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Generalized solitary waves propagating at the surface
of a fluid of finite depth are considered. The fluid
is assumed to be inviscid and incompressible and
the flow to be irrotational. Both the effects of gravity
and surface tension are included. It is shown that
in addition to the classical symmetric waves, there
are new asymmetric solutions. These new branches
of solutions bifurcate from the branches of symmetric
waves. The detailed bifurcation diagrams as well as
typical wave profiles are presented.

1. Introduction
Progressive waves propagating at the surface of a
fluid of finite depth have been studied intensively
over the years. It is usually assumed that the fluid
is inviscid and incompressible and that the flow is
irrotational. Different types of nonlinear solutions, such
as periodic waves, solitary waves, dark solitary waves,
and generalized solitary waves, were identified (see
e.g. [1,2] and references therein). In this paper, we
focus on the generalized solitary waves. Such waves
are characterized by a solitary pulse with non-decaying
ripples in the far field.

When gravity and surface tension are both taken into
account, the solution structure depends on the value of
the Bond number

B = T
ρgH2 , (1.1)
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where T is the surface tension, ρ is the density, g is the acceleration of gravity and H is
the undisturbed depth of the fluid. When B> 1/3, long waves of small amplitude satisfy the
Korteweg–de Vries (KdV) equation. The solutions are then depression solitons. The existence
of KdV-type solitary waves for the full Euler equations was rigorously proved by Amick &
Kirchgässner [3]. However, the KdV equation is no longer the correct simplified model when
0< B< 1/3, and many different families of solutions, including solitary waves and generalized
solitary waves are then possible (see, for example, the numerical work [4]). The mathematical
proof of the existence of elevation generalized solitary waves was provided by Beale [5] and Sun
[6]. Later, Champneys et al. [7] showed that the amplitude of the ripples in the far field is always
different from zero. More recently, Clamond et al. [8] found new multi-hump generalized solitary
waves and the numerical results suggest that the existence of an infinite number of such waves.

The works mentioned in the previous paragraphs are restricted to symmetric waves, i.e. waves
whose profiles are symmetric with respect to some vertical axis. Asymmetric gravity–capillary
waves were first studied by Zufiria [9] based on an analysis of the fifth-order KdV equation
(a reduced model for small-amplitude waves when the Bond number is close to 1/3). Zufiria
found numerically asymmetric periodic waves with six peaks in one wavelength. This problem
was further explored by Shimizu & Shōji [10], who found both 6-peak and 2-peak asymmetric
solutions for the full Euler equations in deep water. New results in [11] suggest that asymmetric
periodic gravity–capillary waves exist in the form of any number (no less than 2) of peaks in one
wavelength. Zufiria’s work [9] also showed that asymmetric solitary waves are possible for the
fifth-order KdV equation. Using exponential asymptotics for the same reduced model, Yang &
Akylas [12] showed that asymmetric solitary waves feature a multi-packet structure. Recently,
Wang et al. [13] discovered numerically the counterparts in deep water for the Euler equations.
However, to the best of our knowledge, asymmetric generalized solitary waves have not been
found for water waves. In this paper, we provide a first numerical evidence for the existence of
these solutions in the full Euler equations.

In the remaining part of the paper, we restrict our attention to 0< B< 1/3 and search for
asymmetric generalized solitary gravity–capillary waves. The formulation and the numerical
method are described in §2. The numerical results are presented in §3. Finally, some concluding
remarks are given in §4.

2. Formulation and numerical method
We consider an irrotational flow of a two-dimensional, inviscid and incompressible fluid bounded
below by a flat bottom. The upper surface of the fluid is deformed by a train of waves travelling
at a constant velocity c. A frame of reference moving with the waves is used so that the flow
is steady. We introduce Cartesian coordinates with the y-axis pointing upwards. A schematic
of the flow configuration is presented in figure 1. We denote the complex velocity potential by
f = φ + iψ , where φ is a potential function and ψ is the streamfunction. We choose ψ = 0 on the
free surface and φ = 0 at a crest or a trough of the wave where we assume that x = y = 0. We
denote by ψ = −Q the value of the streamfunction on the bottom. The equation of the free surface
is given by y = η(x). We shall approximate the generalized solitary waves by periodic waves of
very long wavelength λ. Next we define also the wave amplitude

A = η

(
λ

2

)
. (2.1)

The governing equations can be written as

∇2φ = 0, − H< y<η(x), (2.2)

φy = φxηx, on y = η(x), (2.3)

1
2
|∇φ|2 + gy − T

ρ
κ = B0, on y = η(x) (2.4)
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Figure 1. Configuration of the problem. The gravity acts in the negative y-direction. We denote the unknown free surface by
y = η(x). We choose the origin to be at a wave crest or trough.

and φy = 0, on y = −H, (2.5)

where κ is the curvature of the free surface and B0 is the Bernoulli constant. Equations (2.3) and
(2.5) are the kinematic boundary conditions on the free surface and on the bottom, respectively.
Equation (2.4) is the dynamic boundary condition.

We use φ and ψ as independent variables. Next we introduce the complex velocity w = u − iv
and define the function T − iϑ by

u − iv = exp(T − iϑ). (2.6)

Here, u and v are the horizontal and vertical components of the vector velocity, respectively.
The kinematic boundary condition (2.5) on the bottom can be automatically satisfied by using

the method of images. The image of the free-surface into the bottom is then ψ = −2Q. Hence the
extended flow domain in the complex f -plane is the strip −2Q<ψ < 0. Next we introduce the
conformal mapping

s = exp
(

−2iπ f
cλ

)
, (2.7)

which maps the strip onto the annulus r2
0 < |s|< 1. Here

r0 = exp
(−2πQ

cλ

)
, (2.8)

and c is the speed of the wave defined as

c = 1
λ

∫λ
0
φx dx, (2.9)

where the integral is evaluated at a level y = const. in the fluid. The function T − iϑ can be viewed
as an analytic function of s in the annulus r2

0 < |s|< 1. Therefore, it can be represented by the
Laurent series

T − iϑ = a0 +
∞∑

n=1

αnsn +
∞∑

n=1

βns−n. (2.10)

Imposing the condition that ψ = −2Q is the image of the free surface ψ = 0 yields the relation

βn = αnr2n
0 . (2.11)

Therefore, (2.10) can be rewritten as

T − iϑ = a0 +
∞∑

n=1

αnsn +
∞∑

n=1

αnr2n
0 s−n. (2.12)
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We now introduce dimensionless variables by using H as the reference length and c as the
reference velocity. The dynamic boundary condition (2.4) becomes

F2

2
e2T + y − Bκ = B̃0, (2.13)

where B̃0 = B0F2 is unknown, B is the Bond number defined by (1.1) and

F = c√
gH

(2.14)

is the Froude number. The other governing equations remain unchanged. The coefficients αn are
in general complex. Therefore, we write

αn = an + ibn (2.15)

and find an and bn numerically. First, we truncate the infinite series in (2.12) after N terms and
define the 2N + 1 collocation points

φI =
(

j − 1
N

− 1
)
λ

2
, j = 1, 2, . . . , 2N + 1, (2.16)

where λ is now the dimensionless wavelength. The dynamic boundary condition (2.13) is then
satisfied at the points (2.16). This yields a system of 2N + 1 equations. We also note that (2.9)
implies the equation

x
(
λ

2

)
− x

(−λ
2

)
= λ. (2.17)

The final equation is obtained by writing
A = Ã (2.18)

or
bm = ε, (2.19)

where Ã and ε are given parameters and m is an integer suitably chosen. We note that (2.18) is
useful for computing symmetric waves and that (2.19) is useful for asymmetric waves. The two
additional equations (2.17), (2.18) or (2.19) together with the 2N + 1 equations obtained earlier
form a system of 2N + 3 equations with 2N + 3 unknowns (a0, a1, . . . , aN , b1, b2, . . . , bN , F, B̃0).
Finally, to avoid the Galilean invariance of the Euler equations, we replace one of the algebraic
equations resulting from the discretization of the Bernoulli equation by

N∑
n=1

(1 + r2n
0 )bn = 0. (2.20)

This condition is used to make sure that a crest or a trough lies at the origin. The method was
first proposed by Shimizu [10] and followed by Gao et al. [11] in searching for asymmetric surface
water waves. Then the system can be solved by Newton’s method for given values of B and λ. We
refer to this system as the asymmetric system.

We now consider the case of symmetric waves. As mentioned in §1, these waves have profiles
which are symmetric with respect to some vertical line. Without loss of generality, we choose
this line of symmetry to coincide with the y-axis. It follows that all the coefficients bn are zero.
The code can then be simplified by taking N + 1 equally spaced collocation points uniformly
distributed along [0, λ/2]. We then have a system of N + 3 nonlinear equations for the N + 3
unknowns (a0, a1, . . . , aN , F, B̃0) (e.g. [14]). We refer to this system as the symmetric system.

The basic idea of our computations is first to write the symmetric solutions in the form of
(a0, a1, . . . , aN , 0, 0, . . . , 0, F, B̃0), then to show that there are bifurcation points on the branches of
symmetric waves. This is achieved by monitoring the sign of the Jacobian of the asymmetric
system and identifying points where the Jacobian vanishes. To ease referring, we call this
operation the asymmetric Jacobian test. We found that new branches of asymmetric solutions
bifurcate from the branches of symmetric solutions at these points. We usually take N = 800
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Figure 2. Profiles of the waves for A= −0.05, B= 0.24 and (a) λ= 13, (b) λ= 26, (c) λ= 34 and (d) λ= 68. The
corresponding values of the Froude number are (a) 0.999, (b) 1.011, (c) 1.014 and (d) 1.020.

for computing symmetric waves and N = 1600 for asymmetric waves. The residual l∞-norm
error is set to be less than 10−9 in Newton’s method. This numerical scheme was successfully
implemented in [11,14,15], and its convergence and accuracy were carefully validated in [14].

As mentioned earlier, we shall approximate the generalized solitary waves by periodic waves
of long wavelength. These families of solutions are then characterized by three parameters which
can be, for example, chosen as A, B and λ. The search for the bifurcation points would be
very complicated if we let all the parameters vary at the same time. For simplicity, we choose
to fix the value of two of the parameters and to study the branches of solutions in a two-
dimensional space. We then perform the asymmetric Jacobian test to locate the bifurcation points
which lead to symmetry breakings. We also show that our approach uncovers the existence of
new symmetric solutions.

3. Numerical results
The size of the computational domain λ has to be chosen carefully in order to compute accurately
generalized solitary waves [4,8,14]. This is illustrated in figure 2 where we present symmetric
waves for B = 0.24, A = −0.05 and various values of λ. As the wavelength increases, the periodic
solutions approach the configuration of a solitary pulse in the middle with small ripples in the
tails. The profile in figure 2d can then be viewed as a good approximation of a generalized solitary
wave (i.e. a non-periodic wave with train of ripples extending up to |x| = ∞). In all the calculations
presented in this paper, we chose λ= 102. This value was found to be sufficiently large to model
symmetric and asymmetric generalized solitary waves. It is worth mentioning that there are
two types of periodic waves as shown in figure 3. The wave (a) and (b) have a trough and a
crest, respectively, at their right-endpoint. However, these two types of waves approach the same
generalized solitary wave as λ→ ∞. In this paper, we only focus on the families of solutions
ending with a crest since the results for those ending with a trough are expected to be similar.

We fix the value of A (here A = −0.055) and compute the branch of symmetric solutions by
using the numerical scheme described in §2. The results in the F2–B plane are shown in figure 4
(solid curve). Since there are many turning points on the bifurcation curve, we need to use in
addition to the code of §2 a variant in which we fix F and λ and take (a0, a1, . . . , aN , B, B̃0) as
the unknowns. The solid curve of figure 4 was then obtained by using alternatively both codes
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Figure 3. Typical free-surface profiles of generalized solitary waves with (a) F = 1.021, B= 0.239,λ= 101 and (b) F = 1.023,
B= 0.239 andλ= 102. The waves (a, b) end with a trough and a crest, respectively. Only half of the waves are shown.
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Figure 4. Bifurcation diagram plotted in the F2–B plane with A= −0.055 and λ= 102. The solid curve is the branch of
symmetric waves. The two dashed-dotted curves are the branches of asymmetric waves bifurcating at (1) F = 1.044, B= 0.259
and (2) F = 1.054, B= 0.261, respectively. The corresponding wave profiles are presented in figure 5.

and continuation (i.e. using a previously computed solution as an initial guess to compute a new
solution for slightly different values of the parameters). By performing the asymmetric Jacobian test,
we located two bifurcation points (marked as (1) and (2) in figure 4) from which new asymmetric
branches emanate. Typical wave profiles are shown in figure 5. As can be seen from (1†), (2†), (1‡)
and (2‡), there are asymmetries in the middle of the profile while the ripples in the far field are
still of equal amplitude.

We then continued to search for more asymmetric generalized solitary waves. We first used
the solution (2) in figure 4 and constructed by continuation a branch of symmetric solutions for

 on May 21, 2017http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


7

rspa.royalsocietypublishing.org
Proc.R.Soc.A472:20160454

...................................................

–0.2

0

(1)

–0.2
–40 0 40

–40 0 40

–40 0 40

0

(2)

–0.2

0

(1†)

–0.2

0

(2†)

–0.2

0

(1‡)

(2‡)

–0.2

0

Figure5. Figures (1) and (2) are thewaveprofiles corresponding to thepoints (1) and (2) of figure 4. Figures (1†, 1‡) and (2†, 2‡)
are typical wave profiles of asymmetric generalized solitary waves taken, respectively, on the branches bifurcating from the
points (1) and (2) of figure 4. The profiles of figures (1†) and (2†) correspond to points close to the bifurcation points (1) and
(2). The horizontal dashed lines illustrate clearly the asymmetry. The profiles of figures (1‡) and (2‡) correspond to the points
further away from the bifurcation points. All the profiles are plotted in the physical plane, and only the central parts are shown.

B = 0.26 and λ= 102. This branch is shown in the F2–A plane of figure 6. Next we chose a point on
the curve of figure 6 (here we chose the point (d)) and constructed a family of symmetric waves
by fixing A = −0.0935 and λ= 102. It is shown by the solid curve in the F2–B plane of figure 7.
As we did previously in figure 4, we perform the asymmetric Jacobian test. This enabled us to
identify a bifurcation point (the point (3)) from which a branch of asymmetric waves emanated
(see dashed curve in figure 7). Typical wave profiles are shown in figure 8. It turns out that the far
field is deformed by a train of Wilton-ripple-like tails in (3†) instead of simple ripples of constant
amplitude. Generalized solitary waves with Wilton-ripple-like trains were first found by Wang
et al. [16] for interfacial waves under an elastic sheet. For the classical gravity–capillary waves,
such kind of solutions had not been found before to our knowledge.
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Figure 6. A branch of symmetric waves plotted in the F2–A plane when we fix B= 0.26 andλ= 102.
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Figure 7. A family of symmetric solutions plotted in the F2–B plane when A= −0.0935 andλ= 102. This branch emanates
from the point (d) of figure 6. A symmetry-breaking point is found at F = 1.124, B= 0.256 andmarked as (3) in the graph. The
branch of asymmetric waves is shown by the dash-dotted curve. The zoom-in figure is used to differentiate the bifurcation point
(3) and the intersection point.
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Figure 8. Wave profile (3) for the point spotted in figure 7. (3†) is a typical profile of asymmetric generalized solitary waves
which bifurcate from (3) and (3‡) is the blow-up graph of (3†). The profiles are plotted in the physical plane, and only themain
profiles are shown.

Our aim in this paper was to demonstrate the existence of branches of asymmetric generalized
solitary waves. As part of our search we found some new symmetric waves. We shall conclude
this section by presenting some typical profiles. These symmetric results supplement those
obtained in [8]. First we show in figure 9 wave profiles corresponding to the points (a–e) of
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Figure 9. Wave profiles for the points indicated in figure 6. All the profiles are plotted in the physical plane, and only the
essential parts of the waves are shown.
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Figure 10. A few extra symmetric wave profiles. All the profiles are plotted in the physical plane, and only the main profiles
are shown.

figure 6. At one end of the solution branch, multi-hump solutions have been found as presented
in figure 9a. At the other end, we observed a new kind of generalized solitary wave with a large
and long ripple in the middle. We followed to use this solution (e) as an initial guess to seek more
new solutions. The resulting profiles are presented in figure 10 which show that the large and
long central ripple can evolve multiple ripples. It is noted that there is a plethora of multi-hump
generalized solitary gravity–capillary waves as claimed in [8,17].

4. Conclusion
We have revisited the classical problem of generalized solitary waves in the presence of
gravity and surface tension. We have shown numerically the existence of new asymmetric
solutions. These solutions form branches which bifurcate from the classical branches of symmetric
generalized solitary waves. Since the branches are characterized by three parameters, we could
only present a few typical results which demonstrate clearly the existence of asymmetric waves.
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