 s ) = d 2 w/d x 2 , δu n ≈ δw ( Chen and Chiu, 2011; Song et al., 2011 ),

e have 

n δu n ≈ −φκδw = −φ0 

J s 

d 2 w 

d x 2 
δw 

= −
[ 

D 0 z+ D 1 z 
d 2 w 

d x 2 
+ D 2 z 

2 

(
d 2 w 

d x 2 

)2 

+ D 3 z 
3 

(
d 2 w 

d x 2 

)3 
] 

d 2 w 

d x 2 
δw

(14)

here 

 0 = φ∗
0 (3 − 2 λ) , D 1 = φ∗

0 −
√ 

2 E b a 0 A 2 (3 − 2 λ) 

2 

 2 = 

√ 

2 E b a 0 A 1 (3 − 2 λ) 

2 

−
√ 

2 E b a 0 A 2 , D 3 = 

√ 

2 E b a 0 A 1 

2 

(15) 

Then, the variation of the potential energy function can be writ-

en as, 

� = δU + δ� − δW 

= 

∫ L 

0 

E b I 

(
d 2 w 

d x 2 

)
d 2 (δw ) 

d x 2 
dx 

+ 

∫ L 

0 

dx 

∫ 
C nw 

( γx δu x + γn δu n ) dC − F δw max 

= 

∫ L 

0 

E b I 

(
d 2 w 

d x 2 

)
d 2 (δw ) 

d x 2 
dx 
−
∫ L 

0 

[ 

C 0 I s 1 + C 2 I s 2 

(
d 2 w 

d x 2 

)2 
] 

d 3 w 

d x 3 
d(δw ) 

dx 
dx 

−
∫ L 

0 

[ 

D 0 I c + D 2 I s 1 

(
d 2 w 

d x 2 

)2 
] 

d 2 w 

d x 2 
δwdx − F δw max (16) 

n which I s 1 = 

∫ 
C NW 

z 2 dC, I s 2 = 

∫ 
C NW 

z 4 dC and I c = 

∫ 
C nw 

n 2 w 

dC. Here n w 

epresents the vertical component of the unit normal vector n ,

hich is parallel to w ( x ). 

For nanowires with different cross-section shapes, we have 

ectangular : I = 

b h 

3 

12 

, I s 1 = 

b h 

2 

2 

+ 

h 

3 

6 

, I s 2 = 

b h 

4 

8 

+ 

h 

5 

80 

, I c = 2 b 

ircular : I = 

πd 4 

64 

, I s 1 = 

πd 3 

8 

, I s 1 = 

3 πd 5 

128 

, I c = 

πd 

2 

(17) 

.2. Closed-form solution of a fixed-fixed nanowire 

For a fixed-fixed nanowire, both the end at x = 0 and that at

 = L are clamped with a concentrated force F acting at x = L/ 2 .

he maximum bending deflection is denoted as w max , which oc-

urs at x = L/ 2 . Due to the symmetric characteristic of the bending

odel, only half of the nanowire is considered. Ignoring the high-

rder terms results in the variation of the potential energy, 

� = 

∫ L/ 2 

0 

[
( E b I + C 0 I s 1 ) 

d 4 w 

d x 4 
− D 0 I c 

d 2 w 

d x 2 

]
δw dx 

+ 

[
E b I 

d 2 w 

d x 2 
d(δw ) 

dx 

]x = L/ 2 

x =0 

−
[
( E b I + C 0 I s 1 ) 

d 3 w 

d x 3 
δw 

]x = L/ 2 

x =0 

− F 

2 

(δw ) x = L/ 2 (18) 

Let δ� = 0 . Then, considering the boundary conditions w (0) =
 (L ) = 0 and w 

′ (0) = w 

′ (L/ 2) = w 

′ (L ) = 0 yields 

( E b I + C 0 I s 1 ) 
d 4 w 

d x 4 
− D 0 I c 

d 2 w 

d x 2 
= 0 

( E b I + C 0 I s 1 ) 
d 3 w 

d x 3 

]
x = L/ 2 

= −F 

2 

(19) 

hich are the deflection equation and the force boundary condi-

ion for the bending of a fixed-fixed nanowire, respectively. 

For a wire (beam) with a relatively large characteristic scale, the

urface effect is negligible, i.e., C 0 = 0 and D 0 = 0 . The deflection

quation can be well degraded to the classical one, E b I w 

(4) (x ) = 0

 Timoshenko and Gere, 1972 ). 

The deflection function can be easily solved from Eq. (19) , 

 (x ) = S 1 + S 2 x + S 3 cosh (kx ) + S 4 sinh (kx ) 

k = 

√ 

D 0 I c 

E b I + C 0 I s 1 
, 0 ≤ x ≤ L/ 2 (20) 

Substituting the following boundary conditions into Eq. (20) 

 = 0 : w = 0 , 
dw 

dx 
= 0 

 = 

L 

2 

: 
dw 

dx 
= 0 , 

[
( E b I + C 0 I s 1 ) 

d 3 w 

d x 3 

]
= −F 

2 

(21) 

ields 

 1 = −F 
√ 

E b I + C 0 I s 1 sinh (kL/ 4) 

2 ( D 0 I c ) 
3 / 2 

cosh (kL/ 4) 
, S 2 = 

F 

2 D 0 I c 
, 

 3 = 

F 
√ 

E b I + C 0 I s 1 sinh (kL/ 4) 

2 ( D 0 I c ) 
3 / 2 

cosh (kL/ 4) 
, S 4 = −F 

√ 

E b I + C 0 I s 1 

2 ( D 0 I c ) 
3 / 2 

(22) 
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Table 1 

Material parameters involved in our model. 

d a (nm) a 0 (nm) E b (GPa) φb(001) (N/m) c 1 (001) (nm) 

Ag 0 .2889 0 .418 78 1 .2 0 .016 

Au 0 .2884 0 .42 79 1 .63 0 .025 

Pb 0 .36 0 .5 16 0 .6 / 

Si 0 .22 0 .54 169 2 .2 / 
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A closed-form solution of the bending deflection is achieved 

w (x ) = −F 
√ 

E b I + C 0 I s 1 sinh (kL/ 4) 

2 ( D 0 I c ) 
3 / 2 

cosh (kL/ 4) 
+ 

F x 

2 D 0 I c 

−F 
√ 

E b I + C 0 I s 1 sinh [ k (x − L/ 4)] 

2 ( D 0 I c ) 
3 / 2 

cosh (kL/ 4) 

(0 ≤ x ≤ L/ 2) (23)

with a maximum deflection w max , 

w max = w (L/ 2) = 

F L 

4 D 0 I c 
− F 

√ 

E b I + C 0 I s 1 sinh (kL/ 4) 

( D 0 I c ) 
3 / 2 

cosh (kL/ 4) 
(24)

Equaling the maximum deflection w max in Eq. (24) to the clas-

sical solution ( Chen et al., 2006; Chiu and Chen, 2011 ), i.e., 

F L 

4 D 0 I c 
− F 

√ 

E b I + C 0 I s 1 sinh (kL/ 4) 

( D 0 I c ) 
3 / 2 

cosh (kL/ 4) 
= 

F L 3 

192 E e f f I 
(25)

yields a closed-form solution of the effective elastic modulus E eff

E e f f == 

L 3 

192 I 

[ 

L 

4 D 0 I c 
−

√ 

E b I + C 0 I s 1 sinh (kL/ 4) 

( D 0 I c ) 
3 / 2 

cosh (kL/ 4) 

] (26)

3.3. Closed-form solution of a cantilever nanowire 

For the bending of a cantilever nanowire with a fixed end at

x = 0 and a concentrated force F acted at the other end x = L , the

variation of the potential energy can be written as 

δ� = 

∫ L 

0 

[
( E b I + C 0 I s 1 ) 

d 4 w 

d x 4 
− D 0 I c 

d 2 w 

d x 2 

]
δw dx 

+ 

[
E b I 

d 2 w 

d x 2 
d(δw ) 

dx 

]x = L 

x =0 

−
[
( E b I + C 0 I s 1 ) 

d 3 w 

d x 3 
δw 

]x = L 

x =0 

− F (δw ) x = L (27)

Let δ� = 0 . Then, considering the boundary conditions w (0) =
0 , w 

′ (0) = 0 , we have 

( E b I + C 0 I s 1 ) 
d 4 w 

d x 4 
− D 0 I c 

d 2 w 

d x 2 
= 0 

E b I 

(
d 2 w 

d x 2 

)
x = L 

= 0 , 

[
( E b I + C 0 I s 1 ) 

d 3 w 

d x 3 

]
x = L 

= −F (28)

The deflection function can be easily found from Eq. (28) , 

w (x ) = S 1 + S 2 x + S 3 cosh (kx ) + S 4 sinh (kx ) 

k = 

√ 

D 0 I c 

E b I + C 0 I s 1 
, 0 ≤ x ≤ L (29)

Using the following boundary conditions to solve Eq. (29) , 

x = 0 : w = 0 , 
dw 

dx 
= 0 

x = L : E b I 

(
d 2 w 

d x 2 

)
= 0 , 

[
( E b I + C 0 I s 1 ) 

d 3 w 

d x 3 

]
= −F (30)

we have 

S 1 = −F sinh (kL ) 
√ 

E b I + C 0 I s 1 

( D 0 I c ) 
3 / 2 

, S 2 = 

F cosh (kL ) 

D 0 I c 
, 

S 3 = 

F sinh (kL ) 
√ 

E b I + C 0 I s 1 

( D 0 I c ) 
3 / 2 

, S 4 = −F cosh (kL ) 
√ 

E b I + C 0 I s 1 

( D 0 I c ) 
3 / 2 

(31)
A closed-form solution of the bending deflection can be found 

 (x ) = −F sinh (kL ) 
√ 

E b I + C 0 I s 1 

( D 0 I c ) 
3 / 2 

+ 

F cosh (kL ) x 

D 0 I c 

+ 

F 
√ 

E b I + C 0 I s 1 

( D 0 I c ) 
3 / 2 

sinh [ k (L − x )] 

(0 ≤ x ≤ L ) (32)

ith the maximum deflection w max at x = L , 

 max = w (L ) = 

F cosh (kL ) L 

D 0 I c 
− F sinh (kL ) 

√ 

E b I + C 0 I s 1 

( D 0 I c ) 
3 / 2 

(33)

Similar to the fixed-fixed nanowire case, equaling the maximum

eflection in Eq. (33) to the classical solution 

F cosh (kL ) L 

D 0 I c 
− F sinh (kL ) 

√ 

E b I + C 0 I s 1 

( D 0 I c ) 
3 / 2 

= 

F L 3 

3 E e f f I 
(34)

ields a closed-form solution of the effective elastic modulus E eff

or the bending of a cantilever nanowire, 

 e f f == 

L 3 

3 I 

[ 

cosh (kL ) L 

D 0 I c 
− sinh (kL ) 

√ 

E b I + C 0 I s 1 

( D 0 I c ) 
3 / 2 

] (35)

. Results and discussion 

The deflection and the effective elastic modulus of silver, gold,

ead and silicon nanowires with (001) surfaces will be predicted

heoretically using the present model, in which the surface relax-

tion parameter λ is proportional to the height h or diameter d

f nanowires, λ = 1 − c r /D ( c r > 0, D = h or d) ( Diao et al., 2004;

uyang et al, 2008; Olsson and Park, 2012 ). The value of c r and

he other material parameters involved in the present model are

iven in Table 1 ( Jaccodine, 1963; Sadeghian et al., 2009; Sheng

t al., 2011 ). λ approaches one for nanowires with a relatively large

haracteristic size. 

.1. The case of a fixed-fixed nanowire 

The deflection of a fixed-fixed silver (Ag) nanowire is pre-

icted theoretically with our model and compared with the exist-

ng experimental result given by Chen et al. (2006) as shown in

ig. 3 , in which theoretical results obtained by the Young–Laplace

Y-L) model ( He and Lilley, 2008 ) and the classical beam the-

ry ( Timoshenko and Gere, 1972 ) are also shown for comparison.

ll the material parameters are taken from the experiment work

 Chen et al., 2006 ), such as L = 1994 nm, d = 65.9 nm, F = 62nN. The

nvolved surface elastic modulus E s in the Y-L model is taken as

.22 N/m ( He and Lilley, 2008 ). Fig. 3 shows that the theoretical

esults considering the surface effect agree well with the exper-

mental one, while the classical one deviates obviously from the

xperimental measurement, especially for the maximum deflec-

ion. The difference of the maximum deflection predicted by the

resent theoretical model and the experimental one is less than

%. Both the present theoretical prediction and the experimental
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Fig. 3. Surface effect (size effect) on the deflection of a fixed-fixed nanowire. (a) Deflection predicted by the present model varying along the x axial, which is compared with 

the existing experiment measurements ( Chen et al., 2006 ) and theoretical predictions by Y-L model ( He and Lilley, 2008 ) and the classical beam theory; (b) the maximum 

deflection as a function of the diameter of nanowires, where the prediction of the present model is compared with the existing experimental results ( Chen et al., 2006 ). 
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m

E

easurement demonstrate that the bending stiffness of a fixed-

xed nanowire is effectively enhanced due to the surface effect

t nanoscale. Comparison of the maximum deflection predicted by

he theory for nanomaterials and the one measured experimentally

s given in Fig. 3 (b) for nanowires of different lengths and diame-

ers, which shows a good agreement also. 

The effective elastic modulus E eff is shown in Fig. 4 , where the

heoretical result is compared with the experimental one given

y Cuenot et al. (2004) for a lead (Pb) nanowire and Jing et al.

2006) for a silver (Ag) nanowire, respectively. The theoretical re-

ult predicted by the present model agrees very well with the ex-

erimental measurement, even for lead nanowires with a diameter
ess than 70nm and silver nanowires with a diameter less than

0nm, whose effective elastic modulus is approximately twice the

orresponding bulk value ( Cuenot et al., 2004; Jing et al., 2006 ).

oth the theoretical and experimental results show that the effec-

ive elastic modulus E eff tends to the bulk one and is almost insen-

itive to the diameter d when the diameter of nanowires is large

nough, for example, d > 110nm for Pb and d > 60nmfor Ag. 

The same problem was also investigated by Miller and Shenoy

20 0 0) and Chhapadia et al. (2011) , in which the effective elastic

odulus was expressed as 

 e f f = E b 

(
1 + 

E s I s 1 
E I 

)
, ( M −Smodel ) (36) 
b 
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Fig. 4. Normalized effective elastic modulus as a function of the diameter of nanowires predicted by different models and experiments. (a) for a lead nanowire; (b) for a 

silver nanowire. 
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E e f f = E b 

(
1 + 

E s I s 1 
E b I 

+ 

D s I c 

E b I 

)
, ( Chhapadia et al.’s model ) (37)

In the above formulae, E s denotes the surface elastic modulus,

whose value was taken as 8 N/m for Pb and 1.22 N/m for Ag ( He

and Lilley, 2008 ). D s is the surface bending modulus with a value

of 0.344N · m for Ag ( Chhapadia et al., 2011 ). The effective elastic

modulus predicted by Eqs. (36) and ( 37 ) is also shown in Figs. 4 (a)

and (b) for comparison, respectively. It shows that the above two

equations can successfully predict the experimental results only
hen the diameter of nanowires is larger than 75 nm for Pb and

0 nm for Ag. 

.2. The case of a cantilever nanowire 

The bending experiment of a cantilever silicon nanowire was

arried out by Sadeghian et al. (2010) , in which the nanowire has

 rectangular cross-section with a width b = 8 μm , an axial length

 = 10 μm and a height h ranging from 40 nm to 1 μm. The the-

retical prediction and the experimental measurement of the ef-

ective elastic modulus for cantilever nanowires are compared in
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Fig. 5. Comparison of the normalized effective elastic modulus predicted by the present model and that measured by experiment ( Sadeghian et al., 2010 ) for a cantilever 

silicon nanowire. 

Fig. 6. Effective elastic modulus predicted theoretically as a function of the diameter of fixed-fixed nanowires and cantilever ones with different aspect ratios. 
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ig. 5 , where it shows that the effective elastic modulus E eff in-

reases with an increasing height of nanowires and finally ap-

roaches the bulk value. It suggests that the reduction of a can-

ilever nanobeam height would lead to a softening behavior, con-

rary to the stiffening characteristic of a fixed-fixed nanowire. Such

 softening behavior has also been observed by many experi-

ents and numerical simulations ( Park et al., 2005; Park and Klein,

0 08; Gavan et al., 20 09; Sadeghian et al., 2010; Mohammadi and

harma, 2012 ). 

Though the varying trend of the effective elastic modulus pre-

icted by the present model is consistent well with that mea-

ured by experiments, an obvious difference between the theoret-

cal result and the experimental one can be found in Fig. 5 , espe-

ially for cantilever nanobeams with a relatively small height ( h ≤
00nm). A few aspects may be responsible for such a deviation. In

he present theoretical model, m = 1 is adopted for silicon materi-

ls though such a value is more appropriate for pure metals. The

eam bending theory is adopted to analyze samples in the exper-

ment ( Sadeghian et al., 2010 ), though the sample looks more like

 plate than a beam. Moreover, as mentioned by Sadeghian et al.,
 n  
2010) , the fabrication-induced defects and the native oxide layer

ithin nanowire samples may also have important influences on

he experimental measurements of stiffness, which, however, are

ot considered in the present model. All these issues will be fur-

her studied in our future work. 

.3. Comparison of the two kinds of nanowires 

Comparing to the solution obtained by the classical beam the-

ry, both the above theoretical prediction and the experimental

easurement show that a fixed-fixed nanowire is always stiffened

hile a cantilever nanobeam is always softened. Fig. 6 gives the ef-

ective elastic modulus varying with the aspect ratio of both kinds

f nanowires. The effective elastic modulus increases for a fixed-

xed nanobeam, while decreases for a cantilever one with an in-

reasing aspect ratio. It suggests that not only the nanoscale diam-

ter but also the length would show significant influences on the

lastic behavior of both kinds of nanowires, though this aspect was

ot noted by the existing experiment. The larger the aspect ratio,
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Fig. A.1. Schematic of a (001) surface and the relation between a surface local coor- 

dinate system (1, 2) and a global one ( x, y, z ). The insetted quadrilateral consisting 

of four red atoms represents a surface unit cell. 
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the stronger the stiffening of a fixed-fixed-nanobeam is, and the

more obvious the softening of a cantilever nanowire is. 

An interesting question is easily raised that why the surface ef-

fect in both kinds of nanowires is totally different. The physical

discrepancy originates perhaps from the curvature. For a cantilever

nanowire, an upward curvature results in a surface-induced trac-

tion with the same direction as that of the external load, leading to

a larger deflection than the classical one. While a downward cur-

vature in most parts of a fixed-fixed bending nanowire may give a

surface-induced traction with an opposite direction to that of the

external load, which acts as a resistance of the external load, yield-

ing a smaller deflection than the classical one. As a result, a fixed-

fixed nanowire is stiffened while a cantilever nanowire is softened

as compared to a bulk wire of the same material. However, the

surface-induced traction in the normal direction of the surface can

only affect the magnitude of the deflection, without bringing any

additional rotation of the nanowire’s cross-section. The assumption

of an Euler–Bernoulli beam is still valid. 

Nanowires in the present paper are regarded as Euler–Bernoulli

beams without considering the shear deformation, which should

be reasonable for a slender nanowire ( L / d ≥ 10). For nanowires

with a relatively small aspect ratio ( L / d < 10), the Timoshenko

beam model may be more accurate to describe the bending be-

havior ( Timoshenko and Gere, 1972 ). 

5. Conclusion 

Based on a recently developed continuum theory for materials

in nanoscale ( Chen and Yao, 2014 ), the bending behavior of two

kinds of nanowires with different boundary conditions is investi-

gated. Closed-form solutions of the deflection and effective elastic

modulus for both nanowires are obtained. It shows that the theo-

retical prediction agrees very well with the existing experimental

measurement not only for a fixed-fixed nanowire but also for a

cantilever one. Not only the characteristic length but also the as-

pect ratio exhibits significant effects on the elastic behavior of both

nanowires. In contrast to the prediction of the classical beam the-

ory, the surface effect will stiffen the elastic property of fixed-fixed

nanowires, but soften that of cantilever ones. The smaller the char-

acteristic length or the larger the aspect ratio, the larger the effec-

tive elastic modulus of a fixed-fixed nanobeam is, but the smaller

the effective elastic modulus of a cantilever nanobeam will be.

The physical origin may be due to the curvature, which leads to a

surface-induced traction with the same or an opposite direction as

or to that of the external load. This study may provide an efficient

and convenient approach to study the surface effect in nanobeams

and the result should be helpful for the design of nano-devices and

nanomaterials. 
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Appendix 

Fig. A .1 shows a local coordinate system with axes 1 and 2 par-

allel to the two basic vectors of the surface unit cell and a global

one { x, y, z } attached to the nanowire. It is obvious that the lo-

cal coordinate in (001) crystal surface does not coincide with the

global one. The relation of the surface strain in bond directions and

the strain induced by the external load in the global coordinate

system can be established through a coordinate transformation, 

ε ′ i j = q ki q l j ε kl (A.1)
here q ki is a component of the transformation tensor and the

ubscripts i, j, k, l range from 1 to 2. 

For the bending of a nanobeam, we have ε 11 = ε x , ε 22 = ε 12 =
 21 = 0 , where ɛ ij is the strain component in the global coordinate

ystem and ɛ x is the axial strain of the nanobeam. ε ′ 
i j 

represents

he strain in the local coordinate system with ε ′ 
11 

= ε s 1 , ε 
′ 
22 

= ε s 2 ,
here ε ′ 11 and ε ′ 22 are in the axes 1 and 2 directions, respectively. 

On the (001) surface, an angle of 45 ° exists between the local

nd global coordinate systems as shown in Fig. A .1. The compo-

ents of the transformation tensor q ki are 

 11 = sin 45 

◦, q 12 = cos 45 

◦, q 21 = − cos 45 

◦, q 22 = sin 45 

◦ (A.2)

Expanding the coordinate transformation given by Eq. (A.1) , we

ave 

ε s 1 = q 2 11 ε 11 + q 2 21 ε 22 + 2 q 11 q 21 ε 12 

ε s 2 = q 2 12 ε 11 + q 2 22 ε 22 + 2 q 12 q 22 ε 12 

 s 12 = q 11 q 12 ε 11 + q 21 q 22 ε 22 + ( q 11 q 22 + q 12 q 21 ) ε 12 (A.3)

Substituting Eq. (A.2) into Eqs. (A.3) yields 

 s 1 = ε s 2 = ε s 12 = 

ε x 
2 

(A.4)
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