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This paper explores theoretical solutions to the three-dimensional (3D) shock/shock interaction induced by 3D asymmetrical 
intersecting compression wedges in supersonic inviscid flows. For Mach interactions, an analytical method known as spa-
tial-dimension reduction, which transforms the problem of 3D steady shock/shock interaction into a two-dimensional (2D) 
pseudo-steady problem on cross sections, is used to obtain the solutions in the vicinity of the Mach stem. The theoretical solu-
tions include the pressure, temperature, density, Mach number behind the Mach stem, and total pressure recovery coefficient. 
Numerical simulations are performed to validate the theoretical results. Here, the NND scheme is employed by solving 3D in-
viscid Euler equations, and good agreements are obtained. The asymmetry of the flow characteristics induced by the wedge 
angle and sweep angle are thoroughly discussed. 
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1  Introduction 

In aerospace engineering, supersonic corner flow is an im-
portant issue owing to its existence in wing roots, wing-fin 
junctions, air intakes, etc. (see Figure 1). It produces com-
plex three-dimensional (3D) wave configurations dominated 
by shock/shock interactions and induces a high heat flux 
and large total pressure loss.  

The shock/shock interaction induced by two intersecting 
wedges has been studied, and remarkable progress has been 
made via several experimental and computational investiga-
tions [1–17]. Charwat, Cresci, Watson, and West et al. [1–4] 
conducted the earliest experimental research on the distribu-
tion of the surface pressure and the wave structure in the 

corner region for both symmetrical corner and asymmetrical 
models. Cresci, Stainback, Korkegi, and Venkateswaran et 
al. [2,5–7] performed experimental studies on aerodynamic 
heating in the vicinity of corners. With the rapid develop-
ment of computer technology and computational fluid dy-
namics, numerical methods are used to investigate the cor-
ner flows conveniently and economically [8–17]. Rubin, 
Kutler, Shang, and Marconi et al. [8–11] did the earliest 
numerical studies on characteristics of corner flows using a 
low-order numerical scheme and a rough mesh resolution. 
Ambrosio used an Essentially Non-Oscillatory (ENO) 
scheme to study the shock-induced separated structures in 
symmetric corner flows [12]. Ambrosio and Goonko et al. 
[13–15] used the fifth-order weighted ENO scheme to cap-
ture the wave configurations induced by corner flows and 
compute the fluxes across cell faces. However, compared 
with the numerical and experimental research, the theoreti- 
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Figure 1  Schematic of a MI. 

cal studies are far from satisfactory.  
The earliest theory on shock reflection can be dated back 

to 1943 when Von Neumann built analytical approaches to 
solve regular reflection and Mach reflection, which were 
called the two-shock theory and three-shock theory, respec-
tively [18,19]. Kawamura developed a method using polar 
coordinates (p, θ) to describe the shock-reflection phenom-
enon that is widely used today, where “p” is the flow static 
pressure and “θ” is the flow deflection angle [20]. Ben-Dor 
systematically summarized the progress made in the 
two-dimensional (2D) shock-wave reflection phenomena 
and presented an analytical theory in his book [21]. In con-
trast to the well-established theory regarding the 2D shock 
reflection and interaction problem, there are few theoretical 
works on 3D shock reflection and interaction phenomena. 
Yang and Xiang [22–25] proposed a new theoretical method 
called “spatial-dimension reduction” to study the 3D 
shock/shock interaction induced by two intersecting wedges, 
and good agreements with numerical results were obtained.  

In the present research, the 3D shock/shock interactions 
induced by two asymmetrical wedges are studied. The in-
fluences of asymmetrical wedge angles and sweep angles on 
flow field parameters and wave configurations are also con-
sidered. This paper is organized as follows: Section 2 pre-
sents the spatial-dimension reduction method and numerical 
approach in detail. Theoretical results and comparisons with 
numerical solutions are described in Section 3. A brief 
summary and conclusion are presented in Section 4. 

2  Theoretical analysis approach and numerical 
method 

2.1  Theoretical analysis approach 

Figure 1 presents a classical model of two asymmetrical 
intersecting wedges, where λ1 and λ2 are the sweep angle, 
θ1 and θ2 are the wedge angle, and ν is the angle between 
the two bottom planes of wedges. For the inviscid super-

sonic inflow M0, two incident shock waves occur because of 
the compressional flows over the two wedges. The variables 
β1 and β2 are the shock angles on cross sections of wedges 
parallel to the direction of incoming flow, and β1n and β2n 
are the shock angles perpendicular to OA and OC, respec-
tively. The two incident waves I1 and I2 interact with each 
other over the two intersecting wedges and several wave 
configurations may form, such as regular interaction (RI), 
Mach interaction (MI), and weak-shock interaction (WSI). 
This paper focuses on the MI. A Mach stem surface occurs 
owing to the interaction of two incident shock waves. The 
main idea of the spatial-dimension reduction is converting 
the 3D steady problem to a 2D unsteady one so that we can 
use classical 2D theory combined with shock dynamics to 
solve the 3D shock/shock interaction. The main procedures 
are summarized as follows. 

2.1.1  Step 1: Geometrical transformations 
First, the relations between the 3D steady problem and 2D 
unsteady problem should be determined. Decomposing the 
3D geometry into a 2D one is important to the problem 
transformation. For the inflow velocity q, it is not difficult 
to see that the intersecting line of the two incident waves 
OB is a unique direction, and the velocity qn, which is par-
allel to it is identical throughout the whole flow field (see 
Figure 2). Thus, OB is defined as the characteristic direction, 
and the cross sections (such as S1 and S2) perpendicular to it 
are considered as the characteristic planes. After transform-
ing the 3D steady problem into a 2D unsteady one, the 
problem can be regarded as two incident waves Ms1 and Ms2 
moving along the virtual wall in a 2D plane (see Figures 2, 
3(a), and 3(b)). The inflow velocity on characteristic planes 
is q0, which passes through the incident waves and reflected 
waves in Figures 2 and 3(a). The virtual wall is the trajec-
tory of the interacting point for RI or a line perpendicular to 
the Mach stem, which was first defined by Xie [26]. 

The decomposed Mach number Ms1 and Ms2 can be cal-
culated as follows: 

 1 0 1 1 2 0 2 2sin cos , sin cos ,s n n s n nM M M Mβ λ β λ= =  (1) 

 

Figure 2  Schematic of “spatial-dimension reduction”. 
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Figure 3  Schematic of a 2D moving shock/shock interaction. (a) RI; (b) 
MI. 

where η is the angle between Ms1 and Ms2 and can be ob-
tained by the following equation: 
 1 2cos cos( , ).η = n n  (2) 

The vectors n1 and n2 on the cross sections can be ex-
pressed as 

 ( )
1

1 1 1 1 1 1cos tan cos cot tan ,cos ,n nλ β λ λ β λ
= ×

= −
n OA E

 (3) 
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2 2 2
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where E is the vector in the shock surface AOM normal to 
the leading edge of the bottom wedge, and D is the vector in 
shock surface CON normal to the leading edge of the lateral 
wedge. 

2.1.2  Step 2: Wave configuration determination 
The wave configuration is assumed as an RI at first, and the 
2D unsteady wave configuration can be observed in Figure 
3(a). For the given inflow, the shock polar of the RI can be 
determined using the following equation: 
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where M is the decomposed Mach number in the direction 

of the reflection point, γ is 1.4 for an ideal gas, and ξ is the 
ratio of the pressure behind Ms1 and Ms2. 

The determinations of the wave configuration according 
to the assumed shock polar are as follows (Figure 4(a)). 

1) The reflected polars R1 and R2 intersect with each oth-
er at two points, and an RI occurs. 

2) The reflected polars R1 and R2 do not intersect with 
each other but intersect with incident polars I1 and I2, re-
spectively, and an MI occurs. 

3) The reflected polars R1 and R2 are totally inside the 
two incident polars I1 and I2, respectively, and a WSI oc-
curs. 

2.1.3  Step 3: Solutions to the 2D unsteady problem 
For the RI, the solution to the flow field can be obtained by 
shock polar analysis. The pressure behind two reflected 
waves is the value for the lower intersecting point O1. 

For the MI, the Mach stem gets longer with the propaga-
tion of two incident waves Ms1 and Ms2, which can be 
viewed as the characteristic plane propagating along the 
characteristic direction. The angle between the virtual wall 
and the horizontal line θv, and the Mach number behind the 
Mach stem Mm, can be calculated using the following equa-
tions [26]: 
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where f(M) is a function in terms of Mach number M, and 
its expression is  

 2

2 d( ) exp ,
( 1) ( )

M Mf M
M K M

 
= − − 

  (8) 

K(M) is a slowly varying function and its expression is 

 ( )
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 which represents a func-

tion of the Mach number of a moving shock relative to the  
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Figure 4  Comparison with experimental and numerical results: (a) shock polar analysis on characteristic plane; (b) wave configuration of an MI. 

flow field ahead of it. 

2.1.4  Step 4: Solutions to the 3D steady problem 
Finally, the values of all zones should be calculated for such 
3D problems. The state parameters, such as the temperature, 
pressure, density, and total pressure recovery coefficient, 
are identical to those of the 2D unsteady solutions. The 
vector parameters, such as the velocities and Mach number, 
should be composed with the decomposed vectors along OB 
in Figures 1 and 2. Therefore, all the flow-field parameters 
can be solved. 

2.2  Numerical method 

The governing equation is the following 3D Euler equation:  

 0,U F G H
t x y z

∂ ∂ ∂ ∂+ + + =
∂ ∂ ∂ ∂

 (10) 

where U, F, and G are the state variables and fluxes in the 
x-, y-, z- directions, respectively, and their expressions are 
as follows: 
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For the ideal gas, the total internal energy per unit mass 
E is 

 2 2 21 ( ).
( 1) 2
p u v w

γ ρ
= + + +

−
E  (12) 

The second-order NND scheme is applied for the con-
vective terms F, G, and H [27]. The discretization of the 
governing equation is as follows: 
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The computational mesh uses the orthogonalized uniform 
structured mesh, and the mesh number is 120 × 200 × 200 
in the x, y, and z directions. The MPI Parallel Program is 
used in the code. Mesh independence tests were performed 
to ensure that all the results produced were independent of 
the type of mesh chosen for the numerical simulations. The 
inlet of the computational zone was given by a fixed inflow, 
the far-field selected the non-reflecting boundary condition, 
and the walls selected the solid slipping condition. The 
computations were conducted on an 8-core computer (Dell, 
USA). 

3  Results and discussion 

The analytical method is validated by comparing the theo-
retical result with the numerical and experimental results. 
Figure 4(a) presents the shock polar analysis on the charac-
teristic plane using this new analytical method. The selected 
inflow and geometrical parameters are M0=3, θ1=θ2=9.5°, 
λ1=λ2=0°, ν=90°. The horizontal axis θ is the flow deflec-
tion angle on the characteristic plane, and the vertical axis ξ 
is the static-pressure ratio. The reflected polars R1 and R2 
intersect with the incident polars I1 and I2, respectively, at 
two points and an MI occurs, which has been verified by 
experimental and numerical results (see Figure 4(b)). As 
shown in Figure 4(b), the x and z coordinates are scaled 
with y so that they become conical, self-similar variables. x0 
and z0 are the height of bottom wedge and upper wedge on 
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cross section respectively, which have been shown in Figure 
1. The error bars show the experimental results of West in 
1972 [4], the solid lines show the numerical results, and the 
dashed lines show the theoretical results. The analytical 
results agree well with the experimental and numerical re-
sults. The theoretical solution for the Mach number behind 
the Mach stem is ~1.84, which fits the numerical result Mm 
= 1.82 well. 

In the following sections, the asymmetry of the flow 
characteristics and wave configurations induced by the 
wedge angle and sweep angle are discussed and analyzed 
thoroughly. Additionally, the theoretical results are com-
pared with the numerical results, revealing good agreement. 

3.1  Asymmetry of the wedge angle 

To explore the effects of asymmetry induced by the wedge 
angle on wave configuration and parameters of the flow 
field, the wedge angle on one side is fixed at 12.2°, and that 
on the other side varies from 3.5° to 15°. The inflow Mach 
number is 3.17, and the sweep angle and dihedral angle are 
selected as 0° and 90°, respectively. Figure 5 shows the 
shock-polar with different wedge angles and indicates the 
wave configurations are MI in all cases. As the wedge angle 
increases on one side, the incident polar Ii and Ii′ on both 
sides become larger and higher, the reflected polar Ri′ on the 
side of varying wedge angle increases, and the reflected 
polar Ri on the side of fixed wedge angle decreases. Figure 
6 presents the numerical solutions to study the effects of the 
asymmetrical wedge angle on wave configurations. As the 
wedge angle on one side increases, the incident waves 1i 
and 1i′, the reflected waves 2i and 2i′, and the Mach stem 3i, 
get further from the corner points Oi. The dashed lines that 
originate from Oi are perpendicular to the Mach stem or the 
extension line of the Mach stem. If the foot of the perpen-
dicular is on the extension line, the MI is an inversed MI. It 
should be noted that when the foot of the perpendicular is 
on the extension line, the reflected polar R1 intersects with 
the incident polar I1′ on the negative side of the θ axis (Fig-
ure 5, solid line at θ2 = 3.5°). The Mach stem gets longer as 
the wedge angle increases and becomes inversed if the 
wedge angles on both sides have a larger discrepancy. 

Figure 7 displays the theoretical solutions in the vicinity 
of the Mach stem, which includes the total pressure recov-
ery coefficient θp, Mach number behind the Mach stem Mm, 
pressure P, temperature T, and density ρ. The horizontal 
axis θ2 represents the varying wedge angle in one side. The 
initial inflow parameters are non-dimensionalized as unit 
one in zone zero, P0 = 1, ρ0 = 1, T0 = 1, θp0 = 1. As the 
wedge angle θ2 increases, the pressure, density, and temper-
ature increase monotonously in zones (2)–(5) and remain 
constant in zone (1). As zones (3) to (5) are divided by two 
slip faces, they have the same pressure. The P2 on the side 
of varying wedge angle behind the incident wave is smaller 

than P1 on the side of fixed wedge angle when θ2 <θ1; in 
contrast, P2 > P1 at θ2 > θ1 (Figure 7(c)). As indicated in 
Figure 7(d) and (e), the temperature in zone (5) behind the 
Mach stem is higher than that in zones (3) and (4), whereas 
the density in zone (5) is lower than that in zones (3) and  

 

Figure 5  Shock-polar for different wedge angles. Ii – incident polar on 
the side of the fixed wedge, Ii′ – incident polar on the side of the varying 
wedge, Ri – reflected polar on the side of the fixed wedge, Ri′ – reflected 
polar on the side of the varying wedge (i = 1 (θ2 = 3.5°), 2(θ2 = 8°), 3(θ2 = 
12.2°), 4(θ2 = 15°)). 

 

Figure 6  Numerical results for different wedge angles. 0 – wall boundary 
on the side of the fixed wedge, 0i′ – wall boundary on the side of the vary-
ing wedge, 1i – incident wave on the side of the varying wedge, 1i′ – inci-
dent wave on the side of the fixed wedge, 2i′ – reflected wave on the side 
of the fixed wedge, 2i′ – reflected wave on the side of the varying wedge, 3i 
– Mach stem, Oi – corner points (i = 1 (θ2 = 3.5°), 2(θ2 = 8°), 3(θ2 = 12.2°), 
4(θ2 = 15°)). 
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Figure 7  Flow-field parameter variations with respect to the wedge angle. (a) Total pressure recovery coefficient; (b) Mach number behind the Mach stem; 
(c) pressure; (d) temperature; (e) density. 

(4). When θ2 < θ1, the temperature and density are almost 
the same between zones (3) and (4). When θ2 > θ1, the tem-
perature in zone (3) behind the reflected wave is lower than 
that in zone (4), and the density in zone (3) is higher than 
that in zone (4). Figure 7(a) and (b) present the variations of 
total pressure recovery coefficient and Mach number behind 
the Mach stem with the increasing wedge angle on one side. 
The increasing wedge angle on one side induces the in-
crease of the Mach number behind the Mach stem and the 
decrease of total pressure recovery coefficient in zones (3) 
to (5). As θ2 increases, θp3 on the side of fixed wedge angle 
varies slightly, and θp4 on the side of varying wedge angle 

first increases, then decreases. The total pressure loss in 
zone (5) behind the Mach stem is more serious than that in 
zones (3) and (4) behind the reflected waves because the 
entropy production passing through the Mach stem is larger 
than that passing through the incident wave and the reflect-
ed wave.  

3.2  Asymmetry of the sweep angle 

The studies on effects of the sweep angle are conducted by 
fixing one sweep angle λ2 at 10° and varying another sweep 
angle from 0° to 30°. The inflow Mach number, wedge an- 
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gle, and dihedral angle are 4°, 10°, 90° respectively. As 
shown in Figure 8, the increase of sweep angle on one side 
make the incident polar and reflected polar small. However, 
the asymmetry induced by the sweep angle has little influ-
ence on two incident polars Ii and Ii′ as λ1 varies from 0° to 
20°. When λ1 increases to 30°, I4′ is obviously smaller than 
I4, owing to the large discrepancy between the two sweep 
angles. 

The shock polar analysis shown in Figure 8 indicates that 
the wave configurations are MI for the aforementioned cas-
es, which has been validated by numerical simulations in 
Figure 9. As the sweep angle on one side increases, the in-
cident waves on the side of varying sweep angle move clos-
er to the wall boundary, and the Mach stem gets closer to 
the corner point O and becomes longer. For the reflected 
wave, the increasing sweep angle on one side makes 2i′ far-
ther from the corner and 2i closer to the corner. Compared 
with the effects of the wedge angle, the influence of the 
sweep angle on the wave configuration is not obvious (see 
Figures 6 and 9).  

Figure 10 presents the theoretical solutions for the flow 
field in the vicinity of the triple point, i.e., the intersecting 
point of the incident wave, reflected wave, and Mach stem. 
Compared with the wedge angle, the influence of sweep 
angle on variations of the pressure, temperature, density, 
Mach number behind the Mach stem, and total pressure 
recovery coefficient exhibits the opposite trend. As the 
sweep angle λ1 on one side increases, the Mach number 
behind Mach stem, pressure, temperature, and density in 
zones (3) to (5) decrease slightly, while the total pressure 
recovery coefficient in these zones increases slowly. Unlike 
the asymmetry of the wedge angle, the asymmetry of the  

 

Figure 8  Shock-polar with different sweep angles. Ii – incident polar on 
the side of fixed wedge, Ii′ – incident polar on the side of varying wedge, 
Ri′ – reflected polar on the side of fixed wedge, Ri′ – reflected polar on the 
side of varying wedge (i = 1 (λ1 = 0°), 2 (λ1 = 8°), 3 (λ1 = 15°), 4 (λ1 = 
30°)). 

 

Figure 9  Numerical results for different wedge angles. 0 – wall boundary 
on the side of fixed sweep angle, 0i – wall boundary on the side of varying 
sweep angle, 1i′ – incident wave on the side of varying sweep angle, 1 – 
incident wave on the side of fixed sweep angle, 2i – reflected wave on the 
side of fixed sweep angle, 2i′ – reflected wave on the side of varying sweep 
angle, 3i – Mach stem, O – corner point (i = 1 (λ1 = 0°), 2 (λ1 = 15°), 3 (λ1 
= 30°)). 

sweep angle does not cause a difference in the flow param-
eters behind the two incident waves in zones (1) and (2) and 
the two reflected waves in zones (3) and (4) (see Figures 
10(c)–(e)). The effects of the asymmetry of the sweep angle 
on one side on the flow-field parameters are negligible and 
do not cause the distinct asymmetry of the flow field. 

4  Conclusion 

A method called spatial-dimension reduction is used to 
study the 3D asymmetrical shock/shock interaction induced 
by two intersecting wedges. First, the theoretical method is 
introduced in detail. With this analytical approach, not only 
can the wave configuration be determined, but also the so-
lutions to flow field in the vicinity of the triple point can be 
obtained. Secondly, numerical simulations are conducted to 
verify the theoretical results by solving 3D inviscid Euler 
equations with a classical NND scheme. Finally, the effects 
of the asymmetry of the wedge angle and sweep angle on 
the wave configurations and flow-field parameters are dis-
cussed thoroughly. The results can be summarized as fol-
lows. 

1) The asymmetrical shock/shock interaction can be 
solved by the spatial-dimension reduction method, includ-
ing the wave configuration and flow-field parameters, and 
good agreements are obtained with the numerical results. 

2) The asymmetry of wedge angle induces the clear 
asymmetry of the flow field behind the two incident waves  
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Figure 10  Flow field parameter variations with respect to wedge angle. (a) Total pressure recovery coefficient; (b) Mach number behind the Mach stem; (c) 
pressure; (d) temperature; (e) density. 

and reflected waves, while the asymmetry of the sweep an-
gle does not result in the obvious asymmetry of the flow 
field in zones (1)–(4). 

3) The Mach number behind the Mach stem increases 
sharply as the wedge angle on one side increases and de-
creases slightly with the increasing sweep angle on one side. 
Furthermore, the total pressure loss behind the Mach stem is 
more serious with the increasing wedge angle than with the 
increasing sweep angle. 

4) The influence of varying the wedge angle on the wave 
configurations is significant, whereas the effect of varying 
sweep angle on the wave configurations is negligible. 

This work was supported by the National Natural Science Foundation of 
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