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From a microscopic point of view, the real contact area between two rough surfaces is the
sum of the areas of contact between facing asperities. Since the real contact area is a
fraction of the nominal contact area, the real contact pressure is much higher than the
nominal contact pressure, which results in plastic deformation of asperities. As plasticity
is size dependent at size scales below tens of micrometers, with the general trend of
smaller being harder, macroscopic plasticity is not suitable to describe plastic deformation
of small asperities and thus fails to capture the real contact area and pressure accurately.
Here we adopt conventional mechanism-based strain gradient plasticity (CMSGP) to
analyze the contact between a rigid platen and an elasto-plastic solid with a rough sur-
face. Flattening of a single sinusoidal asperity is analyzed first to highlight the difference
between CMSGP and J2 isotropic plasticity. For the rough surface contact, besides CMSGP,
pure elastic and J2 isotropic plasticity analysis is also carried out for comparison. In all
cases, the contact area A rises linearly with the applied load, but with a different slope
which implies that the mean contact pressures are different. CMSGP produces qualitative
changes in the distributions of local contact pressures compared with pure elastic and J2
isotropic plasticity analysis, furthermore, bounded by the two.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The well-known Coulomb friction law states that the friction force F depends linearly on the normal load N through the
friction coefficient μ: μ=F N . Alternatively, Bowden and Tabor (1950) have argued from a microscopic point of view that
friction can also be interpreted as τ=F A, where τ is the shear strength of the contact and A is the real contact area, the latter
being a small fraction of the apparent contact area A0 because of the inevitable roughness of the surfaces. Consistency of the
two types of description requires a linear dependence of the real contact area A on the normal force N. This is far from being
trivial: for instance, the Hertzian elastic contact model gives a dependence of N2/3 between a sphere and a flat. A nearly
linear dependence was first obtained by Greenwood and Williamson (1966). They performed a statistical analysis of a rough
surface with a distribution of asperity heights, based on the simplifying assumption that all peaks are spherical asperities
with the same radius. Bush et al. (1975) generalized the Greenwood–Williamson model by incorporating paraboloidal as-
perities and a distribution of asperity size; yet, they still obtained a linear dependence.
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The fact that the generalized Greenwood–Williamson model predicts that a linear relationship between A and N is far
from being obvious, in view of the numerous underlying assumptions. Over the years, several of the simplifications have
been criticized and, partially, mended. For example, the Greenwood–Williamson model assumes that the asperities deform
independently, whereas in reality asperities will interact through the very fact that they are connected by a common
substrate; a possible correction for this has been proposed by Ciavarella et al. (2008). A much more fundamental assumption
is that the asperities respond elastically. However, since contact happens at the highest peaks or asperities, it is to be
expected that the local contact stress gets so high that plasticity is initiated. Indeed, the real contact area measurements in
polymeric magnetic media by Bhushan (1985) had already revealed that a significant portion of the deformation was not
recovered after unloading.

Gao et al. (2006) were the first to systematically study plastic deformation in asperity contact. Based on the behavior of
an elastic-perfectly plastic two-dimensional (2D) sinusoidal asperity under contact, they computed the real contact area
between a rigid flat surface and a deformable rough surface (Gao and Bower, 2006). However, these studies did not provide
any information about the connection between contact area and normal force for a real 3D rough surface in the presence of
both asperity interaction and asperity plasticity. A conceptually straightforward attempt was made by Pei et al. (2005), who
performed a large numerical study of a 3D elasto-plastic contact problem of self-affine rough surfaces. Their model intends
to address all issues of the Greenwood–Williamson model. Besides predicting a linear dependence of contact area on normal
load, these authors also provide the contact pressure distribution and contact patch size distribution, both of which are very
important information for wear. A distinct limitation of this study, however, is the use of J2 isotropic plasticity at all length
scales, down to asperities that are inevitably single crystalline.

Moreover, at size scales below tens of micrometers, plasticity is now known to be size dependent, with the general trend
of ‘smaller being harder'. Size dependent plasticity at these scales has been convincingly demonstrated in torsion (Fleck
et al., 1994), bending (Stolken and Evans, 1998) and microindentation experiments. In the latter, the indentation hardness
decreases monotonically with increasing depth of indentation h, when h is in the range of sub-microns to microns (Nix,
1989; Ma and Clarke, 1995; Poole et al., 1996). Since classical plasticity theories, including J2, do not include an intrinsic
material length, size effects like these cannot be captured. The plasticity size effects mentioned above have been attributed
to geometrically necessary dislocations (GNDs) associated with non-uniform plastic deformation in small volumes (Nye,
1953; Ashby, 1970; Gao and Huang, 2003). Strain gradient plasticity theories (e.g., Poole et al., 1996; Fleck and Hutchinson,
1993; Gao et al., 1999; Huang et al., 2000; Gurtin, 2002) have been developed to describe size dependent behavior for
problems with an externally imposed strain gradient, such as bending, torsion and indentation (Fleck et al., 1994; Gao et al.,
2015; Xue et al., 2002) as well as in problems where plastic gradients develop as a consequence of constrained plasticity,
such as in void growth and composite materials (Liu et al., 2005; Huang et al., 2000; Bittencourt et al., 2003). As a few of
these cited works already suggest, another approach to analyzing plasticity at these size scales is Discrete Dislocation
Plasticity (DDP) in which plastic deformation emerges from the nucleation and motion of discrete dislocations in an elastic
background. After 2D DDP simulations have confirmed the existence of size effects associated with GNDs in, e.g., bending
and indentation (Cleveringa et al., 1997, 1999; Widjaja et al., 2005), this framework has been adopted to study contact and
friction. Deshpande et al. (2004) analyzed the static friction strength through DDP together with a cohesive interface. Sun
et al. (2012) carried out the plastic flattening of a sinusoidal asperity, while Song et al. (2015) investigated how interlocked
asperities deform when the two surfaces slide relative to each other. All these studies focused on a unit process of a single
asperity interacting with the facing surface, hence do not include information about the surface, such as surface roughness.

DDP simulations of a 3D rough surface are not feasible with the existing frameworks for 3D boundary-value problems.
We therefore adopt a strain gradient plasticity theory in order to gain some understanding of how size dependent plasticity
may modify the conclusions based on classical J2 plasticity – such as a linear dependence of real contact area A on the
normal force N. Because of its simplicity and success in fitting indentation results, we have chosen to adopt the conventional
mechanism-based strain gradient theory (CMSGP) proposed by Huang et al. (2004). CMSGP is implemented through an
ABAQUS user subroutine. When simplifying the contact between two rough surfaces, there are two options (Johnson, 1985).
The first is to use a rigid flat surface to flatten the rough surface of a deformable solid with equivalent Young's modulus and
Poisson ratio; this approach has been used in Gao and Bower (2006), Pei et al. (2005), and Sun et al. (2012). Alternatively,
one could press a rigid rough surface into a deformable flat substrate, like in indentation; this is what Yin and Komvopoulos
(2012) did. In the present paper, we utilize the former simplification and perform the simulation of elasto-plastic contact
between a rigid flat and a rough surface. The height probability density function of the rough surface follows a Gaussian
distribution, and the statistical correlation between heights at two random points on surface is also assumed to have a
Gaussian distribution. These assumptions are used to treat surfaces as statistically homogeneous, i.e. the statistics are in-
dependent of location on the surface.

The remainder of this paper is organized as follows. Section 2 describes the methodology for generating the rough
surface and a brief summary of the constitutive equations of CMSGP. Section 3 first presents results for the unit process of
rough surface contact, namely that of a single sinusoidal asperity in contact. Subsequently, Section 4 presents the contact of
a rough surface, checks the linear dependence, describes the distribution of contact pressures. Section 5 summarizes the key
conclusions.



Fig. 1. Deformable solid of × μ10 10 m2 and a mean thickness of μ5 m with a representative example ( = μrms 0.16 m, = μl 0.4 ms ) of a random rough surface
on top. Color coding – blue: valley, red: peak. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of
this paper.)
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2. Methodology

2.1. Rough surfaces

The simplest rough surface is one having asperities with a pre-defined size and shape, such as the rectangular and
sinusoidal asperity that have been used in DDP studies by Song et al. (2015) and Dikken et al. (2015). However, these simple
shapes lack the stochasticity of amplitude and wavelength that are characteristics of a real rough surface. A statistical
description of a rough surface, comprising many peaks and valleys, requires information on deviations in the direction of the
normal vector of the surface from its ideal form and on how the surface varies in the lateral directions. Thus, two parameters
(Leach, 2013) are used to characterize a surface: the RMS height, defined as
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and the surface correlation length ls which describes the statistical independence of two points on a surface (Fung, 1994).
For a smooth surface, = ∞ls .

Random roughness with Gaussian statistics is a well-accepted approximation of many real rough surfaces (Li and Tor-
rance, 2005). An example of a randomly rough surface generated numerically with the method of Garcia and Stoll (1984) is
shown in Fig. 1. When assigning this surface profile ( )z x y,r to a 3D deformable solid of height h by simply shifting only the
top surface will result in heavily distorted elements. Instead, we shift all nodes in the z-direction proportionally to their
initial z-position by ( )z x y z h, /r i i ini , such that the top surface of the solid becomes the desired rough surface while the bottom
surface remains flat.

The rough solid will be pressed against a rigid flat, whose initial position is zmax. In order for the predictions to be
statistically meaningful, the surface should contain a sufficiently large number of asperities. In order to limit the computing
times, however, we here compute ensemble averages of five surfaces with the same surface characteristics.
2.2. Constitutive model

The original mechanism-based strain gradient plasticity (MSGP) model was proposed by Gao et al. (1999). It is a higher-
order theory, with higher-order strains and stresses plus additional boundary conditions, but was later modified into a low-
order mechanism-based strain gradient plasticity theory by Huang et al. (2004). The model incorporates the effect of the
strain gradient through the Taylor hardening model by explicitly decomposing the dislocation density into a density of
geometrically necessary dislocations ρG and statistically stored dislocations ρS. Taylor's expression for the shear flow stress τ
in terms of the dislocation density ρ then takes the form

τ αμ ρ αμ ρ ρ= = + ( )b b , 1S G

where μ is the shear modulus, b is the magnitude of the Burgers vector, and α is an empirical coefficient of the order 0.1.
Within the framework of an isotropic plasticity theory, the GND density is taken to be connected to an effective plastic strain
gradient ηp,
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where r̄ is the Nye factor which is around 1.9 for fcc polycrystals (Arsenlis and Parks, 1999). The effective plastic strain
gradient ηp is defined by
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where εi̇j
p are the components of the plastic strain rate tensor and ( )i, denotes the derivative with respect to coordinate xi.

Moreover, the tensile flow stress σflow is related to the shear flow stress τ from (1) through

σ τ αμ ρ η= = + ¯ ( )M M b r b/ , 4Sflow
p

where M is the Taylor factor, which essentially is an effective average reciprocal Schmid factor (M¼3.06 for FCC poly-
crystals). While Eq. (4) provides a microscopic basis for σflow, macroscopically it is commonly formulated as

σ σ ε= ( ) ( )f , 5flow Y
p

where εp is the effective plastic strain, σY is the initial yield strength and the non-dimensional function f can be determined
from the uniaxial stress–strain curve. Power-law hardening is described by
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where E is Young's modulus, and n is the plastic work hardening exponent ( ≤ <n0 1). In uniaxial tension, where there is no
strain gradient, ρS can be solved from Eqs. (4)–(5),

ρ σ ε αμ= [ ( ) ( )] ( )f M b/ . 7S Y
p 2

Gao et al. (1999) assumed that the same expression holds in the presence of strain gradients, so that substitution of Eq. (7)
into Eq. (4) yields
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is the intrinsic material length which, for typical values of μ σ/ Y , is on the order of micrometers; for example, = μl 8.65 m in Al
reinforced with SiC (Xue et al., 2002). Compared with classical plasticity theory, Eq. (8) incorporates the effect of a plastic
strain gradient: under the same amount of plastic strain, smaller samples experience a higher gradient, thus have a higher
flow stress which is consistent with experimental observations.

In order to avoid higher-order stress in MSGP theory, Huang et al. (2004) introduced a viscoplastic formulation which
relates ε ̇p directly to the effective Von Mises stress σ = J3e 2 rather than to its rate σė as in rate independent plasticity. Thus,
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with ' denoting the deviator of a second-rank tensor. A large value of the exponent m, typically ≥20, ensures that ε ̇p is
negligible as long as σ σ<e flow. Finally, the constitutive law of the resulting Conventional MSGP (CMSGP) theory can be
written in a similar manner to conventional (visco-)plasticity as
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with K being the elastic bulk modulus. Zhang et al. (2006) have extended the above infinitesimal deformation constitutive
law to a hypoelastic–plastic, finite deformation theory. This is the formulation we use in the subsequent sections.

The advantage of using CMSGP is that it is a low-order theory, where the gradient of plastic strain only appears in the
constitutive model, while the equilibrium equations and boundary conditions are the same as in conventional continuum
theories. Thus, it can be easily implemented in finite element software for large scale contact simulations (we used ABAQUS
6.10). Moreover, the use of CMSGP avoids convergence difficulties that may appear with high-order theories such as those of
Fleck and Hutchinson (1993), Gao et al. (1999) and Gurtin (2002) as a consequence of their higher-order boundary con-
ditions. At the same time, the absence of such boundary conditions implies that CMSGP theory is unable to pick-up strain
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Fig. 2. (a) A 3D sinusoidal asperity is flattened by a rigid flat and (b) cross sectional profile in x–z plane of the model.
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gradient effects that are induced by dislocation pile-ups against an interface or against local regions of contact in case it is
not permeable for dislocations. Using discrete dislocation plasticity, Sun et al. (2012) have shown that such pile-ups play a
very important role in two-dimensional flattening of an asperity when the density of dislocation multiplication sites is low.
Outside this near source-controlled regime, the influence of pile-ups is unclear. As the applicability of any strain gradient
plasticity for such circumstances still needs to be confirmed, we can but conclude that CMSGP results in the near-contact
region will probably deviate from those of higher-order theories.

Our simulations are carried out by using the implicit solver ‘ABAQUS Standard’, with the CMSGP theory being im-
plemented in subroutine UMAT. Three-dimensional eight-node linear brick (C3D8) elements are used, and the plastic strain
gradients are computed at Gauss points by using the shape functions. The mesh size on the contact surface is μ0.06 m, while
smaller elements ( μ0.03 m and μ0.015 m) were used to convince us of the lack of mesh sensitivity.
3. Flattening of a 3D sinusoidal asperity by a rigid flat

The unit model problem – compression of a single asperity from the rough surface – is shown in Fig. 2. A 3D sinusoidal
asperity generated by revolution of a sinusoidal profile with amplitude h /2asp and wavelength w lies on top of a cuboid
substrate. The elastic properties are taken to be Young's modulus E¼76 GPa and Poisson's ratio ν = 0.33, while plasticity is
described by either classical J2 theory or by the CMSGP model to see the effect of plastic strain gradient on the asperity
response under contact. For J2 with hardening, we use the properties of aluminium used in the particle size effect study of
Xue et al. (2002). Their parametrization of the stress–strain curve can beconverted to the power-law hardening form of Eq.
(6) with σ = 208 MPaY and plastic hardening exponent n¼0.136. We start with a value of α = 0.17 in the Taylor dislocation
model which was fitted from the indentation of annealed copper (Qu et al., 2004). For the material properties mentioned
above, the corresponding intrinsic length = μl 2.77 m.

When the asperity is flattened by prescribing the vertical displacement U of the rigid flat in the −z direction, the mean
contact pressure is computed from the local contact pressure σ= −p z by means of

∬= ( ) ( )P C p x x dx dx1/ , , 12C
m 1 2 1 2

where C is the contact area between the rigid platen and the sinusoidal asperity. We also define a strain-like measure,

ε = ( )U h/ , 13asp asp

in terms of the asperity height hasp and the so-called flattening distance U. As both pm and εasp are intended to be measures of
the asperity, the results should not depend on the substrate. Gao et al. (2006) have verified in a 2D model that results are
independent of the substrate thickness H as long as >H w3 , so in our model, we use = =L H w4 . The bottom of the sub-
strate is fixed, i.e. = = =u u u 01 2 3 , while the lateral sides are traction free. The contact between the rigid flat and the asperity
is non-adhesive and frictionless.

We start out with two self-similar asperities ( =h w/ 0.2asp ) with = μw 2 m and = μw 4 m, respectively. Fig. 3 shows ε–pm asp
curves of the two asperities with different constitutive laws: J2 and CMSGP. We see that with J2 plasticity, which is size
independent, the two asperities exhibit nominally the same response (slight differences, especially at the start of plasticity,
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are caused by differences in the finite element mesh and automatic time increment selection by ABAQUS), whereas ac-
cording to the CMSGP computation ‘smaller is harder’. This can be easily understood from the fact that the flow stress in Eq.
(8), i.e. σ σ ε η= ( ) +f lflow ref

2 p p , contains the plastic strain gradient ηp; as this is larger in smaller asperities, the smaller
asperity is harder according to CMSPG.

Since it is the product of l and ηp that contributes to the flow stress, a larger plastic gradient ηp is, mathematically,
equivalent to a larger l. Indeed, when we use α = 0.3 as obtained from the particle size effect study (Xue et al., 2002), i.e.

= μl 8.65 m, the size effect is even more pronounced.
Previous studies of the flattening of a 2D sinusoidal asperity (Gao et al., 2006) and of a 3D sphere (Kogut and Etsion,

2002) using J2 theory without hardening have concluded that the mean contact pressure pm is close to around σ3 Y prior to
complete flattening. This is confirmed for our 3D sinusoidal asperities in Fig. 4. However, with the material hardening
properties used above, pm is much larger than σ3 Y. In order to get some feeling if the contact pressure in a hardening
material can be estimated by σ3 flow, this value is computed from (5)–(6) by using ε ε= − ( )p E/3 /asp

p
asp m asp as an estimate of the

plastic part of the asperity strain. Here, the asperity elastic stiffness Easp is defined as the initial slope of the pm versus εasp

curve (Fig. 4). The dashed curve in Fig. 4 shows that σ3 flow is an upper bound to the mean contact pressure pm. For CMSGP,
σflow depends not only on the accumulated εp, just like in hardening J2 solids, but also on the strain gradient. As a con-
sequence, the average contact pressure pm can be much higher than σ3 Y.
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Fig. 4. Mean contact pressure pm versus asperity strain εasp for an asperity with size = μw 4 m and = μh 0.8 masp , J2 plasticity with hardening and without
hardening.
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In addition to the average contact pressure, we looked at the pressure distribution over the contact at different flattening
distance U, shown in Fig. 5. It can be seen that according to J2 hardening model, the high contact peak shifts from the edge to
the center of the contact with increasing U, while in CMSGP model, the high contact pressure always appears near the edge
of the contact since this is the location of the largest strain gradient. At the same U, the maximum contact pressure in
CMSGP model is much higher than it is in J2 hardening model. Thus, in a rough surface contact problem, we expect a higher
probability of having larger contact pressure in CMSGP model than it in the prediction of J2 hardening model.
4. Contact between a rigid flat and a 3D deformable rough surface

4.1. Load dependence of real contact area

The experimentally persistent linear relationship between the real contact area A and the applied load N at small loads
has been verified in rough surface contact simulations in the case of pure elasticity (Hyun et al., 2004) and for J2 plasticity
(Pei et al., 2005). Here we revisit this dependence by using the CMSGP model for size dependent plasticity. The compu-
tational cell is similar to that in Fig. 1, with periodic boundary conditions in the X and Y directions. Five random realizations
of random surfaces are studied for each set of material parameters and the average properties are reported.

The linear dependence still holds at small loads, shown in Fig. 6, but exhibits a slope that is in between that predicted by
pure elasticity and J2 plasticity. As the reciprocal of the slope in Fig. 6 is the real mean contact pressure N A/ , the real mean
contact pressure predicted by CMSGP model is higher than it is in J2 model and smaller than it is in pure elastic model, and
the difference depends on the value of the intrinsic length parameter.

4.2. Statistics of the contact pressure

Several theoretical studies (e.g., Pei et al., 2005; Hyun et al., 2004) have analyzed the statistics of the pressure dis-
tribution on the rough surface for a certain value of A A/ 0, even though this quantity is difficult to assess experimentally.
Since the flattening distance U is a convenient measure both in theoretical and in experimental studies, and is tightly related
to A A/ 0, we prefer to study the contact pressure distribution for different models ata fixed value of U. Indeed, Fig. 7(a) shows
that the contact pressure distribution on five random surfaces as predicted by J2 plasticity theory is rather insensitive to
whether the distributions are computed at the same fattening distance = μU 0.25 m (when A A/ 0 is found to be 0.3) or at the
same contact area =A A/ 0.10 (which requires flattening to = μU 0.16 m). Moreover, in case of a linear elastic material the
pressure distribution at relatively low A A/ 0 scales with the total load. Hence the shape of the probability distribution is
essentially unique, and we can non-dimensionalize the contact pressure distribution by normalization of the contact
pressure by a convenient stress measure.

After normalization of the contact pressures predicted by pure elasticity with the yield strength of the material, Fig. 7
(b) shows that the pressure on almost all contact spots is so high that almost all asperities would have deformed
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permanently if plasticity were possible. When plasticity is taken into account – either size independent or size dependent –
the mean contact pressure is much lower, and the contact pressure displays a totally different distribution compared with
pure elastic model, see Fig. 8. Instead of a monotonically decaying distribution, there is a distinct peak in the distribution.
When size dependent plasticity is considered, the distribution shifts to higher values, i.e. contact pressure becomes larger
when plastic deformation is size dependent.

The pressure distribution also depends on the surface roughness parameters. Fig. 9a shows the comparison of probability
distribution of contact pressure when the rms of the surface changes from μ0.04 m to μ0.16 m at the same correlation length

= μl 0.4 ms . The difference in the predictions by J2 and CMSGP is seen to increase with increasing roughness. For J2 size
independent plasticity, the peak of the distribution is more or less the same, as already observed in Pei et al. (2005), while
the distribution widens. However, the change in distribution according to the size dependent plasticity model CMSGP is
much more significant: not only the probability of larger contact pressure is higher, but also the peak of the distribution
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shifts to higher value. The reason is that when plasticity is size dependent, a rougher surface has sharper contact asperities
which introduce larger strain gradients resulting in higher contact pressures.

As noted in the single asperity study in Section 3, a higher plastic gradient ηp is mathematically equivalent to a larger l in
CMSGP model. Hence, increasing the surface roughness is equivalent to assigning a larger l while keeping the roughness the
same. This is confirmed in Fig. 9b: the pressure distribution for = μl 11.7 m and = μrms 0.08 m is similar to that with

= μl 8.65 m and = μrms 0.16 m.
The sensitivity of the pressure distribution to the material model used is biased by the fact that the overall pressure also

depends on the model. In order to remove this bias, we now plot the probability distribution of the contact pressure p
normalized by the mean of contact pressure 〈 〉p . Using different values of the material intrinsic length l in the CMSGP theory,
Fig. 10 clearly shows the transition from size independent plastic behavior to elastic behavior. We see that when the strain
gradient effect is small, for example when = μl 2.77 m, the SGP prediction of 〈 〉p p/ coincides more or less with that of size
independent J2 theory, even though the mean contact pressures 〈 〉p are quite different, see Fig. 8. The 〈 〉p p/ distributions
having the same shape suggests that the strain gradient effect is equivalent to increasing the material yield stress in size
independent plasticity model. However, as the strain gradient effect gets more dominant, the distribution becomes wider
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and therefore this equivalence no longer applies. In the large gradient limit, the distribution becomes almost the same as
with a purely elastic model.
5. Summary and conclusion

In this paper, we have adopted CMSGP theory to analyze the elasto-plastic contact between a rigid platen and an elasto-
plastic solid with a rough surface and have contrasted the results to predictions by pure elasticity and by J2 plasticity.

The strain gradient induced during flattening of an asperity gives rise to a higher flow stress in the CMSGP model, so that
the average contact pressure is higher than it is according to size independent J2 plasticity. Also, the distribution of the
pressure over the contact area is different: the highest contact pressure always occurs around the edge of the contact in the
CMSGP model, whereas according to J2 model, the peak shifts from the edge to the center with increasing load.

When a rough surface is flattened, the contact area increases nearly linearly with the load for all material models
considered. The mean contact pressures N A/ , however, are very different, with the prediction by CMSGP being in between
those of pure elasticity and J2 plasticity.

If the solid responds in an elastic manner, the local contact pressures can be much higher than the material yield strength
σY. When plastic deformation is possible, these high pressures are reduced to lower value, thus giving rise to a peak in the
distribution. The position of this peak is correlated to σY, as discussed by Pei et al. (2005). When size dependence of
plasticity is included, the overall distribution shifts to higher pressure levels (Fig. 8), as if σY were increased for size in-
dependent plasticity. However, this equivalence is not always true (Fig. 10): when the strain gradient effect is more pro-
nounced (larger l), the probability distribution of contact pressures normalized by the mean pressure widens and becomes
more similar to the distribution for pure elasticity.

Size dependent plasticity magnifies the sensitivity of contact pressure to the surface roughness (Fig. 9a): a larger surface
roughness gives rise to a bigger difference between size independent and size dependent plasticity. As surface roughness
not only changes the contact morphology, but also influences the strain gradient, it affects the effective plastic flow stress in
size dependent plasticity. Increasing the surface roughness results in a larger strain gradient, which is mathematically
equivalent to having a larger material intrinsic length l in CMSGP theory (Fig. 9b).

Throughout this paper, plasticity significantly reduces the contact pressure, both the magnitude of the pressure and the
range of the distribution. Moreover, depending on the magnitude of the plastic strain gradient which is larger for a rougher
surface, size dependent plasticity gives quantitatively different results with size independent J2 theory. It bridges the pre-
dictions of pure elasticity and J2 plasticity (Fig. 10).

This fundamental study of elasto-plastic contact problem highlights the importance of size dependent plasticity for
friction related studies. Extension of the present work to typical friction studies such as shear of contacting surfaces, and
surface ploughing seem interesting avenues for future research.
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