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This paper considers the crack problem for a semi-infinite plate subjected to a thermal shock by using hyperbolic
heat conduction equations and equations of motion. The Laplace transform and Fourier transform are used to reduce
the problem to a system of singular integral equations which are solved numerically. Numerical results are presented
illustrating the influence of non-Fourier effect and inertia effect on the stress intensity factor and normalized crack
opening displacements. The results show that the stress intensity factors have higher amplitude and an oscillating feature
comparing to those obtained under the conventional Fourier thermal conduction condition and quasi-static hypothesis.
These results can help understand the crack behaviors of advanced materials under thermal impact loading.
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1 Introduction

Engineering thermo-mechanical structure components can be subjected to severe thermal loading such as extremely
powerful laser impact or rapid quenching with liquids from high temperature. Unconventional phenomena can be observed
and may play an important role in damage and fracture of the materials. The sources of these phenomena include the
non-Fourier heat conduction effect, the inertia effect etc. It was reported that in such situations the Fourier heat conduction
model becomes inaccurate [1]. Also, the inertia forces are not negligible and important stress waves can be induced [2].
These phenomena are particularly pronounced in the cases of the very small length and time scales [3, 4]. The thermal
stresses induced by these effects need to be evaluated accurately, especially around micro-cracks, cavities or other defects.

Moreover, the existence of the cracks can strongly influence the heat conductivity for some materials [5]. The interaction
of all these factors makes the accurate stress analysis extremely complicated.

In this work, we focus our attention on stress analysis in a cracked body under a thermal load by considering both the
non-Fourier effect and inertia forces.

Studies of the thermal stress field distribution in a cracked elastic body have been performed since 1950s [6–9]. In
recent years, increasing investigations have been devoted to solve the crack problems under thermal loading in advanced
materials [10–17]. However, in most of the models solving the temperature fields and stress fields, non-Fourier effect and
the inertia effect are often be neglected due to their complexity. In the thermal shock experiment of Shao [18], they find the
cracks parallel to the heating surfaces, which cannot be explained by the quasi-static thermoelastic theory. In order to make
the results more accurate, Chen [19–21] developed the theory by using hyperbolic heat conduction equations instead of
parabolic heat conduction equations. Within the framework of non-classical heat conduction, Fu [22] obtained the general
solutions for the cylinder model with an edge circumferential crack under thermal loading; Wang [23] studies the fracture
behavior of a thermoelastic cylinder subjected to a sudden temperature change on its outer surface. On the basis of the
found temperature field, the Airy function technique was applied to evaluate the stress concentration around cracks.

However, if we introduce the inertia effect to the stress analysis, the equations of motion have to be used in the solution of
the problem. The Airy function method is no longer applicable in this case. New solution techniques should be developed.

In this article, we analyze the transient thermal stresses around a crack in a semi-infinite, thermo-elastic body under
a thermal impact using the hyperbolic heat conduction and the wave equation. The crack lies parallel to the free surface
under plane elasticity conditions and the crack faces are assumed to be perfectly thermal insulated. We use uncoupled
thermo-elastic theory which has been proved not producing significant errors in most of the usual engineering applications
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[24, 25]. Fourier transforms are employed to derive the singular integral equations about the temperature and the thermal
stress field. The singular integral equations are solved numerically and the asymptotic fields around the crack tips are
obtained. Laplace inversion is used to get the temperature and stress fields in the time domain. The results of the dynamic
stress intensity factors and normalized crack opening displacements plotted versus dimensionless time and dimensionless
coordinates.

2 Statement of the problem and basic equations

We consider a thin half-infinite plate under transient thermal loading which contains a straight crack of length 2r parallel
to the free surface, as shown in Fig. 1. A Cartesian coordinate system is established with the x-axis coincided with the
crack plane and the origin at the crack center. We assume that the material is homogeneous, isotropic and linearly elastic.
In this work, only thermal loading is considered in evaluating the temperature and stress fields. The initial temperature is
assumed to be uniform and equals to T0 in the plate. Then the plate is suddenly heated to a fixed temperature T� at its free
surface, y = -rl, where l is a strictly positive real. The crack surface is assumed to be thermally insulated. Additionally, the
thermal-elastic coupling is neglected in this study.

In order to assess the influence of the non-Fourier and the dynamic effect of the thermal shock, we adopt the hyperbolic
heat conduction equations in temperature field evaluation and introduce the inertia effect in stress field to the equilibrium
equations.

Fig. 1 Model of semi-infinite medium.

In the following, we present the detailed mathematical formulation for the resolution of the above-defined thermal shock
problem.

2.1 Heat conductions

The famous Fourier’s law of heat conduction presents a linear relationship between the heat flux (−→q ) through a material
and the gradient of temperature (T), whose differential form is −→q = −k∇T , where k is the material thermal conductivity
and ∇ is the gradient operator. In principle, however, the Fourier’s law leads to an unphysical infinite heat propagation
speed within a continuum for transient heat conduction processes because of its parabolic characteristics. To overcome
this contradiction, a hyperbolic model with a time (t) dependent term has been proposed, which is named as the Cattaneo-
Vernotte model [26,27]. The introduced time-derivative term describes a wave nature of heat propagation at a finite speed,
which has been proved in both theory and experiments [27–29]. The hyperbolic heat conduction equation for isotropic
bodies writes

−→q + τ0
∂−→q
∂t

= −k∇T (1)

where τ 0 is the thermal relaxation time.
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For the rigid stationary material without internal heat generation, energy balance within a control mass can be expressed
as

ρCp

∂T

∂t
= −∇−→q (2)

where ρ and Cp are the mass density and the specific heat capacity, respectively.
Incorporating Eq. (1) in Eq. (2) leads to the following hyperbolic heat conduction equation,

a · �T = ∂T

∂t
+ τ0

∂2T

∂t2
(3)

where a = k
ρCp

stands for thermal diffusivity and � is the Laplace differential operator, respectively.
By introducing the following dimensionless coordinates, time and temperature

(X, Y ) = (x, y)
r

, τ = at

r2
, θ = T − T0

T∞ − T0
(4)

where T0 is the initial temperature of the plate and the governing Eq. (3) has the following dimensionless forms

∇2θ = ∂θ

∂τ
+ τ1

∂2θ

∂τ 2
(5)

where

τ1 = aτ0

r2
. (6)

Here the gradient operator ∇ is related to the dimensionless coordinates X and Y.
The hyperbolic heat Eq. (5) is subjected to the following boundary and initial conditions written in dimensionless forms:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) : θ (Y = −l) = 1

(b) :
∂θ

∂Y

∣∣∣∣
Y→0−

= ∂θ

∂Y

∣∣∣∣
Y→0+

= 0 |X| ≤ 1

(c) :
∂θ

∂Y

∣∣∣∣
Y→0−

= ∂θ

∂Y

∣∣∣∣
Y→0+

(d) : θ |Y→0− = θ |Y→0+

⎫⎪⎬
⎪⎭ |X| > 1

(e) : θ |τ=0 = 0

(f ) :
∂θ

∂τ

∣∣∣∣
τ=0

= 0

(7)

2.2 Thermal-elastic field equations

In the following, we focus on attention in resolving the plane-stress thermal-elastic problem under the hypothesis

σzz = τxz = τyz = 0. (8)

The basic equations of plane thermal stress problems for nonhomogeneous isotropic elastic body are:

1. Equations of motion including the inertia effect:

σij,j = ρü (9)

2. Strain–displacement relations:

εij = 1

2
(ui,j + uj,i) (10)
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3. Thermal-elastic stress-strain relations:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σxx = E

1 − ν2
[εxx + νεyy − (1 + ν) α (T − T0)]

σyy = E

1 − ν2
[νεxx + εyy − (1 + ν) α (T − T0)]

σxy = E

1 + ν
εxy

(11)

where E, ν, and α are the Young’s modulus, the Poisson’s ratio, and the coefficient of linear thermal expansion, respectively.
The index i, j refer to the coordinate x, y. It is to notice that in this paper, the italic letter “i” is used as a subscript. It should
not be confounded with the regular script “i”, which stands for the imaginary unit.

Besides (4), we introduce some other dimensionless quantities:

σIJ = (1 − ν) σij

Eα (T∞ − T0)
, (u, v) = (ux, uy)

r (1 + ν)α (T∞ − T0)
, (12)

where the index I, J refer to the coordinate X, Y.
By introducing the dimensionless variables defined in (12) into (10) and (11), we obtain stress-strain relationships in

dimensionless form:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

σXX = ∂u

∂X
+ ν

∂v

∂Y
− θ

σYY = ν
∂u

∂X
+ ∂v

∂Y
− θ

τXY = 1 − ν

2

(
∂u

∂Y
+ ∂v

∂X

) (13)

The equations of motion become:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂σXX

∂X
+ ∂τXY

∂Y
= τ2

2 (1 − ν)2

1 − 2ν

∂2u

∂τ 2

∂τXY

∂X
+ ∂σYY

∂Y
= τ2

2 (1 − ν)2

1 − 2ν

∂2v

∂τ 2

(14)

By substituting the equations of motion (14) with Eq. (13), and by using the dimensionless quantities, we obtain:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂2u

∂X2
+ 1 + ν

2

∂2v

∂X∂Y
+ 1 − ν

2

∂2u

∂Y 2
− τ2

2 (1 − ν)2

1 − 2ν

∂2u

∂τ 2
= ∂θ

∂X

∂2v

∂Y 2
+ 1 + ν

2

∂2u

∂X∂Y
+ 1 − ν

2

∂2v

∂X2
− τ2

2 (1 − ν)2

1 − 2ν

∂2v

∂τ 2
= ∂θ

∂Y

(15)

where τ2 = a
V r

with V =
√

E(1−ν)
ρ(1+ν)(1−2ν) being the stress wave velocity.

The dimensionless parameter τ 2, which we named “inertia factor”, plays an important role in describing the dynamic
behavior of a cracked solid under thermal loading. The physical implication of this parameter in stress concentration near
the crack tips will be discussed afterward in this paper.
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In the present problem, the mechanical conditions can be expressed as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) : τXY (X,−l) = 0

(b) : σYY (X,−l) = 0

(c) : τXY (X,∞) = 0

(d) : σYY (X,∞) = 0

(e) : τXY (X, 0+) = τXY (X, 0−) = 0

(f ) : σYY (X, 0+) = σYY (X, 0−) = 0

}
|X| < 1

(g) : τXY (X, 0+) = τXY (X, 0−)
(h) : σYY (X, 0+) = σYY (X, 0−)
(i) : u (X, 0−) = u (X, 0+)
(j) : v (X, 0−) = v (X, 0+)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

|X| ≥ 1

(16)

3 Resolution of the governing equations

In the following, we present the resolution procedure of the above-defined thermal-elastic equations. The analytical-
numerical methods used in [30, 31] are essentially followed in this work. Globally speaking, the Laplace and the Fourier
transform techniques are used in resolving the problem [19,20,32]. Since the inertia effect is introduced in the equilibrium
equations, the resolution procedure becomes more complex. Special resolution techniques are developed for this paper.

3.1 Temperature field

The temperature field in the cracked plate can be obtained by solving the governing equation (5) under initial and boundary
conditions (7). Applying the Laplace transform to (5) and (7) leads to:

∇2θ = (
p + τ1p

2
)
θ, (17)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) : θ̄ (X,−l) = 1
p

(b) : θ̄ (X,∞) = 0

(c) :
∂θ̄ (X, 0+)

∂Y
= ∂θ̄ (X, 0−)

∂Y
= 0 |X| < 1

(d) : θ̄ (X, 0+, p) = θ̄ (X, 0−, p)

(e) :
∂θ̄

∂Y

∣∣∣∣
Y→0+

= ∂θ̄

∂Y

∣∣∣∣
y→0−

⎫⎪⎬
⎪⎭ |X| > 1

(18)

where θ̄(X, Y, p) = ∫ ∞
0 θ(X, Y, τ )e−pτ dτ is the Laplace transform of dimensionless temperature.

The general solution of (17) can be solved by using Fourier transform method, temperature in Laplace-Fourier space
can be written as:

˜̄θ (ξ, Y, p) =
{

c1 (ξ) e−mY + c2 (ξ) emY −l < Y < 0

c3 (ξ) e−mY + c4 (ξ) emY Y > 0
(19)

where m =
√

ξ 2 + p + τ1p2 and ˜̄θ(ξ, Y, p) = ∫ ∞
−∞ θ̄(X, Y, p)eiξxdx, ci(ξ)(i = 1, 2, 3, 4) are unknown parameters to be

determined.
Now we introduce the following density function in Laplace space:

φ̄ (X) = ∂θ̄

∂X

∣∣∣∣
Y→0+

− ∂θ̄

∂X

∣∣∣∣
Y→0−

(20)

It is clear that from the boundary condition (c) in (18), we have:∫ 1

−1
φ̄ (X) dX = 0 (21)
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and

φ̄ (X) = 0, |X| > 1. (22)

By applying the boundary conditions (18) and the density function (20), the temperature field in Laplace space can be
expressed as:

θ̄ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

2π

∫ ∞

0

e−m(2l+Y ) − emY

ξ
˜̄φ sin (ξX) dξ + e−m0(l+Y )

p
− l < Y ≤ 0

1

2π

∫ ∞

0

(
1 + e−2lm

)
e−mY

ξ
˜̄φ sin (ξX) dξ + e−m0(l+Y )

p
Y > 0

(23)

where ˜̄φ =
∫ ∞

−∞

(∫ ∞

0
φe−pτ dτ

)
eiξXdξ is the Fourier transform of Laplace transform of φ; m =

√
ξ 2 + p + τ1p2 and

m0 =
√

p + τ1p2.
Substituting (23) into (c) in (18), we get the singular integral equation for φ(X) as follows:∫ 1

−1
φ̄ (η)

[
1

η − X
+ k (X, η)

]
dη = 2πm0e−m0l

p
(24)

where

k (X, η) =
∫ ∞

0

[
1 − m

ξ

(
1 + e−2ml

)]
sin ξ (X − η) dξ (25)

The integral equation (24) under the singles-value condition (21) has the following form of solution [33]:

φ̄ (X) = �̄ (X)√
1 − X2

(26)

where �̄(X) is bounded and continuous on the interval [-1, 1]. Following the numerical techniques proposed by [33], Eqs.
(21) and (24) can be solved at discrete points as:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

n∑
j=1

π

n
�̄ (ηj )

[
1

ηj − Xi

+ k (Xi, ηj )
]

= 2πm0e−m0l

p

n∑
j=1

π

n
�̄ (ηj ) = 0

(27)

where the Gauss-Chebyshev points are defined as

ηj = cos

(
2j − 1

2n
π

)
j = 1, 2, ..., n (28)

and

Xi = cos

(
iπ

n

)
i = 1, 2, ..., n − 1. (29)

Once the function �̄(X)is obtained, the temperature fields in p-plane can be calculated by using the Chebyshev
quadrature for integration as

θ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n∑
i=1

1

n
�̄ (ηi)

∫ ∞

0

e−m(2l+Y ) − emY

2ξ
sin [ξ (X − ηi)] dξ + e−m0(l+Y )

p
− l < Y ≤ 0

n∑
i=1

1

n
�̄ (ηi)

∫ ∞

0

(
1 + e−2lm

)
e−mY

2ξ
sin [ξ (X − ηi)] dξ + e−m0(l+Y )

p
Y > 0

(30)

Temperature in time domain can be given by applying the inverse Laplace transform, as detailed in [20].
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3.2 Displacement and stress fields

Once the temperature field in Laplace space is found, it is introduced to the equations of motion (15) to determine the
displacement and stress fields. To this end, we first write the equations of motion (15) and the boundary conditions (16) in
Laplace space by means of the Laplace transform, then the Fourier transform with respect to X coordinate is applied to these
equations such that a non-linear ordinary differential equation system in Y-coordinate can be obtained in Fourier-Laplace
space. These differential equations are then resolved by using appropriate numerical methods. Inverse Fourier transform
then inverse Laplace transform of these solutions provide the displacement and stress fields with which some important
measures such as the dynamic stress intensity factors of the crack, the crack opening distance etc. can be obtained.

Firstly, using the Laplace transform to Eqs. (15) and (16), we obtain:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂2u

∂X2
+ 1 + ν

2

∂2v

∂X∂Y
+ 1 − ν

2

∂2u

∂Y 2
− τ2

2 (1 − ν)2

1 − 2ν
p2u = ∂θ

∂X

∂2v

∂Y 2
+ 1 + ν

2

∂2u

∂X∂Y
+ 1 − ν

2

∂2v

∂X2
− τ2

2 (1 − ν)2

1 − 2ν
p2v = ∂θ

∂Y

(31)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) : τXY (X,−l) = 0

(b) : σYY (X,−l) = 0

(c) : τXY (X,∞) = 0

(d) : σYY (X,∞) = 0

(e) : τXY (X, 0+) = τXY (X, 0−) = 0

(f ) : σYY (X, 0+) = σYY (X, 0−) = 0

}
|X| < 1

(g) : τXY (X, 0+) = τXY (X, 0−)

(h) : σYY (X, 0+) = σYY (X, 0−)

(i) : u (X, 0+) = u (X, 0−)

(j) : v (X, 0+) = v (X, 0−)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

|X| ≥ 1

(32)

where (u, v) = ∫ ∞
0 (u, v)e−pτ dτ and σIJ = ∫ ∞

0 σIJ e−pτ dτ are the Laplace transform of the displacement components
and stress components, respectively.

Then applying the Fourier transform to (31)-(32), gives

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d2 ˜̄u

dY 2
+ β1

d ˜̄v

dY
+ β2 ˜̄u = β3

˜̄θ

d2 ˜̄v

dY 2
+ β4

d ˜̄u

dY
+ β5 ˜̄v = d ˜̄θ

dY

(33)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) : ˜̄τXY (−l) = 0

(b) : ˜̄σYY (−l) = 0

(c) : ˜̄τXY (∞) = 0

(d) : ˜̄σYY (∞) = 0

(e) : F−1[ ˜̄τXY (Y )]Y=0+ = F−1[ ˜̄τXY (Y )]Y=0− = 0

(f ) : F−1[ ˜̄σYY (Y )]Y=0+ = F−1[ ˜̄σYY (Y )]Y=0− = 0

}
|X| ≤ 1

(g) : ˜̄τXY (0+) = ˜̄τXY (0−)

(h) : ˜̄σYY (0+) = ˜̄σYY (0−)

(i) : ˜̄u (0+) = ˜̄u (0−)

(j) : ˜̄v (0+) = ˜̄v (0−)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

|X| > 1

(34)
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⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

˜̄σX = −iξ ˜̄u + ν
d ˜̄v

dY
− ˜̄θ

˜̄σY = −iξν ˜̄u + d ˜̄v

dY
− ˜̄θ

˜̄τXY = 1 − ν

2

(
d ˜̄u

dY
− iξ ˜̄v

) (35)

where ˜̄u and ˜̄v are the Fourier transform of ux and uy , respectively, and β i (i = 1, 2, 3, 4, 5) are given by:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β1 = −1 + ν

1 − ν
iξ

β2 = − 2

1 − ν

(
ξ 2 + τ2

2 (1 − ν)2

1 − 2ν
p2

)

β3 = − 2iξ

1 − ν

β4 = −1 + ν

2
iξ

β5 = −
(

1 − ν

2
ξ 2 + τ2

2 (1 − ν)2

1 − 2ν
p2

)

(36)

By considering the boundary conditions (c), (d) in (34) and the temperature fields, the solution of Eqs. (33), i.e., the
displacement field in Laplace-Fourier space can be expressed as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

˜̄u (ξ, Y ) =
4∑

i=1

Ci (ξ) eλiY + ω1e−mY + ω2emY

˜̄v (ξ, Y ) =
4∑

i=1

BiCi (ξ) eλiY + ω3e−mY + ω4emY

−l < Y < 0

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

˜̄u (ξ, Y ) =
6∑

i=5

Ci (ξ) eλiY + ω5e−mY

˜̄v (ξ, Y ) =
6∑

i=5

BiCi (ξ) eλiY + ω6e−mY

Y > 0

(37)

where Ci(ξ ) (i = 1, . . . , 6) are unknown functions to be determined. Substitute Eq. (37) into (33) result in the following
equations: {

β1λjBj + λj
2 + β2 = 0(

λj
2 + β5

)
Bj + β4λj = 0

(38)

so λi (i = 1, . . . , 4) can be given by the roots of the following equation:

λ4 + (β2 + β5 − β1β4) λ2 + β2β5 = 0 (39)

and the coefficients λj (j = 5, 6) are given by:

λj = λj−4 (j = 5, 6) (40)

and the coefficients Bj (j = 1, 2, 3, 4, 5, 6) are given by:

Bj = −λ2
j + β2

β1λj

(41)

ωi(i = 1, . . . , 6) are given in Appendix (A1).
Let’s consider the jumps of displacements across the crack lips y = 0 denoted by 〈u〉 and 〈v〉:{

〈u〉 = u (X, 0+) − u (X, 0−)

〈v〉 = v (X, 0+) − v (X, 0−)
(42)
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The dislocation density functions f i(X)(i = 1, 2) along the crack line can be written as follows:⎧⎪⎪⎨
⎪⎪⎩

f1 (X) = ∂ 〈u〉
∂X

f2 (X) = ∂ 〈v〉
∂X

(43)

The functions f i(X)(i = 1, 2) also satisfy the single-value equations:{∫ 1
−1 fi (X) dX = 0 (i = 1, 2)

fi (X) = 0 (i = 1, 2) |X| ≥ 1
(44)

Physically the second equation of (44) means that the displacements are single-valued for the uncracked portion along
y = 0. By applying the Laplace and Fourier transforms to (43), we obtain:{ ˜̄f 1 (ξ) = −iξ [ ˜̄u (0+) − ˜̄u (0−)]

˜̄f 2 (ξ) = −iξ [ ˜̄v (0+) − ˜̄v (0−)]
(45)

Where by definition and from(44), ˜̄f 1 and ˜̄f 2 are given by:

˜̄f i =
∫ ∞

0

(∫ 1

−1
fi · eiξXdX

)
· e−pτ dτ i = 1, 2 (46)

By applying the boundary conditions (a)-(d) in (34) and (45), Ci can be expressed as

Ci = A−1
i,j γ j + 1

iξ
A−1

i,5
˜̄f 1 + 1

iξ
A−1

i,6
˜̄f 2 i = 1, 2, ..., 6 (47)

Where the matrix Ai,j and γ j are given in Appendix (A2) and (A3).
Substitute (37) into the boundary conditions (e) and (f) in (34), and applying the relationship (35), it can be shown that

fi(x) (i = 1, 2) satisfy the following equations:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ 1

−1
f1 (η) K1,1 (X, η) dη +

∫ 1

−1
f2 (η) K1,2 (X, η) dη = W1

∫ 1

−1
f1 (η) K2,1 (X, η) dη +

∫ 1

−1
f2 (η) K2,2 (X, η) dη = W2

(48)

Where Ki,j and Wi (i = 1, 2; j = 1, 2) are given in Appendix (A5) and (A6).
The solution of the integral equations of fi(x)(i = 1, 2) can be expressed in the following form:

fi (X) = Fi (X)√
1 − X2

(i = 1, 2) . (49)

Using the Lobatto-Chebyshev method [9, 34, 35], we can reduce the integral equations to the following algebraic
equations: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑
i=1

AiK1,1 (Xj, ηi) F1 (ηi) +
n∑

i=1

AiK1,2 (Xj, ηi) F2 (ηi) = W1 (xj )

n∑
i=1

AiK2,1 (Xj, ηi) F1 (ηi) +
n∑

i=1

AiK2,2 (Xj, ηi) F2 (ηi) = W2 (xj )

n∑
i=1

AiF1 (ηi) = 0

n∑
i=1

AiF2 (ηi) = 0

(50)
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where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ηi = cos
(i − 1) π

n − 1
, i = 1, 2, ..., n;

Xj = cos
(2j − 1)π

2 (n − 1)
, j = 1, 2, ..., n − 1;

A1 = An = π

2 (n − 1)
;

Ai = π

n − 1
, i = 2, 3, ..., n − 1.

(51)

The functions F1 and F2 at the crack line can be given by resolving F1 and F2 from (50) and performing the inverse
Laplace transform. The dynamic stress intensity factors KI(p) and KII(p) are defined as [19, 36]⎧⎪⎪⎪⎨

⎪⎪⎪⎩
KI (t) = L−1

[
−1 − ν2

8

√
π F2 (1, p)

]

KII (t) = L−1

[
−1 + ν

4

√
π F1 (1, p)

] (52)

where the operator L−1[ ] denotes the inverse Laplace transform.

4 Result and discussions

In this work, the Poisson’s ratio is set to be 0.3 for all computations. This value is close to those of most of the brittle or
quasi-brittle materials used in engineering applications. The temperature fields on the crack faces and the crack extended
line when the non-Fourier effect is taken into account have been studied by Chen et al. [20]. Identical results for different
values of non-Fourier parameter τ 1 have been obtained in our work and will not be presented in this paper.

The coupled effect of the non-Fourier heat conduction and the inertia forces provides complex stress fields near the
crack tips, which depend additionally on the crack position with respect to the boundary of the half-plane. The influence
of all these factors on the principal crack stress concentration characterized mainly the stress intensity factors (SIFs) and
the crack opening distances (CODs) will be evaluated and discussed in the following sections.

4.1 Influence of τ 1 and τ 2 on the stress intensity factors

The dynamic stress intensity factors KI and KII can be evaluated from (52) once we obtain the solutions of the algebraic
equations (50) and perform the numerical inverse of Laplace transform. Their normalized values (K∗

I ,K∗
II) = (KI,KII)(1−ν)

Eα(T∞−T0)
√

r

are presented in the figures.
In the case when the inertia effect is not taken into account, e.g. τ 2 = 0, the time evolution of the stress intensity factors

are shown in Fig. 2. In this case, the results degenerate to those of the classical quasi-static thermal stress problem under
non-Fourier thermal conduction condition or under conventional Fourier thermal conduction condition when τ 1 = 0. We
remark that our calculations recover the existing results found in the literature [20].

When the inertia effect is considered, the dynamic stress wave will interact with the non-Fourier heat conduction. In
order to present more clearly the obtained results, we will firstly assess their influence separately.

Let us first neglect the non-Fourier effect by fixing τ 1 = 0. The influence of the thermal inertia factor τ 2 on the
normalized dynamic SIFs when l = 1 is depicted in Fig. 3. From this figure, we can clearly observe the influence of this
parameter on the dynamic SIFs: First, we can see that the impact of τ 2 is much stronger on K∗

I than on K∗
II in the range of

τ 2 � [0,015]. Second, as expected, the amplitudes of the SIFs increase as τ 2 increases. Moreover, similar to the case when
τ 1 > 0, the time evolution of the SIFs presents an oscillating feature when τ 2 is large.

It is to notice that the dynamic SIF K∗
I can be positive or negative when τ 2>0. This anomaly comes from the fact that

the crack lip contact under compression is not taken into account in this study. Consequently, the time variation of K∗
I

presented in Fig. 3 is only approximate. As in general, the values of τ 2 are quite small, the errors introduced by this fact
are not very important.

In practice, the peak values of the dynamic SIFs during their time evaluation are most significant in predicting the crack
growth. The peak values of K∗

I evaluated for different τ 1 and τ 2 when l = 1 are plotted in Fig. 4. Figure 4a shows the peak
values of K∗

I when T�−T0 > 0 (heating); whereas Fig. 4b shows its peak values when T�−T0<0 (cooling). We notice
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Fig. 2 Normalized stress intensity factors (a) for mode-I SIFs (b) for mode-II SIFs versus time for different τ 1 when l
= 1 and τ 2 = 0.

Fig. 3 Normalized stress intensity factors (a) for mode-I SIFs (b) for mode-II SIFs versus time for different τ 2 when l
= 1 and τ 1 = 0.

Fig. 4 The variation of peak-values of K∗
I versus τ 2 for different τ 1 for l = 1 (a) when T�−T0 > 0 (heating) and (b)

when T�−T0 < 0 (cooling).

that Fig. 4b is exact while Fig. 4a is approximate due to the surface contact of the crack. We can observe that the maximum
values of K∗

I can be increased significantly by increasing the inertia factor τ 2, whereas the non-Fourier factor τ 1 has a far
smaller impact on K∗

I than τ 2.
In Fig. 5, the peak values of K∗

II are illustrated as function of τ 1 and τ 2. It appears that the responses of K∗
I and K∗

II to
these two parameters are quite different. Globally speaking, the impact of τ 1 and τ 2 has rather a similar order of magnitude
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Fig. 5 the variation of peak-values of K∗
II versus τ 2 for different τ 1

for l = 1.

for the mode-II SIF. At small τ 2, the parameter τ 1 is predominant, after that the peak values of K∗
II increase rapidly when

τ 2 increases, and attain maximums at about τ 2 � 0.55 before falling down afterward.

4.2 Influence of τ 1 and τ 2 on the crack displacement jumps

Apart from the dynamic SIFs, the crack opening distances (CODs) are also important parameters for predicting crack
growth. The CODs can be defined in different manners. Whatever the definition, they can be calculated when knowing the
displacement jumps between the crack-lips, which can be calculated by integrating the dislocation density function found
from Eq. (50), then by performing the Laplace inverse transforms.

As above, we first study separately the influence of the parameters τ 1 and τ 2 on the displacement jumps.
Figure 6 illustrates both the mode-I and mode-II maximal displacement jumps for different τ 1 values by fixing τ 2 = 0

and l = 1. τ in the legends stand for the dimensionless time when the jumps of displacement reach the maximum value,
which has the same meaning in Fig. 7 and Fig. 10. The times at which the maximal displacement jumps are reached are
also indicated. This figure shows that the displacement jumps increase as τ 1 increases. Moreover, it appears that its impact
on mode-I COD is more important than on that of mode-II.

Fig. 6 Normalized displacement jumps �v and �u of the crack lips for different τ 1 when τ 2 = 0.

Similarly, we show in Fig. 7 the influence of τ 2 on the crack displacement jump by fixing τ 1 = 0 and l = 1. Clearly,
the increase of the inertia factor leads to more important in mode I crack opening. However, in mode II crack opening, the
differences of displacement <u> increase slowly with τ 2.

Figure 8 shows the peak values of the maximal displacement jumps between the crack lips versus τ 2 for different τ 1.
It is worthy to notice that the mode-I maximal displacement jumps occur always at the midpoint of the crack, whereas
the mode-II maximal displacement jumps are located at the two sides of the midpoint. We can observe a clear similarity
between Fig. 7 and Fig. 4 in which same diagram is drawn for the dynamic SIFs. The displacement jump <u> becomes
larger with the increase of τ 1. It increases monotonically with τ 2 at the interval 0 < τ 2 < 0.6 and decrease monotonically
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Fig. 7 Normalized displacement jumps �v and �u of the crack lips for different τ 2 when τ 1 = 0.

Fig. 8 Peak values of the normalized displacement jumps versus τ 2 for different τ 1.

with τ 2 at the interval 0.6 < τ 2 < 1.5. The displacement jump <v> becomes larger with the increase of τ 2. However, this
increasing curve becomes slightly oscillating when τ 1 increases.

4.3 Influence of l

It is clear that the stress field near the crack is influenced by the distance between the crack and the boundary characterized
by the parameter l. From the engineering point of view, it is interesting to know the most unfavorable value l for which the
crack stress concentration is the most serious. Figures 9 and 10 show the influence of this parameter on the stress intensity
factor and the crack openings. In these simulations, the inertia factor τ 2 is taken to be 0.2 afterward.

The variation of maximal normalized SIFs K∗
I and K∗

II versus l are shown in Fig. 9 for different τ 1 when τ 2 = 0.2.
The starting abscissa of the curves is l = 0.1 instead of 0. It is clear that the absolute values of the SIFs are not simple
monotonically increasing or monotonically decreasing with l. We can remark that their maximal values occur at l � 1 for
both mode-I and mode-II curves for almost all values of τ 1 considered.

Figure 10 shows the maximum displacement jumps of between crack lips versus the dimensionless coordinate for
different l when τ 1 = 0 and τ 2 = 0.2. It appears that the mode-I displacement jump decreases as l increases. However,
this tendency is no longer true in the mode-II case. To observe better the influence of l on CODs, we plot in Figure 11 the
maximum of the crack displacement jumps versus l for different τ 1 under the condition τ 2 = 0.2. We can observe that the
mode-I displacement jumps first increase and then decrease as l increase. The maximal displacement jumps for different
values of τ 1 are found at points between 0.2 < l < 1. For the mode-II case, overall, the maximum displacement jumps
decrease as the l increases whereas small oscillations can appear with the increase of τ 1. Both the mode-I and mode-II
displacement jumps monotonically decrease with l when l > 1. This result agrees well with that found in the literature [20].
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Fig. 9 Variation of maximum KI
* and KII

* versus l for different τ 1 when τ 2 = 0.2.

Fig. 10 Maximum displacement jumps �v and �u for different l and τ 1 when τ 2 = 0.2.

Fig. 11 Variation of maximal normalized displacement jumps �v and �u versus l for different τ 1 when τ 2 = 0.2. �v
is measured at the midpoints of the crack; �u is measured at the points of the crack where �u is maximal.

5 Conclusions

In this paper, the inertia force and the non-Fourier heat conduction condition are considered to investigate the transient
thermal stress problem of an insulated crack parallel to the boundary of a thermal-elastic half-plane under temperature
impact loading. The current mixed boundary value problem is formulated in terms of Laplace and Fourier transforms
techniques and the established singular integral equations are solved using numerical methods. Temperature and stress
fields in the time domain are obtained by using an asymptotic analysis and inverse Laplace transform. The dynamic stress
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intensity factors and the displacement jumps across the crack surfaces are evaluated for different values of parameters τ 1,
τ 2, and l, characterizing the non-Fourier effect, the inertia effect and the distance between the crack and the half-plane
boundary, respectively.

Generally speaking, the amplitude of the stress intensity factors and the crack displacement jump increases as τ 1 and
τ 2 increase. Nevertheless, we can see that the values of mode II SIF are relatively insensitive to τ 1 and τ 2 whereas the
mode I SIF is dramatically affected by τ 2. The results found are useful for better understanding of the thermo-mechanical
behaviors of advanced materials under a thermal shock loading. Moreover, they also constitute an exact solution of the
problem and can be used to assess the accuracy of the numerical analyses.

In this preliminary work we considered a semi-infinite homogeneous cracked body. The method developed also permits
us to study crack behaviors in layered body with finite dimensions in which the non-Fourier effect and inertia effect are
much more pronounced, especially in the case of small-size or small-time scales [25]. Apart from a few rapports in the
literature [2,27,28], experimental results on these non-classical effects are still rare. All these aspects can be investigation
directions in future works.

Appendix⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω1 =
e−2ml

[
p ˜̄φ − 2iemlδ (ξ) ξ

]
2p

(−m2 + ξ 2 + p2τ 2
2

)
ω2 =

˜̄φ

2
(
m2 − ξ 2 − p2τ 2

2

)

ω3 =
e−2mlm

[
ip ˜̄φ + 2emlδ (ξ) ξ

]
2pξ(−m2 + ξ 2 + p2τ 2

2 )

ω4 = i ˜̄φm

2ξ
(−m2 + ξ 2 + p2τ 2

2

)
ω5 = −

(
1 + e−2ml

)
p ˜̄φ − 2ie−mlδ (ξ) ξ

2p
(
m2 − ξ 2 − p2τ 2

2

)

ω6 =
ie−2mlm

[(
1 + e2ml

)
p ˜̄φ − 2iemlδ (ξ) ξ

]
2pξ

(−m2 + ξ 2 + p2τ 2
2

)

(A1)

where δ(ξ) =
{∞, ξ = 0

0, ξ �= 0
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A1,j =
{

(iξν + bjλj ) e−λj l j = 1, 2, 3, 4

0 j = 5, 6

A2,j =
{

(iξbj + λj ) e−λj l j = 1, 2, 3, 4

0 j = 5, 6

A3,j =
{

iξν + bjλj j = 1, 2, 3, 4

0 j = 5, 6

A4,j =
{

iξbj + λj j = 1, 2, 3, 4

0 j = 5, 6

A5,j =
{

−1 j = 1, 2, 3, 4

1 j = 5, 6

A6,j =
{

−bi j = 1, 2, 3, 4

bi j = 5, 6

(A2)
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ 1 = (ν − 1) ξ 2 − p2τ 2
2

p
(
p + p2τ1 − p2τ 2

2

)δ (ξ)

γ 2 = − 2mpe−ml

p
(
m2 − ξ 2 − p2τ 2

2

) ˜̄φ + 2imξ

p
(
m2 − ξ 2 − p2τ 2

2

)δ (ξ)

γ 3 = i
(
(1 − ν) ξ 2 − p2τ 2

2

)
ξ

(
p + p2τ1 − p2τ 2

2

) ˜̄φ

γ 4 = 0

γ 5 = 1

p + p2τ1 − p2τ 2
2

˜̄φ

γ 6 = 0

(A3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K1,1 = 2
∫ ∞

0

6∑
i=5

[(
ν + biλi

νξ

)
A−1

i,5

]
cos (ξ (X − η)) dξ

K1,2 = 2
∫ ∞

0

(
−i

6∑
i=5

[(
ν + biλi

νξ

)
A−1

i,6

]
− 1 − ν2

4

)
sin (ξ (X − η)) dξ + 1 − ν2

2

1

X − η

W1 =
∫ 1

−1
φ (η) w1 (X − η) dη + e−τ2pl − e−

√
p(1+τ1p)l

1 + τ1p − τ2
2p

τ2
2

K2,1 = 2
∫ ∞

0

(
−i

6∑
i=5

[(
λi

iξ
+ bi

)
A−1

i,5

]
− 1 − ν

2

)
sin (ξ (X − η)) dξ + 1 − ν

X − η

K2,2 = 2
∫ ∞

0

6∑
i=5

[(
λi

iξ
+ bi

)
A−1

i,6

]
cos (ξ (X − η)) dξ

W2 =
∫ 1

−1
φ (η) w2 (X − η) dη

(A4)

where ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

w1 =
∫ ∞

0

[
6∑

i=5

(ξν − ibiλi) w0 − 1

2

(
ξ − νξ + p2τ2

2

ξ

) (
1 + e−2ml

)]
sin [ξ (X − η)] dξ

w2 =
∫ ∞

0

[
6∑

i=5

(λi + iξbi) w0 − m
(
1 + e−2ml

)]
cos [ξ (X − η)] dξ

(A5)

and

w0 = 2

p (1 + τ1p − τ2
2p)

·
[
−2me−mlAi,2 + i

(
ξ − νξ + p2τ2

2

ξ

)
Ai,3 + Ai,5

]
(A6)
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