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Abstract The continuum model of a one-dimensional crystal lattice of a metamaterial is studied in this paper.
First, the dispersive relation of a lattice wave in a one-dimensional crystal lattice of metamaterial is established
and compared with that of the classic material. Then, the continuous medium modeling of the metamaterial
is studied. It leads to the classical continuum model, the strain gradient continuum model, and the nonlocal
gradient continuum model based on different assumptions. The disadvantages of the classic continuum model
and the gradient continuummodel are discussed.Thenonlocal gradient continuummodel is derived basedon the
nonlocal assumption of a continuous displacement field. The stability of dispersive curves is guaranteed, and the
conceptions of negative mass and infinite mass are also avoided. The dispersive curves which correspond to the
three kinds of models are compared with those of a discrete crystal lattice of metamaterial. The disadvantages
of the classic continuum model and the gradient continuum model and the appropriate selection of a nonlocal
parameter in the nonlocal gradient continuum model are discussed based on the numerical results.

1 Introduction

Recently, the investigations on the metamaterial attract the attention of many researchers. The metamaterial
includes mainly two groups, i.e. the electromagnetic metamaterial (EMM) and acoustic metamaterial (AM).
The electromagnetic metamaterials are generally regarded as materials that exhibit unusual properties, for
example, negative electric permittivity (ε), negative magnetic permeability (μ), and hence a negative refrac-
tive index, for instance, [3,13–16]. The acoustic metamaterials are generally regarded as materials which
possess negative effective mass or negative effective modulus which have attracted many researchers to turn
to this study, such as [2,7–10,17] . The unusual properties of a metamaterial which are not readily observed
in natural materials result from the manmade microstructures that are embedded in host material. These man-
made microstructures include the electric resonators, the magnetic resonators, and the mechanical resonators.
The photonic crystal and the phononic crystal have also the periodical microstructure as the metamaterial.
However, different from the photonic crystal and the phononic crystal based on the Bragg scattering effects,
the metamaterial possesses unusual properties which are mainly based on the local resonance of resonator. In
order to study the mechanical behavior of acoustic metamaterial, Zhou and Hu [18] presented a unified analytic
model for the elastic metamaterial with effective material parameters. The effective material properties are
derived directly from the averages of local momentum, stress, and strain defined in a single doubly coated
sphere. The physical mechanism of the negative effective mass density, negative effective bulk modulus and
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negative effective shear modulus were illustrated clearly. The negative effective mass density is induced by
negative total momentum of the composite for a positive momentum excitation. The negative effective bulk
modulus appears for composites with an increasing (decreasing) total volume under a compressive (tensile)
stress. The negative effective shear modulus describes composites with axisymmetric deformation under an
opposite axisymmetric loading. Milton and Willis [12] proposed the mass-in-mass discrete model of acoustic
metamaterial. Their study showed that the effective mass should be represented by a second-order tensor and
can be anisotropic and frequency-dependent. Huang et al. [5] studied the dispersive wave propagation in the
mass-in-mass lattice system and compared to various equivalent models. It is found that, if the classical elastic
continuum is used to represent the original mass-in-mass lattice system, the effective mass density becomes
frequency dependent and may become negative for frequencies near the resonance frequency of the internal
mass. Huang and Sun [4] studied the wave attenuation and energy transfer mechanisms of a metamaterial
having a negative effective mass density based on the mass-in-mass system. It is found that most of the work
done by the external force on the lattice system is stored by the internal mass if the forcing frequency is close to
the local resonance frequency. Huang and Sun [6] further investigated the dispersion curves and the band gap
structure of a multi-resonator mass-in-mass lattice system. The unit cell of the lattice system consists of three
separate masses connected by linear springs. In order to establish an effective continuum model, Zhu et al.
[19] presented a microstructure continuum model to represent elastic metamaterials and used this continuum
model to study wave propagation and band gaps in elastic metamaterial. Liu et al. [11] further proposed the
multi-displacement microstructure continuum model for modeling the anisotropic elastic metamaterial. By
comparison of the wave dispersion curves predicted by the proposed model and the finite element simulation
for both longitudinal and transverse shear waves, very good agreement was observed in both the acoustic and
the optic modes. Metrikine and Askes (2002) presented some gradient elasticity models derived from a discrete
microstructure. In their work, a new continualization method is proposed in which each higher-order stiffness
term is accompanied by a higher-order inertia term. As such, the resulting models are dynamically consistent.
Because the physically realistic behavior is obtained in statics and dynamics, their gradient elasticity models
are superior to earlier gradient elasticity models in which there are no anomalies in the dynamic behavior.

In this paper, the dynamical theory of crystal lattice established by Born and Huang [1] is used to study
the lattice wave propagation in the one-dimensional crystal lattice of a metamaterial. The classical mass-
spring system is replaced by the mass-in-mass system. In order to establish an effective continuum model of
metamaterial with micro-resonator to keep same dispersive properties with the crystal lattice of a metamaterial,
the classic continuum model, multi-displacement continuum model, and some gradient continuum models are
derived from the discrete lattice based on different assumptions. The dispersive curves of these gradient
continuum models are compared with those of the crystal lattice of a metamaterial. The disadvantages of
the classic continuum model, and the gradient continuum model are discussed. The stable nonlocal gradient
continuummodel is proposed, and the appropriate selection of the nonlocal parameter in the nonlocal gradient
continuum model is also discussed based on the numerical results.

2 The classic continuum model and the effective mass

Consider a diatomic chain of metamaterial with infinite extension, as shown in Fig. 1. The mass of atoms of
macro-material and micro-material is indicated by m1 and m2, respectively. The spring coefficient between
the atoms of the macro-material and that between the atoms of macro-material and micro-material is indicated
by K1 and K2, respectively. u

( j)
1 and u( j)

2 are the displacements of atoms of the macro-material and micro-
material, respectively. L is the lattice distance. The motion equation of nth atoms of macro-material and nth
atoms of micro-material are

m1ü
(n)
1 = K1

(
u(n+1)
1 + u(n−1)

1 − 2u(n)
1

)
+ K2

(
u(n)
2 − u(n)

1

)
, (1.1)

m2ü
(n)
2 = K2

(
u(n)
1 − u(n)

2

)
(1.2)

The solutions of the lattice wave are of the form

u(n± j)
1 = B1 exp(i(qnL ± jqL − ωt)), (2.1)

u(n± j)
2 = B2 exp(i(qnL ± jqL − ωt)). (2.2)

B1 and B2 are the amplitudes of the lattice wave. q is the wave vector, and ω is the angular frequency.
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Fig. 1 Sketch of a one-dimensional diatomic chain of metamaterial. a Metamaterial crystal lattice with mass in mass; b simple
lattice

Inserting Eq. (2) into Eq. (1) leads to

[m1ω
2 + K1(e

iqL + e−iqL − 2) − K2]B1 + K2B2 = 0, (3.1)

K2B1 + (m2ω
2 − K2)B2 = 0. (3.2)

The existence of a non-trivial solution requires that the coefficient determination is zero, i.e.

m1m2ω
4 − [K2m1 + K2m2 + 2(1 − cos(qL))K1m2]ω2 + 2K1K2(1 − cos(qL)) = 0. (4)

Equation (4) is the dispersive equation of the lattice wave in the one-dimensional crystal lattice of the meta-
material. Let α = m2/m1, β = K2/K1, ω2

0 = K2/m2; then, the dispersive equation can be rewritten in the
non-dimensional form as

β

α

(
ω

ω0

)4

−
[
β

α
+ β + 2(1 − cos(qL))

] (
ω

ω0

)2

+ 2 (1 − cos(qL)) = 0. (5)

If K2 = 0 and m2 = 0, then, the crystal lattice of the metamaterial reduces to that of a classical material, and
the dispersive equation reduces to

ω2 = 2K1(1 − cos(qL))

m1
. (6)

Equation (6) is the dispersive equation of the lattice wave in a classic material.
If the crystal lattice of the metamaterial is replaced by the crystal lattice of a classic material, see Fig. 1b,

the dispersive properties of the lattice wave of the metamaterial keep unchanged. The dynamical effective mass
should be introduced to represent the effects of the micro-material. Let the effective mass be indicated bymeff .
Then, the dispersive equation of the equivalent monoatom chain is

ω2 = 2K1(1 − cos(qL))

meff
. (7)

Inserting Eq. (7) into Eq. (4) leads to

meff = mst + m2(ω/ω0)
2

1 − (ω/ω0)2
(8)

wheremst( = m1+m2) is the static effective mass andω0 =
√

K2
m2

is the resonant frequency of the micro-mass.
Once the effective mass is obtained, the classic continuum model of the crystal lattice of the metamaterial can
be expressed as

ρü − K1L
∂2u

∂x2
= 0 (9)

where ρ = meff
L . It is found from Eq. (8) that the dynamical effective mass is frequency-dependent. Figure 2

shows the frequency-dependency of the effective mass. When the frequency tends to the resonant frequency



2364 Y. Zhou et al.

Fig. 2 The frequency-dependent effective mass meff/mst

Fig. 3 The dispersion curves ω/ω0 − qL . a Metamaterial crystal lattice with mass in mass (m2/m1 = 0.5, K2/K1 = 0.5,
ω2
0 = K2/m2); b simple lattice (m = m1, K = K1, ω2

0 = K1/m1)

ω0 from the left side (ω ≤ ω0), the effective mass becomes positive infinite. When the frequency tends to
the resonant frequency ω0 from the right side (ω ≥ ω0), the effective mass becomes negative infinite. This
is an important feature of the metamaterial. Huang and Sun [4] gave a detailed investigation of the negative
mass in the acoustic metamaterial and pointed out that the negative mass makes the wave number of the lattice
wave become an imaginary number which means that the lattice wave is spatially decaying. In other word,
the frequency which makes the effective mass negative falls into the stop band of a metamaterial. Because
the negative mass always appears near the resonant frequency, the resonant frequency is thus an important
parameter of metamaterial which represents the properties of the resonant microstructure.

Figure 3 shows the dispersive curves of a lattice wave in the crystal lattice of a metamaterial and in the
simple crystal lattice of classic material. Different from the lattice wave in the classic material, the lattice wave
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in the metamaterial has two branches. The acoustic branch is similar to that in the classic material but has
lower frequency. The optical branch has higher frequency, and there is a band gap between the acoustic branch
and the optical branch. This is similar to the dispersive curves of the diatom lattice in the classic material. But
the optical branch for the metamaterial lattice is down concave, while the optical branch for classical material
is upper convex. This makes the metamaterial easier to create the lower frequency band gap.

Figure 4 shows the influences of themass ratio upon the dispersive curves, while Fig. 5 shows the influences
of the rigidity ratio upon the dispersive curves. It is found that the increase of mass ratio makes the acoustic
mode shift toward low frequency and the optical mode down concaving more evident. However, the increase
of rigidity ratio has contrary influences when compared with the mass ratio. In other words, the mechanical
resonator with larger mass and smaller rigidity is easier to create the low frequency bandgap.

Fig. 4 The dispersion curves ω/ω0 − qL for different parameter ratios m2/m1(K2/K1 = 0.5, ω2
0 = K2/m2)

Fig. 5 The dispersion curves ω/ω0 − qL for different parameter ratios K2/K1(m2/m1 = 0.5, ω2
0 = K2/m2)



2366 Y. Zhou et al.

3 Multi-displacement continuum model

The classic continuum representation of the metamaterial results in the frequency-dependent effective mass,
and the effective mass can be negative or infinite. It is physically unacceptable. In order to overcome this
disadvantage of the classic continuum model, Huang and Sun [4] proposed the multi-displacement continuum
model. In the multi-displacement continuum model, two independent displacement fields, which correspond
to the apparent mass and the hidden mass, are introduced, i.e.

u(n)
1 (t) = u1(x, t), (10.1)

u(n)
2 (t) = u2(x, t). (10.2)

The displacement of adjacent atoms can be expressed as

u(n+1)
1 = u1(x + L) = u1(x) + ∂u1

∂x
L . (11)

Then, the kinetic energy density and potential energy density can be expressed as

W = 1

2L

[
K1

(
u(n+1)
1 − u(n)

1

)2 + K2

(
u(n)
2 − u(n)

1

)2] = 1

2L

[
K1(εL)2 + K2 (u12L)2

]
, (12.1)

T = 1

2L

[
m1

(
u̇(n)
1

)2 + m2

(
u̇(n)
2

)2]
(12.2)

where ε = ∂u1/∂x and u12(x) = (u2 − u1)/L . Define the stress and the relative stress

σ = ∂W

∂ε
= LK1ε = Eε, (13.1)

σ12 = ∂W

∂u12
= LK2u12 = E12u12. (13.2)

Equation (13) is the constitutive relation in the multi-displacement continuum model. By the application of
the Hamilton variation principle,

δ

∫ t1

t0

∫

V
(T − W )dV dt +

∫ t1

t0

∫

S
TiδuidAdt = 0,

the motion equation can be expressed as

ρ0ü1 + m2ü12 − K1L
∂2u1
∂x2

= 0, (14.1)

m2Lü12 + m2ü1 + K2Lu12 = 0 (14.2)

where ρ0 = m1+m2
L . Let

u1 = A1 exp(i(qx − ωt)), (15.1)

u12 = A2 exp(i(qx − ωt)). (15.2)

And inserting them into Eq. (14), we can obtain the dispersive equation of wave propagation in the multi-
displacement continuum model,

β

α

(
ω

ω0

)4

−
[
β

α
+ β + (qL)2

] (
ω

ω0

)2

+ (qL)2 = 0. (16)

Figure 6 shows the dispersive curves predicted by the multi-displacement continuum model. It is found that
the dispersive curves of the acoustic mode predicted by the multiple displacement continuummodel have good
agreement with those predicted by the discrete crystal lattice model. But the dispersive curves of the optical
mode predicted by the multiple displacement continuum model have good agreement with those predicted
by the discrete crystal lattice model only at long wavelength range (near qL = 0). The deviation increases
gradually as the wavelength decreases gradually.
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Fig. 6 The dispersion curves ω/ω0 −qL for the metamaterial crystal lattice model and the multi-displacement continuum model
(K2/K1 = 0.5, m2/m1 = 0.5, ω2

0 = K2/m2)

4 Gradient continuum model

Let Eq. (11) be replaced by

u1(x ± L , t) = u1 ± Lu1,x + 1

2! L
2u1,xx ± 1

3! L
3u1,xxx + 1

4! L
4u1,xxxx ± 1

5! L
5u1,xxxxx + · · · (17)

Inserting Eqs. (10) and (17) into Eq. (1) leads to

m1ü1 = K1L
2
(
u1,xx + 1

12
L2u1,xxxx + 1

360
L4u1,xxxxxx + · · ·

)
+ K2(u2 − u1), (18.1)

m2ü2 = K2(u1 − u2). (18.2)

Recall that the one-dimensional motion equation in the classicity elasticity theory is

ρü1 = ∂σ

∂x
. (19)

Equation (18.1) implies

σ = K

(
ε + 1

12
L2 ∂2ε

∂x2
+ 1

360
L4 ∂4ε

∂x4
+ · · ·

)
+ K0

1

L

∫
u12dx (20)

where K = ρK1L2

m1
, K0 = ρK2L2

m1
, ρ = meff

L . Namely, the stress is dependent upon not only the strain but also
the strain gradient. This is the essence of the strain gradient elasticity theory. It should be pointed that only
the strain gradients of even order appear in Eq. (20). When Eq. (17) is truncated by the sixth order derivative,
then the motion equation can be expressed as

m1ü1 = K1L
2
(
u1,xx + 1

12
L2u1,xxxx + 1

360
L4u1,xxxxxx

)
+ K2(u2 − u1), (21.1)

m2ü2 = K2(u1 − u2). (21.2)

Let

u1 = C1 exp(i(qx − ωt)), (22.1)

u2 = C2 exp(i(qx − ωt)). (22.2)
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Inserting Eq. (22) into Eq. (21) leads to the dispersive equation

ω2 = (m1K2 + m2λ1(qL)) ± √
λ2(qL)

2m1m2
(23)

where

λ1 = K1L
2q2 − 1

12
K1L

4q4 + 1

360
K1L

6q6 + K2,

λ2 = (m1K2 + m2λ1)
2 − 4m1m2(λ1K2 − K 2

2 ).

Also, the dispersive equation can be rewritten in non-dimensional form as

β

α

(
ω

ω0

)4

−
[
β

α
+ β + (qL)2 − 1

12
(qL)4 + 1

360
(qL)6

] (
ω

ω0

)2

+ (qL)2 − 1

12
(qL)4 + 1

360
(qL)6 = 0.

(24)

The dispersive curves corresponding to the gradient continuummodel are shown in Figs. 7 and 8. It is found
that the dispersive curves predicted by the gradient continuummodel approximate satisfyingly those predicted
by the discrete lattice model in a wider frequency range compared with the multiple displacement continuum
model. The higher is the order of strain gradient included, the wider is the fitting frequency range. However,
it is noted that the group speed of the acoustic mode tends to negative infinity as the wavelength decreases
gradually, namely, limq→qcr cg(q) = −∞, for the second, sixth and tenth order of gradient continuummodels.
This implies that the wave with wavelength smaller than λcr = 2π/qcr cannot propagate in the continuum
medium. This is physically not realistic. On the other hand, the group speeds corresponding to fourth, eighth
and twelfth order of the gradient continuum model are

cg = dω/dq = λ4(q11)

λ5(q9)
(25)

where

λ3 = (m1K2 + m2λ1) ± √
λ2

2m1m2
,

λ4(q
11) = 2m2

√
λ2

dλ1

dq
± dλ2

dq
∼ P11(q),

λ5(q
9) = 8m1m2

√
λ2λ3 ∼ P9(q).

Fig. 7 The dispersion curves ω/ω0 − qL for some order of gradient continuum models compared with the lattice model and the
multi-displacement continuum model (K2/K1 = 0.5, m2/m1 = 0.5, ω2

0 = K2/m2)
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Fig. 8 The dispersion curves ω/ω0 − qL for some order of gradient continuum models compared with the lattice model and the
multi-displacement continuum model. a The optic mode; b the acoustic mode (K2/K1 = 0.5, m2/m1 = 0.5, ω2

0 = K2/m2)

It is noted that limq→∞ cg(q) = ∞ for the fourth, eighth and twelfth order of gradient continuum model. This
implies that the speed at which the energy transmits tends to infinity as the frequency increases. This is also
not realistic physically.

5 Nonlocal gradient continuum model

Instead of Eq. (10), let

u1(x, t) = 1

1 + 2a1 + b1

{
a1u

(n−1)
1 (t) + u(n)

1 (t) + b1u
(n)
2 (t) + a1u

(n+1)
1 (t)

}
, (26.1)

u2(x, t) = 1

1 + c1

{
u(n)
2 (t) + c1u

(n)
1 (t)

}
. (26.2)

It means that the continuous displacement fields u1(x, t) and u2(x, t) are the averaged values of the displace-
ments of adjacent several atoms. The parameters a1, b1, and c1 are the weighting coefficients. These weighting
coefficients satisfy 0 ≤ a1 < 1, 0 ≤ b1 < 1, and 0 ≤ c1 < 1. The nonlocal effects are taken into account when
the continuous displacement field u1(x, t) and u2(x, t) is established by Eq. (26). Mathematically, this implies
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that the displacement in a point after the continualization is not only related to the displacement in the same
point but also instantly to the displacement in the neighboring points. Physically, it is a natural consequence
of assigning the properties of a finite volume of inhomogeneous material to a point.

In order to obtain the motion equation with respective to displacement u1(x, t) and u2(x, t), we should
express u(n)

1 (t), u(n±1)
1 (t), and u(n)

2 (t) in terms of the continuous field u1(x, t), u2(x, t)and their derivatives.

We assume that the deviations of u(n)
1 (t) from u1(x, t) and u(n)

2 (t) from u2(x, t) are both small, so that the
following relationship may be written:

u(n)
1 (t) = u1(x, t) +

2N∑
j=1

L j f j (x, t) + O(L2N+1), (27.1)

u(n)
2 (t) = u2(x, t) +

2N∑
j=1

L j g j (x, t) + O(L2N+1). (27.2)

In order to ensure the convergence of these series, the following condition is required:

L j+1 f j+1(x, t) � L j f j (x, t), L j+1g j+1(x, t) � L j g j (x, t).

These functions of f j (x, t) and g j (x, t) are unknown and should be determined by inserting those discrete
displacements into Eq. (26). The displacement of an adjacent point can be obtained by the application of the
Taylor expansions

u(n±1)
1 (t) = u1(x ± L , t) +

2N∑
j=1

L j f j (x ± L , t) + O(L2N+1)

=
2N∑
m=0

(±1)m
Lm

m!
∂mu1(x, t)

∂xm
+

2N∑
m=0

2N−m∑
j=1

(±1)m
Lm+ j

m!
∂m f j (x, t)

∂xm
+ O(L2N+1). (28)

Inserting Eqs. (27) and (28) into Eq. (26) leads to

u1(x, t) = 1

1 + 2a1 + b1

⎛
⎝u1(x, t) +

2N∑
j=1

L j f j (x, t)

⎞
⎠ + 2a1

1 + 2a1 + b1

N∑
m=0

L2m

(2m)!
∂2mu1(x, t)

∂x2m

+ 2a1
1 + 2a1 + b1

N∑
m=0

2N−2m∑
j=1

L2m+ j

(2m)!
∂2m f j (x, t)

∂x2m
+ b1

1 + 2a1 + b1
u2(x, t)

+ b1
1 + 2a1 + b1

2N∑
j=1

L j g j (x, t) + O(L2N+1), (29.1)

u2(x, t) = 1

c1

2N∑
j=1

L j g j (x, t) + u1(x, t) +
2N∑
j=1

L j f j (x, t) + O(L2N+1). (29.2)

Further, inserting Eq. (29.2) into Eq. (29.1), we obtain

u1(x, t) = 1 + b1
1 + 2a1 + b1

⎛
⎝u1(x, t) +

2N∑
j=1

L j f j (x, t)

⎞
⎠ + 2a1

1 + 2a1 + b1

N∑
m=0

L2m

(2m)!
∂2mu1(x, t)

∂x2m

+ 2a1
1 + 2a1 + b1

N∑
m=0

2N−2m∑
j=1

L2m+ j

(2m)!
∂2m f j (x, t)

∂x2m
+ b1

1 + 2a1 + b1

c1 + 1

c1

2N∑
j=1

L j g j (x, t)

+ O(L2N+1). (30)

It is assumed that the operator L∂/∂x be much smaller than unity, so wemay consider Eq. (30) by using the
perturbation method. By comparing the coefficients of Ln at both sides of equal mark, we obtain the following
set of equations, ordered by the corresponding powers of Ln:
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L0 : u1 = 1

1 + 2a1 + b1
(u1 + 2a1u1 + b1u1), (31.1)

L1 : 0 = (1 + 2a1 + b1) f1 +
(
1 + 1

c1

)
b1g1, (31.2)

L2 : 0 = (1 + 2a1 + b1) f2 +
(
1 + 1

c1

)
b1g2 + a1

∂2u1
∂x2

, (31.3)

L3 : 0 = (1 + 2a1 + b1) f3 +
(
1 + 1

c1

)
b1g3 + a1

∂2 f1
∂x2

, (31.4)

L4 : 0 = (1 + 2a1 + b1) f4 +
(
1 + 1

c1

)
b1g4 + a1

12

∂4u1
∂x4

+ a1
∂2 f2
∂x2

, (31.5)

L5 : 0 = (1 + 2a1 + b1) f5 +
(
1 + 1

c1

)
b1g5 + a1

12

∂4 f1
∂x4

+ a1
∂2 f3
∂x2

, (31.6)

L6 : 0 = (1 + 2a1 + b1) f6 +
(
1 + 1

c1

)
b1g6 + a1

360

∂6u1
∂x6

+ a1
12

∂4 f2
∂x4

+ a1
∂2 f4
∂x2

(31.7)

which can be generalized as

Lm(m = 1, 3, 5, . . .) : 0 = (1 + b1) fm + 2a1

(m−1)/2∑
j=0

1

(2 j)!
∂2 j fm−2 j (x, t)

∂x2 j
, (32.1)

Lm(m = 2, 4, 6, . . .) : 0 = (1 + b1) fm + 2a1
1

(m)!
∂mu1(x, t)

∂xm

+ 2a1

m/2−1∑
j=0

1

(2 j)!
∂2 j fm−2 j (x, t)

∂x2 j
. (32.2)

Equation (31.1) is satisfied automatically. By observation of odd power of L , it is found that f j ( j =
1, 3, 5, . . .) = 0 and g j ( j = 1, 3, 5, . . .) = 0. By observation of an even power of L , it is found that
g j ( j = 2, 4, 6, . . .) = 0, and

f2 = − a1
1 + 2a1 + b1

∂2u1
∂x2

, (33.1)

f4 = a1(10a1 − 1 − b1)

12(1 + 2a1 + b1)2
∂4u1
∂x4

, (33.2)

f6 = −a1(1 − 56a1 − 56a1b1 + 2b1 + 244a21 + b21)

360(1 + 2a1 + b1)3
∂6u1
∂x6

. (33.3)

After f j and g j are determined, the expressions of the discrete displacements u(n)
1 (t), u(n)

2 (t), and u(n±1)
1 (t) in

terms of the continuous displacement field u1(x, t)and u2(x, t) are obtained. Inserting them into the motion
equation of the discrete lattice of the metamaterial, i.e. Eq. (1), we obtain

m1

(
∂2u1(x, t)

∂t2
+

M∑
m=1

L2m ∂2 f2m(x, t)

∂t2

)
+ 2K1

(
u1(x, t) +

M∑
m=1

L2m f2m(x, t)

)

− 2K1

⎛
⎝

M∑
m=0

L2m

(2m)!
∂2mu1(x, t)

∂x2m
+

M∑
m=0

M−m∑
j=1

L2(m+ j)

(2m)!
∂2m f2 j (x, t)

∂x2m

⎞
⎠

+ K2

(
u1(x, t) +

M∑
m=1

L2m f2m(x, t) − u2(x, t)

)
= O(L2M+2), (34.1)

m2
∂2u2(x, t)

∂t2
+ K2

(
u2(x, t) − u1(x, t) −

M∑
m=1

L2m f2m(x, t)

)
= O(L2M+2). (34.2)
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Truncating the infinite series in Eq. (34) by M = 3, we obtain

m1

(
∂2u1
∂t2

+ L2 ∂2 f2
∂t2

+ L4 ∂2 f4
∂t2

)
− 2K1

(
L2

2

∂2u1
∂x2

+ L4

24

∂4u1
∂x4

+ L6

720

∂6u1
∂x6

+ L4

2

∂2 f2
∂x2

+ L6

2

∂2 f4
∂x2

+ L6

24

∂4 f2
∂x4

)
+ K2

(
u1 + L2 f2 + L4 f4 + L6 f6 − u2

) = 0, (35.1)

m2
∂2u2
∂t2

+ K2
(
u2 − u1 − L2 f2 − L4 f4 − L6 f6

) = 0. (35.2)

After inserting the expressions of f2, f4 and f6, we obtain

m1

(
∂2u1
∂t2

− d1
∂2u1
∂x2

)
− m1a1L2

1 + 2a1 + b1

∂2

∂x2

(
∂2u1
∂t2

− d2
∂2u1
∂x2

)

+ m1a1(10a1 − 1 − b1)L4

12(1 + 2a1 + b1)2
∂4

∂x4

(
∂2u1
∂t2

− d3
∂2u1
∂x2

)
+ K2 (u1 − u2) = 0, (36.1)

m2
∂2u2
∂t2

+ h1
∂2u1
∂x2

+ h2
∂4u1
∂x4

+ h3
∂6u1
∂x6

+ K2 (u2 − u1) = 0. (36.2)

Similarly, truncating the infinite series by M = 2, we obtain

m1

(
∂2u1
∂t2

− d1
∂2u1
∂x2

)
− m1a1L2

1 + 2a1 + b1

∂2

∂x2

(
∂2u1
∂t2

− d2
∂2u1
∂x2

)
+ K2 (u1 − u2) = 0, (37.1)

m2
∂2u2
∂t2

+ h1
∂2u1
∂x2

+ h2
∂4u1
∂x4

+ K2 (u2 − u1) = 0. (37.2)

Let the solution be of form

u1 = A exp(i(qx − ωt)), (38.1)

u2 = B exp(i(qx − ωt)). (38.2)

Inserting Eq. (38) into Eq. (36) leads to

(−m1ω
2 + m1d1q

2 + s1q
2ω2 − s1d2q

4 − s2q
4ω2 + s2d3q

6 + K2)A − K2B = 0, (39.1)

(−m2ω
2 + K2)B + (−h1q

2 + h2q
4 − h3q

6 − K2)A = 0. (39.2)

Fig. 9 The dispersion curvesω/ω0−qL with a1 = 0.4, b1 = 0 for the second and the fourth nonlocal gradient continuummodels
compared with the lattice model and the multi-displacement continuum model (K2/K1 = 0.5, m2/m1 = 0.5, ω2

0 = K2/m2)
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The dispersive equation is obtained by requiring the coefficient determinant to be equal to zero,
∣∣∣∣∣∣∣
− β

α

(
ω
ω0

)2 + γ1 · (qL)2 − γ2 · (qL)2
β
α
( ω
ω0

)2 + γ3 · (qL)4 − γ4 · (qL)4
β
α
( ω
ω0

)4 + γ5 · (qL)6 + β −β

γ6 · (qL)2 + γ7 · (qL)4 + γ8 · (qL)6 − 1 −
(

ω
ω0

)2 + 1

∣∣∣∣∣∣∣
= 0.

(40)

Similarly, the dispersive equation corresponding to Eq. (37) is
∣∣∣∣∣∣∣
−β

α

(
ω
ω0

)2 + γ1 · (qL)2 − γ2 · (qL)2
β
α
( ω
ω0

)2 + γ3 · (qL)4 + β −β

γ6 · (qL)2 + γ7 · (qL)4 − 1 −
(

ω
ω0

)2 + 1

∣∣∣∣∣∣∣
= 0 (41)

where the explicit expressions of di , hi , si and γi are given in the “Appendix” .
The dispersive curves corresponding to the nonlocal gradient continuum model are shown in Fig. 9. It

is observed that the dispersive curves predicted by the nonlocal gradient continuum model can match those
predicted by the discrete lattice model in a wider frequency range compared with the multiple displacement

Fig. 10 The effect of a1 on the dispersion curves ω/ω0 − qL for the second nonlocal gradient continuum model compared with
the lattice model and the multi-displacement continuum model (K2/K1 = 0.5, m2/m1 = 0.5, ω2

0 = K2/m2)

Fig. 11 The effect of b1 on the dispersion curvesω/ω0−qL for the second nonlocal gradient continuummodel which is compared
with the lattice model and the multi-displacement continuum model (K2/K1 = 0.5, m2/m1 = 0.5, ω2

0 = K2/m2)
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continuum model. The higher the order of the nonlocal gradient continuum model, the better the dispersive
curves fit. Compared with the gradient continuum model, there are two nonlocal parameters, a1 and b1, in
the nonlocal gradient continuum model. By adjusting the two nonlocal parameters, the unconditionally stable
dispersive curves can be obtained. Figures 10 and 12 show the effects of the nonlocal parameter a1 on the
dispersive curves. It is observed that the increase of a1 helps to get stable dispersive curves. If the nonlocal
parameter a1 is not enough larger, the acoustic mode in the second nonlocal gradient continuum model will
attenuate in advance, while the optical mode in the fourth nonlocal gradient continuummodel will have infinite
speed of energy transmission. Figures 11 and 13 show the effects of the nonlocal parameter b1 on the dispersive
curves. It is observed that the increase of the nonlocal parameter b1 always make the dispersive curves better
fitting those given by the discrete lattice model. Although the two parameters, a1 and b1, can improve the
dispersive curves predicted by the nonlocal gradient continuum model, their contributions are different. The
nonlocal parameter a1 plays a more important role than the nonlocal parameter b1. If the nonlocal parameter
a1 satisfies 0 ≤ a1 < 0.1 in the second gradient and 0 ≤ a1 < 0.25 in the fourth gradient, the acoustic

Fig. 12 The effect of a1 on the dispersion curvesω/ω0−qL for the fourth nonlocal gradient continuummodel compared with the
lattice model and the multi-displacement continuum model (K2/K1 = 0.5, m2/m1 = 0.5, ω2

0 = K2/m2). a The optic mode; b
the acoustic mode
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Fig. 13 The effect of b1 on the dispersion curves ω/ω0 − qL for the fourth nonlocal gradient continuum model compared with
the lattice model and the multi-displacement continuum model (K2/K1 = 0.5, m2/m1 = 0.5, ω2

0 = K2/m2)

mode attenuates in advance whether the nonlocal parameter b1 takes which value. On the other hand, if the
nonlocal parameter a1 satisfies a1 ≥ 0.2 in the second nonlocal gradient model and a1 ≥ 0.5 in the fourth
nonlocal gradient model, the dispersive curves are always stable whether b1 take which value. Therefore, the
nonlocal parameter a1 mainly guarantees the stability of the dispersive curves, while the nonlocal parameter
b1 mainly improves the precision of the dispersive curves. In particular, when a1 = 0 and b1 = 0, the higher-
order dynamical consistent terms, s1∂4u1/∂x2∂t2 in the second nonlocal gradient model, and s1∂4u1/∂x2∂t2,
s2∂6u1/∂x4∂t2 in the fourth nonlocal gradient model, vanish, and the nonlocal gradient model reduces to the
local gradient model in Sect. 4.

6 Conclusions

The unique nature of the acoustic metamaterial is the existence of a local resonator compared with the classic
elastic material. The appropriate representation of the crystal lattice of a metamaterial is the mass-in-mass plus
spring system. The dispersive curves of the lattice wave in a crystal lattice ofmetamaterial have a low frequency
band gap between the acoustic mode and the optical mode which is different from that in the monoatom chain
and diatom chain of a classic material. Some continuum models are studied in the present work, and some
conclusions can be drawn as follows:

1. The classical continuum model of a discrete lattice cannot predict the low frequency bandgap because only
a single acoustic branch is predicted. In order to predict the low frequency band gap of a metamaterial, the
classic continuum model results in the frequency-dependent negative effective mass and the infinite mass at
the certain frequency which is physically unacceptable.

2. The multiple displacement continuum model introduces an additional degree of freedom of micro-motion
and thus predicts not only the low frequency band gap but also avoids the introduction of negative mass
and infinite mass. The acoustic branch predicted by the multiple displacement continuum model has good
agreement with that of the lattice mode. However, the optical branch has good agreement with that of the
lattice model only for an elastic wave with long wavelength (qL < 1). The deviation increases evidently as
the wavelength decreases.

3. The gradient continuummodel can evidently improve the prediction decision and the applied frequency range
of the multiple displacement continuum model. But the dispersive curves predicted are not unconditionally
stable.

4. The nonlocal gradient continuum model takes the nonlocal effects into consideration when establishing the
continuous displacement field from the discrete displacement of adjacent atoms. By appropriate selection
of the nonlocal parameter, the nonlocal gradient continuum model is unconditionally stable and can predict
physically realistic dispersive curves at the total frequency range.
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Appendix

d1 = K1L2

m1
+ K2L2a1

m1(1 + 2a1 + b1)
, d2 = K1L2

m1
− K1L2(1 + 2a1 + b1)

12m1a1
+ K2L2(10a1 − 1 − b1)

12m1(1 + 2a1 + b1)
,

d3 = K1L2

m1
− K1L2(1 + 2a1 + b1)

m1(10a1 − 1 − b1)
+ K1L2(1 + 2a1 + b1)2

30m1a1(10a1 − 1 − b1)

+ K2L2(1 − 56a1 − 56a1b1 + 2b1 + 244a21 + b21)

30m1(1 + 2a1 + b1)(10a1 − 1 − b1)
,

h1 = K2L2a1
1 + 2a1 + b1

, h2 = −K2L4a1(10a1 − 1 − b1)

12(1 + 2a1 + b1)2
, h3 = K2L6a1(1 − 56a1 − 56a1b1 + 2b1 + 244a21 + b21)

360(1 + 2a1 + b1)3
,

s1 = − m1L2a1
1 + 2a1 + b1

, s2 = m1L4a1(10a1 − 1 − b1)

12(1 + 2a1 + b1)2
, γ1 = 1 + (2 + β)a1 + b1

1 + 2a1 + b1
, γ2 = a1

1 + 2a1 + b1
,

γ3 = (10a1 − 1 − b1)[1 + (2 + β)a1 + b1]
12(1 + 2a1 + b1)2

, γ4 = a1(10a1 − 1 − b1)

12(1 + 2a1 + b1)2
,

γ5 = (1 − 56a1 − 56a1b1 + 2b1 + 244a21 + b21)[1 + (2 + β)a1 + b1]
360(1 + 2a1 + b1)3

,

γ6 = − a1
1 + 2a1 + b1

, γ7 = −a1(10a1 − 1 − b1)

12(1 + 2a1 + b1)2
,

γ8 = −a1(1 − 56a1 − 56a1b1 + 2b1 + 244a21 + b21)

360(1 + 2a1 + b1)3
.
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