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This paper introduces a local piston theory with viscous correction for the prediction of hypersonic unsteady

aerodynamic loads at high attitudes and large Mach numbers. A semi-empirical relation accounting for the viscous

interaction effects to determine the effective shape is proposed. Themethod is validated by applying to thin airfoils at

various Mach numbers, angles of attack, and operating altitudes. Sample two- and three-dimensional aerodynamic

forces calculations are conducted demonstrating this method. Furthermore, flutter boundary predictions for a two-

dimensional airfoil and pitching-in-damping derivative evaluations for a three-dimensional waverider configuration

are performedwith this unsteady aerodynamicmodel. Comparedwith theEuler-based local piston theory, thismodel

performs much better at high altitudes for a wide range of Mach numbers, angles of attack, and shapes. Results

suggest the feasibility of using the effective shape of hypersonic vehicles to efficiently and accurately obtain the

unsteady aerodynamic characteristics in hypersonic flow environment.

Nomenclature

a = dimensionless offset between the elastic axis and the
midchord, positive for elastic-axis locations behind
midchord

a∞ = speed of sound
b = c∕2, airfoil semichord
Ceff = effective shape determination coefficient
Cl = lift coefficient
Cm = pitching moment coefficient
C
ωz
m , C _α

m = derivative of Cm with respect to ωz and _α
CN = normal force coefficient
Cp = pressure coefficient
c = chord length, reference length
H = altitude
h = plunge displacement at the elastic axis, positive

down
Iα = cross-sectional mass moment of inertia about its

elastic axis
k = ωc∕�2u∞�, reduced frequency
kc = ωc∕u∞, reduced frequency
L = sectional lift force, positive up
Lc = length of the generating cone
M = Mach number
MEA = sectional aerodynamic moment about the elastic axis
m = airfoil mass per unit span

p = pressure
rα = dimensionless radius of gyration about elastic axis
Sα = static moment per unit span
T = temperature
Tw = wall temperature
t = time
u∞ = freestream velocity
u, v, w = velocity along the X, Y, and Z axes
�V 0 = viscous interaction parameter
V�
f = reduced flutter speed

W = downwash speed
Xcg = relative location of center of gravity along X axis
x, y, z = spatial coordinates
xα = dimensionless static imbalance of the airfoil about its

elastic axis
α = angle of attack, torsion deflection
α0 = mean angle of attack
β = shock-wave angle
δα = amplitude of the pitch motion
γ = ratio of the specific heats
δ� = displacement thickness
ξ = vorticity
ρ = density
τ = slope of the airfoil surface
τw = ωα · t, dimensionless time
τc = t∕�c∕u∞�, dimensionless time
φ = azimuth angle
ω = circular frequency
ωα, ωh = uncoupled frequency of plunging and pitching
ωz = angular velocity around Z axis

I. Introduction

S EVERAL hypersonic flight programs have been performed to
explore the design of hypersonic vehicles in the past decades, such

as National Aerospace Plane, Force Application and Launch from
ContinentalUnitedStates,VentureStar,Hypersonic International Flight
Research, etc. Significant progress has been made in the hypersonic
technologies, but there remains much work to do in the field of
aerodynamics, control, materials, and so on. These flight vehicles
operate prolonged maneuver flight at high altitudes (H � 40–70 km)
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and high Mach numbers (M ≥ 10). In such a flight condition, the
common slender body and flexible control surfaces of the hypersonic
vehicles will suffer from extreme aerodynamic heating and loading
and will most likely experience structural deformations, all of which
make it challenging to successfullyperformaerodynamic configuration
design and to accurately evaluate aerodynamic characteristics,
including aeroelasticity, aerothermoelasticity, flight dynamics, etc.
Currently, because of the difficulty in realizing the stable and sustained
airflow simulation of high altitudes and high Mach numbers, the
hypersonicwind-tunnel experiment technique is far frombeingmature.
Thus, an alternateway for predicting hypersonic unsteady aerodynamic
loads is through the use of computational fluid dynamics (CFD) [1]. In
recent years, the rapid advancement in computer technologies enables
the use of CFD in the modeling of unsteady aerodynamics. However,
because the time-step size in unsteadyCFDcalculations has to decrease
as the Mach number increases, using CFD approaches in hypersonic
speeds will need lots of computational time and resources, which is
especially unacceptable for preliminary design and trend-type research
of hypersonic vehicles. To solve the preceding problems, one of the
primary tasks is to model the unsteady aerodynamic forces accurately
and efficiently.
Researchers have developed a number of approximate unsteady

aerodynamic theories in history due to the limited capabilities of
computational methods, such as Newtonian impact theory, shock-
wave/expansion-wave method, piston theory, Van Dyke’s second-
order theory, and so on [2–5]. These methods are based on a number
of assumptions including inviscid flow and simple geometries.
Hence, they cannot be used in complex problems. Morgan et al.
proposed the local piston theory [6], which can be used in
problems of large angles of attack by replacing freestream flow
quantities with local flow terms computed with the shock-wave/
expansion-wave method. More recently, several approaches that
combine steady inviscid CFD solutions and traditional analytical
methods emerged. Scott and Pototzky proposed a quasi-steady
approach, using two separate steady CFD solutions per vibratory
mode: one solution for the static part and another for the harmonic
part of the pressure, to obtain the generalized aerodynamic forces
for flutter analysis [7]. Zhang et al. developed an Euler-based local
piston theory (LPT), incorporating the solutions of steady Euler
equations into the approximate method [8,9]. Such hybrid steady-
state CFD/analytical approaches are appealing because the steady
flow analysis can capture complex flow phenomena neglected by
classical aerodynamic theories and are not limited by the shape of
the objects [10], and they are much more computationally efficient
than unsteady CFD analysis. However, because these methods are
based on the solutions of inviscid flow, the accuracy will inevitably
become poor when applied to problems at high altitudes, where the
inviscid–viscous interactions have a significant effect on the
aerodynamic characteristics.
McNamara et al. proposed an approach that combines the

pressure calculated from the steady Navier–Stokes (N-S) equations
and unsteady component of the pressure extracted from piston
theory (NSSS-PT) and achieved better results than LPT for the cases
studied [10,11]. Meanwhile, they pointed out that the boundary
layer caused by the viscosity changes the effective shape of the
body, leading to the low accuracy of piston theory. Therefore,
two methods were employed to calculate the boundary-layer
displacement thickness, including a semi-empirical equation [12]
and a method approximated from steady-state CFD flow analysis.
Then, the third-order piston theory was applied on the effective
shape instead of the original surface. However, this method did not
show better accuracy than LPT and NSSS-PT. The authors also
mentioned that the difficulty in identifying the local Mach number
at the edge of the boundary layer, not known a priori, limited the
incorporation of inviscid–viscous interactions into the CFD-based
methods.
Han et al. developed a local piston theory with viscous correction

for the prediction of hypersonic unsteady aerodynamic loads at high
altitudes [13]. They attempted to obtain the effective shape and
identify its local flow quantities from the steady Navier–Stokes
numerical solutions for the viscous correction of LPT. There, the

authors proposed a semi-empirical relation for the determination of
effective shape. In this paper,we try to further improve thismethod by
discussing the range of application and extending it from two-
dimensional airfoils to three-dimensional configurations. Further-
more, this method is applied to predict the flutter boundaries and
evaluate the pitching dynamic stability characteristics.

II. Computational-Fluid-Dynamics Solver

A. Numerical Method

The CFD solver GMFlow is used in the paper. A cell-centered
finite volume method is employed to solve the Euler and Reynolds-
averaged Navier–Stokes equations. The AUSM� spatial discretiza-
tion scheme is adopted with an implicit lower-upper symmetric
Gauss-Seidel scheme for the temporal integration. The governing
equations are solved using the dual-time-stepping method, and local
time stepping with the fourth-order Runge–Kutta scheme is used at
the subiteration. Moreover, the scheme of grid deformation is based
on the Radial Basis Function interpolation [14]. For computations of
viscous flows, the one-equation Spalart–Allmaras turbulence model
is implemented at the altitudesH < 40 km, whereas the laminar flow
model is used at the altitudes H ≥ 40 km. More details about the
numerical methods can be found in [15,16].

B. Solver Validation

The accuracy of the unsteady aerodynamic codes is validated in
[17], where the transonic unsteady aerodynamics of the NACA 0012
airfoil calculated by GMFlow are compared with the experimental
results in [18].
The success of the methodology proposed in the paper depends on

the accuracy of steady N-S solutions under the condition of strong
viscous interaction. Therefore, an example of the orbital vehicle OV-
102 is conducted to verify the reliability of the numerical methods.
The following flight condition is given in [19]: M � 20, angle of
attack �AOA� � 20 deg, γ � 1.15,Tw � 1366 K, andH � 40, 50,
60, 70, 75 km. The wall mesh of OV-102 is shown in Fig. 1, and the
lift-to-drag ratio (L∕D) at different conditions is shown in Fig. 2. The
results calculated from the current numerical methods are quite close
to those from [19], showing that the CFD solver is reliable in the
application of problems under the condition of strong viscous
interaction.

III. Local Piston Theory

A. Derivation of Local Piston Theory

The classical piston theory assumes that perturbations spread
along the normal direction to the surface forM ≫ 1, as if caused by
the action of a piston. Using the momentum equation and the
isentropic assumption, one obtains the following basic piston theory
formula for the surface pressure:

p � p∞

�
1� γ − 1

2

W

a∞

��2γ∕γ−1�
(1)

Fig. 1 Mesh of OV-102.
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whereW is the downwash speed,p∞ is the pressure of freestream,a∞
is the sound speed of the freestream, and γ is the ratio of the specific
heats. Equation (1) is a seventh-order formula aboutWwhen γ � 1.4.
In the condition of small perturbations [M�W∕a∞� ≪ 1], wemay use
the linearized first-order formula:

Cp � 2

M2

�
W

a∞

�
(2)

or the second-order formula:

Cp � 2

M2

�
W

a∞
� γ � 1

4

�
W

a∞

�
2
�

(3)

It should be noticed that the classical piston theory is based on the
assumption of small perturbation relative to the freestream. As such,
it can only be used in the problems of thin airfoils at small angles of
attack.
To remove the limitations, local piston theory replaces the

freestream quantities with the local flow terms, so that it realizes
unsteady prediction based on steady flow. By applying Eq. (1) locally
and keeping only the first-order terms, Zhang et al. [9] gives the
following Euler-based local piston theory:

8<
:
P � Pl � ρlalW
W � Vl · δn� Vb · n
δn � n0 − n

(4)

where n0 is the outward normal unit vector before deformation; n is
the outward normal unit vector after deformation; W is the local
downwash speed due to both deformation Vl · δn and vibration
Vb · n; and Pl, ρl, al, and Vl are the local pressure, density, sound
speed, and flowvelocity, respectively.All the local flowquantities are
computed by the steady Euler solver.

B. Range of Application of Local Piston Theory

Compared with the classical piston theory, LPT accounts for the
nonlinear effects of the steady flow through accurately capturing the
local flow quantities. In terms of computational efforts, only one
steady Euler solution is needed for each flight condition. Results in
[9,20] show that this method not only removes the limitations of
classical piston theory on the airfoil thickness, angles of attack, and

flight Mach numbers but also yields reasonable accuracy for airfoils

with round leading edges in supersonic flow, mainly because the

large perturbations and nonlinearity are accounted for by the steady

Euler solver.
However, LPT is based on the assumption of inviscid flow. In a real

flightwith the speed ofM > 10, the flight vehicle is supposed to fly at
a relatively high altitude (H � 40–70 km), where the Reynolds

number may be on the order of 105–106. The dimensionless wall

pressure distribution of a 4% thickness circular-arc airfoil is plotted in

Fig. 3, under the condition ofH � 20 km,M � 10 andH � 60 km,

M � 20, respectively, from the steady-state CFD solutions at zero

angle of attack (AOA). At 20 km, the wall pressure from inviscid and

viscous results is almost coincident, whereas at 60 km, the pressure

from the N-S results is apparently larger than that from the Euler

results. Such a phenomenon can be explained by the viscous

interaction effect. Under some conditions of high altitudes and high

Mach numbers, the very large boundary-layer thickness displaces the

outer inviscid flow, changing the nature of the inviscid flow. In turn,

the substantial changes in the outer inviscid flow feed back to the

boundary layer, affecting its growth and properties. The mutual

interaction process between the boundary layer and the outer inviscid

flow is called viscous interaction [2]. Obviously, under the condition

ofH � 20 km,M � 10, the viscous interaction is not strong enough
to change the inviscid wall pressure distribution significantly. In

contrast, under the condition of H � 60 km, M � 20, the strong

viscous interaction leads to the evidently larger pressure than the

corresponding inviscid pressure. In such conditions with strong

viscous interaction, the local flow quantities captured by the Euler

solver may have a large difference from those in a real flight

condition, thus reducing the accuracy of LPT.
The 4% thickness circular-arc airfoil is used here to evaluate the

capability of LPT. The forced oscillatory motion of the airfoil is

described in the following equation:

α � α0 � dα · sin�ωt� (5)

In the test cases, α0 � 0 deg, dα � 1 deg. The circular frequency
ω is determined by a reduced frequency k � ωc∕�2u∞� � 0.02,
where c � 1 m. The center of stiffness of all two-dimensional airfoil

cases in this paper is chosen at the quarter-chord position without

special instructions. Table 1 compares the amplitudes of unsteady

x/c

P
/P

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

60 km, M=20_N-S
60 km, M=20_Euler
20 km, M=10_N-S
20 km, M=10_Euler

Fig. 3 Dimensionless pressure for the 4% circular-arc airfoil.

H/(km)

L
/D

40 50 60 70
1.6

1.7

1.8

1.9

2
ADDB[19]
CFD

Fig. 2 Comparison of L∕D at different altitudes.

Table 1 Comparison of amplitudes of aerodynamic coefficients at different conditions

Amplitude

M H, km Re, m−1 CN (N-S) ×10−3 CN (LPT) ×10−3 RE CN , % Cm (N-S) ×10−4 Cm (LPT) ×10−4 RE Cm, %

10 20 1.85 × 107 7.71 7.44 3.5 8.09 7.76 4.1
10 30 3.77 × 106 7.95 7.44 6.4 9.33 7.76 16.8
10 40 7.92 × 105 8.25 7.44 9.8 10.4 7.76 25.4
15 50 2.98 × 105 6.93 5.49 20.8 7.95 2.82 64.5
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aerodynamic coefficients computed by unsteady N-S equations and
LPT. A criterion is used in this paper that, for two-dimensional
airfoils, if the relative error (RE) of amplitude is over 10% for CN or
over 20% for Cm, the approximate model is considered to be no
longer applicable. We can find that the results of the two methods
agreewell for the cases with high Reynolds number, but the accuracy
of the LPT method goes bad as the Reynolds number decreases.
According to the criterion, LPT is no longer applicable
at H ≥ 40 km.

IV. Local Piston Theory with Viscous Correction

In hypersonic flow, the viscous interaction between the outer
inviscid flow and the boundary layer is significant due to the very
large boundary-layer thickness [2]. Because the flow outside the
boundary layer can be considered as inviscid, we may obtain the
effective shape of the object from the steady-state CFDN-S solutions
and then use LPT with the local flow quantities along the effective
shape to compute the unsteady aerodynamic loads. This method is
called the local piston theory with viscous correction (VLPT).

A. Derivation of Local Piston Theory with Viscous Correction

The key to the method is the determination of a reasonable
effective shape, which directly influences the accuracy of VLPT.
There exists a corresponding relationship between vorticity and
viscous flow. Specifically, for the boundary of viscous flow
immediately adjacent to the surface, the flow is highly rotational with
high vorticity. However, outside this boundary layer, the flow is
generally lowly rotational with low or even zero vorticity [21]. As a
result, vorticity can be taken as a characteristic quantity to distinguish
the viscous flow inside the boundary layer from the inviscid flow
outside the boundary layer, thus to determine the effective shape.
Vorticity is defined as

ξ � ∇ × V �
�
∂w
∂y

−
∂v
∂z

�
i�

�
∂u
∂z

−
∂w
∂x

�
j�

�
∂v
∂x

−
∂u
∂y

�
k (6)

For two-dimensional flows, only the third term is kept on the right
side of Eq. (6). The laminar boundary-layer displacement thickness
equation on a flat plate by Anderson for strong viscous interaction
case [2,21] is

δ� ∝ M1∕2Re−1∕4x3∕4 (7)

where Re is the unit Reynolds number, and x is the distance offset
froma point in the body surface to the leading edge in the longitudinal
section. From Eq. (6), we can see that vorticity depends only on the
velocity derivatives of the flowfield. Assume that the normal gradient
of the streamwise velocity is much larger than the gradient of the
other directions, which is reasonable for most flows around the
slender hypersonic configurations; we can get the following criterion
to obtain the effective shape:

jξj < Ceff

u∞
M1∕2Re−1∕4x3∕4

(8)

where Ceff is the effective shape determination coefficient and
includes the possible factors that affect the effective shape. Based on
the flowfield from the steady-state N-S solutions, the vorticity of each

mesh point is searched from the body surface to the outside flowfield

along the normal direction. Then, at the position where the vorticity

satisfies Eq. (8) first, the edge of the effective shape is determined and

so are the local flow quantities.
The viscous interaction effect has a major influence on the

displacement thickness of the boundary layer, and viscous interaction

parameters denote the strength of the viscous interaction. Therefore,

the effective shape determination coefficient Ceff may only depend

on the viscous interaction parameter. Historically, several viscous

interaction parameters were developed at different flight conditions

for different kinds of aircraft. The parameter �V 0 is a widely used

viscous interaction parameter derived from the Space Shuttle

program [2]. Wilhite et al. [22] demonstrated the validity of �V 0 as a
force coefficient correlation parameter under the strong viscous

interaction condition (0.005 < �V 0 < 0.08), which is close to the cases
studied here. Thus, the paper adopts �V 0 as the viscous interaction

parameter, defined as

�V 0 � M
������
C 0p

���������
ReL

p (9)

where

C 0 � ρ 0μ 0

ρ∞μ∞
(10)

where ρ 0 and μ 0 are evaluated at the reference temperature T 0 within
the boundary layer, and the reference length equals the chord length

of the airfoil. A reference temperature method suggested by

Anderson is employed here [21]

T 0 � 1.28� 0.023M2 � 0.58�Tw∕T∞ − 1� (11)

The viscosity coefficient μ 0 is calculated by Sutherland’s law:

μ 0

μ0
�

�
T 0

T0

�
3∕2 T0 � 110.4

T 0 � 110.4
(12)

where μ0 � 1.716 × 10−5 kg∕�m · s�, andT0 � 273.11 K. Thewall
temperature Tw � 1000 K is used for this paper. Through Eqs. (9–

12), the viscous interaction parameter �V 0 can be determined at a given

condition.
To find the relation between Ceff and �V 0, a series of unsteady

numerical simulations for the vibrating 4% thickness circular-arc

airfoil are conducted at zero AOA with different �V 0. Note that a

laminar boundary layer, on which most strong viscous interaction

theories are based, is assumed in the N-S calculations here because of

the large Mach number and small Reynolds number. An isothermal

wall condition with Tw � 1000 K is applied. And the paper adopts

the perfect gas model, neglecting the real gas effect. For each case,

vary Ceff until the amplitudes of unsteady aerodynamic coefficients

fromVLPTand unsteady CFDmatch best. The final results are listed

in Table 2.
By observing and plotting the values ofCeff and �V 0, a nearly linear

relationship between Ceff and
������
�V 0p

is discovered, shown in Fig. 4.

The expression for Ceff can be obtained through linear fitting:

Table 2 Conditions for Ceff determination

Amplitude

M H, km k �V 0 × 10−2 Ceff CN (N-S) ×10−3 CN (VLPT) ×10−3 RE CN , % Cm (N-S) ×10−4 Cm (VLPT) ×10−4 RE Cm, %

10 40 0.02 0.85 0.31 8.25 7.97 3.45 10.4 10.6 2.02
13 45 0.02 1.31 0.59 7.20 6.85 4.90 8.22 8.48 3.16
15 50 0.02 1.89 0.86 6.93 6.72 3.02 7.95 8.28 4.15
15 55 0.01 2.53 1.10 7.20 7.11 1.19 8.86 9.17 3.48
18 57 0.01 2.95 1.28 6.90 6.76 2.03 8.27 8.58 3.78
20 60 0.01 3.60 1.49 6.94 6.88 0.86 8.51 8.58 0.85
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Ceff � 12.05
������
�V 0

p
− 0.8 (13)

Note that the coefficients may have aminor difference for different

solvers or meshes, but the linear relationship should remain

unchanged. A detailed process for obtaining the effective shape is

summarized in Fig. 5.

B. Verification of Only Dependency on �V 0 for Ceff

To verify if there are other parameters that have a direct influence

on Ceff , several cases considering different Mach number, altitude,

unit Reynolds number, and chord length are conducted for the same

�V 0 � 0.0189. Ceff is equal to 0.856, calculated from Eq. (13). The
results are listed in Table 3.We can see that using the sameCeff for the
same viscous interaction parameter �V 0 is reasonable for different
cases. Therefore, we infer that Ceff can be determined directly from
�V 0. In fact, the Mach number, altitude, and chord length are included
in the expression of �V 0, thus determining the value of Ceff indirectly.

C. Range of Application of Local Piston Theory with Viscous

Correction

Based on the results fromTable 2, the comparison of the amplitudes
from VLPT and N-S is proceeded by increasing Mach number and
altitude, listed in Table 4. For all cases,Ceff is calculated fromEq. (13).
From the results, we can see that, at the altitude over 70 km, the VLPT
method is no longer applicable according to the criterion set in Sec. III.
A possible reason may be that, with further increase in Mach number
and altitude, the thick boundary layermaymergewith the shockwave:
a merged shock layer. When this happens, the shock layer must
be treated as fully viscous, and the conventional boundary-layer
analysis must be completely abandoned [2]. Then, the concept of
effective shape may not be valid anymore. Therefore, for a typical
thin airfoil, a range of application for VLPT is suggested here:
0.0085 ≤ �V 0 ≤ 0.062. Note that the lower limit corresponds to the
condition where LPT is no longer applicable.

D. Variation of Effective Shapes

Effective shapes of the 4% thickness circular-arc airfoil are
obtained at various flight conditions through the criterion in Eq. (8),
depicted in Figs. 6–8. Several conclusions about the effective shape
can be made. First, from Fig. 6, we can find that the effective shape
turns a little thicker as the Mach number increases. However, the
influence of the Mach number is so little as to be negligible. This is
consistent with the Mach number independence principle: at high
Mach numbers, the flowfield becomes essentially independent of
Mach number [2]. Second, it is evident from Fig. 7 that increasing
altitude makes the effective shape thicker. From the two preceding
results, we see that the thickness of the effective shape varies
consistently with the strength of the viscous interaction, namely, the
effective shape turns thicker as the viscous interaction becomes
stronger. Third, a predictable result, shown in Fig. 8, is that the lower
surface of the effective shape becomes thinner and the upper surface
becomes thicker with the increase in AOA.

V. Calculation of Unsteady Aerodynamic Loads

Several cases are conducted to evaluate the capability of VLPT.
The unsteady aerodynamic characteristics of the 4% thickness
circular-arc airfoil are calculated, from α0 � 0 to 20 deg, to test the
validity of VLPT at large angles of attack. In addition, a set of
circular-arc airfoils with different thickness are chosen to assess the
effect of the airfoil thickness on the accuracy of VLPT. Finally, the
case of an all-body model is conducted to evaluate the application of
VLPTon three-dimensional problems.With all motions described by
Eq. (5), amplitudes and time histories of the aerodynamic coefficients
(includingCN andCm) obtained fromVLPTare comparedwith those
obtained from the unsteady N-S equations and LPT. The unsteady N-
S solutions are taken as the benchmark solutions.
For the two-dimensional airfoil cases, the chosen motion

parameters are dα � 1 deg, k � 0.02. The airfoils with 1 m length
all pitch around its quarter-chord position. The base flight condition
is M � 15 and H � 50 km.

Table 3 Different cases for the same �V 0

Amplitude

M H, km Re (×105), m−1 c, m CN (N-S) ×10−3 CN (VLPT) ×10−3 RE CN , % Cm (N-S) ×10−4 Cm (VLPT) ×10−4 RE Cm, %

9.7 40 7.68 0.2 8.94 9.31 4.14 12.50 13.30 6.40
13.7 45 5.25 0.5 7.24 7.31 0.97 8.66 9.26 6.93
15 50 2.98 1.0 6.93 6.72 3.02 7.95 8.28 4.15
15 55 1.67 1.8 6.93 6.52 5.92 7.97 8.08 1.38

C
ef

f

0.08 0.12 0.16 0.2
0

0.3

0.6

0.9

1.2

1.5

Fig. 4 Linear fitting of Ceff with
������
�V 0

p
.

Geometry

Mesh Generator
2D: Rectangle
3D: Hexahedron

CFD Solver:
Steady N-S solutions

of the flowfield

Read the coordinate and
flow quantities of the wall

mesh node one by one

Search the neighboring mesh node
from the body surface to the outside
flowfield along the normal direction

until Equation (8) is satisfied

Replace the coordinate and flow
quantities of the original wall mesh

node by ones of the new mesh node

Effective shape, along with
the local flow quantities

Fig. 5 Flowchart for obtaining the effective shape.
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For the three-dimensional all-body cases, the motion parameters

are: dα � 1 deg, k � 0.0915 (the reference length is 0.9144m). The

center of the pitching motion is set to be (0.54864 m, 0, 0). And the

base flight condition isM � 20 and H � 60 km.

A. Effect of Angle of Attack

Figure 9 describes the time histories of unsteady aerodynamic

coefficients at α0 � 4 deg. Superior agreement between VLPT and

N-S results is achieved. Note that the aerodynamic coefficients of

Table 4 Comparison of amplitudes at different cases (k � 0.02)

Amplitude

M H, km �V 0 CN (N-S) ×10−3 CN (VLPT) ×10−3 RE CN , % Cm (N-S) ×10−4 Cm (VLPT) ×10−4 RE Cm, %

25 60 0.037 6.59 6.69 1.52 7.77 8.08 3.99
20 63 0.043 7.21 7.12 1.25 9.29 8.91 4.09
20 65 0.049 7.50 7.22 3.73 10.00 9.05 9.50
20 68 0.060 7.73 7.23 6.47 10.86 9.01 17.03
25 68 0.062 7.40 7.20 2.70 10.14 8.77 13.51
20 70 0.069 7.96 7.13 10.43 11.60 8.69 25.09
25 70 0.071 7.62 7.13 6.43 10.85 8.51 21.57

a) 45 km b) 60 km
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Fig. 6 Comparison of effective shapes at different Mach numbers.
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Fig. 7 Comparison of effective shapes at different altitudes.
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Fig. 8 Comparison of effective shapes at different angles of attack.
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VLPT are the integration on the effective shape, making the mean

values slightly different from the steady N-S solutions that integrate

on the original body surface. However, the steady N-S solutions are

obtained before the application of VLPT. Hence, the mean values of
VLPT can be corrected by the steady N-S solutions. Higher errors

between LPT and N-S are shown in both mean

values and amplitudes. The steady pressure and Mach number

distributions at α0 � 4 deg from the three methods are depicted in

Fig. 10. Compared to the results from the inviscid solution, the
steady pressure on the effective shape is larger, and the Mach

number is lower. Note that the Mach number on the original airfoil

from the N-S solution is zero and not plotted in Fig. 10b. The

combined influence of differences in the local flow quantities and

the shape of the surface (the effective shape shown in Fig. 8a) lead to
the deviations between the results from VLPTand LPT. In addition,

the relative location of the pressure center along the chord is 33.5,

37.7, and 37.0% for the airfoil from the steady Euler solution, the

effective shape, and original airfoil from the steady N-S solution,
respectively, which makes the error of Cm appear relatively larger

than that of CN for LPT.
With the increase in AOA, disturbances relative to the freestream

become larger, which may reduce the accuracy of VLPT and LPT.
The amplitudes of unsteady aerodynamic coefficients for a set of

angles of attack are shown in Fig. 11. Compared to N-S, the results of

VLPTare good to excellent for awide range ofAOA. Specifically, the

error of VLPT forCN is lower than LPTat most angles of attack. The

intersection of the two curves from LPT and N-S leads to the closer
CN by accident around α0 � 12 deg, which on the contrary shows

that VLPT is more accurate than LPT in terms of the variation trend.

For Cm, VLPT shows higher accuracy at all angles of attack.

Although increasing the AOA makes the deviations higher between

VLPT and N-S, the maximum relative error is only 5% for CN and

4.71% for Cm both at α0 � 20 deg, which is quite acceptable.

B. Effect of Airfoil Thickness

The airfoil thickness may have an influence on the accuracy of

VLPT for two reasons. First, the boundary-layer displacement

thickness formula in Eq. (7) is derived based on a flat plate, and thus

the accuracy of the effective shapemay be reduced for the airfoil with

large thickness. Second, the accuracy of LPTmay also be lowered as

the thickness of airfoil increases [9] due to the larger streamwise

perturbations. The amplitudes of unsteady aerodynamic coefficients

for a series of circular-arc airfoils with different thickness, ranging

from 4 to 16%, are plotted in Fig. 12. The variation trend for the

amplitude ofCN is consistent for the threemethods, whereas the error

of LPT turns apparently larger than that of VLPT. The advantages of

VLPTare expounded more significantly in the moment coefficients.

A low accuracy of LPT is observed in both magnitude and variation

trend. However, VLPT shows good agreement with N-S up to an

airfoil thickness of 16%.

Furthermore, according to the criterion made in Sec. III, the

applicable maximumAOAs for the circular-arc airfoils with different

thickness are listed in Table 5. We can see that the airfoils with larger

thickness have a lower applicable maximum AOA for VLPT. This is

because increasing the thickness of airfoil itself exerts a larger

compression angle of freestream, thus limiting the applicable range

of AOA.

C. Application on an All-Body Model

The basic all-body model (without control surfaces) is a typical

and relatively simple hypersonic lifting-body configuration derived

b) Pitching moment coefficienta) Normal force coefficient
t/(s)

C
N

0 0.02 0.04 0.06 0.08 0.1

0.02

0.025

0.03

0.035

0.04

0.045 N-S
VLPT
LPT

t/(s)

C
m

0 0.02 0.04 0.06 0.08 0.1

-0.005

-0.004

-0.003

-0.002

-0.001

0 N-S
VLPT
LPT

Fig. 9 Time histories of unsteady aerodynamic coefficients for the 4% circular-arc airfoil at α0 � 4 deg.

Fig. 10 Steady pressure and Mach number distribution for the 4% circular-arc airfoil at α0 � 4 deg.
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from analytical studies [23–25], shown in Fig. 13. The top-down

view of the model is a triangle plane with a leading-edge sweepback

of 75 deg. The total axial length is 0.9144 m. The model, including

the forebody and afterbody, has elliptical cross sections. The major-

to-minor axis ratio is 4 for the forebody. The height of the minor axis

for the afterbody is continuously reduced backward up to a sharp

straight-line trailing edge. The forebody and afterbody are connected

at two-thirds of the body length.

The criterion for the determination of effective shape in Eq. (8) is

derived from two-dimensional flows, and so the three-dimensional

flow effects may reduce the accuracy of VLPT.

Figures 14 and 15 show the effective shape and pressure

distribution of the longitudinal symmetric plane for the all-body at

α0 � 0 deg, respectively. We can see that the effective shape is

significantly thicker than the original body, which not only makes

the pressure from the N-S and VLPT results larger than that from the

Euler results but also alleviates the expansion of the flow on the

rear half.

The time histories and amplitudes of the unsteady aerodynamic

coefficients are shown in Figs. 16 and 17. The maximum relative

error of VLPT is 12.31% for CN and 28% for Cm both at

α0 � 10 deg. However, the maximum relative error of LPT is 22.9%

forCN atα0 � 0 deg, and the errors forCm are all unacceptablymore

than 53%.An evident improvement in accuracy is obtained byVLPT.

This demonstrates the validity of VLPT on the three-dimensional
hypersonic configuration.

VI. Flutter and Dynamic Stability Analysis

The preceding sections have proved the feasibility and relatively
high accuracy by employing the effective shape to correct the
Euler-based local piston theory. In this section, the flutter
predictions of a double-wedge airfoil and the pitching dynamic
stability evaluations of a three-dimensional hypersonic waverider

Fig. 14 Effective shape of the all-body model at α0 � 0 deg.

Fig. 13 All-body model.

a) Normal force coefficient b) Pitching moment coefficient
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Fig. 11 Amplitudes of unsteady aerodynamic coefficients vs mean AOA for the 4% circular-arc airfoil.
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Fig. 12 Amplitudes of unsteady aerodynamic coefficients vs thickness for a set of circular-arc airfoils at α0 � 4 deg.

Table 5 Maximum applicable
AOA for circular-arc airfoils with

different thickness for VLPT

Thickness, % Maximum AOA, deg

4 ≥20
8 ≥20
12 15
16 9
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configuration are operated under the condition of high altitudes and

high Mach numbers to further assess the application and accuracy

of VLPT.

A. Airfoil Flutter Predictions

According to Lagrange’s equations, the two-degree-of-freedom

linear system shown in Fig. 18 can be expressed in the following

form: �
m �h� Sα �α� Khh � −L
Sα �h� Iα �α� Khα � MEA

(14)

Defining the dimensionless time τω � ωα · t and the generalized

coordinates

x/c

P
/P

0 0.2 0.4 0.6 0.8 1

0

5

10

15

20 N-S
VLPT
Euler

Fig. 15 Steady pressure distribution of the longitudinal symmetric
plane of the all-body model at α0 � 0 deg.

a) Normal force coefficient b) Pitching moment coefficient
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Fig. 16 Time histories of unsteady aerodynamic coefficients for the all-body model at α0 � 0 deg.
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Fig. 17 Amplitudes of unsteady aerodynamic coefficients vs mean AOA for the all-body model.

Fig. 18 Two-degree-of-freedom aeroelastic model of the airfoil.
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Fig. 19 Flutter Mach number vs elastic-axis offset parameter a,
40,000 ft.
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ζ �
�
h∕b
α

�

we obtain

M�ζ � G_ζ �Kζ � F (15)

where

M �
�
1 xα

xα r2α

�
; G � 0; K �

� �ωh∕ωα�2 0

0 r2α

�
;

F � ρu2∞
mω2

α

� −Cl

2Cm

�

In [10], flutter boundaries of a double-wedge airfoil, described in

Table 6, are predictedwith several aerodynamicmodels at 40,000 and

60,000 ft. Note that VLPT cannot be applied in such altitudes even if

the Mach number is very high. For example, under the condition of

H � 60;000 ft andM � 30, the viscous interaction parameter �V 0 is
very small �1.26e − 3�, and a negative Ceff (−0.373) is obtained

according to Eq. (13). The criterion in Eq. (8) is no longer valid.

Therefore, the effective shape cannot be acquired at such low

altitudes by the methodology proposed in this paper.
To verify the accuracy of the current aeroelastic codes, the flutter

Mach numbers of the double-wedge at 40,000 ft are predicted by the

current solver GMFlow, LPT, and corresponding results from [10],

shown in Fig. 19. Excellent agreements are obtained between

Table 6 Parameters describing
the double-wedge airfoil [10]

Parameter Value

c 2.35 m
τ 0.0336
m 94.2 kg∕m
rα 0.484
ωα 37.6 Hz
ωh∕ωα 0.3564
xα 0.2

a

M

-0.4 -0.2 0 0.2 0.4
10
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20

25

30

35

N-S
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LPT

Fig. 20 Flutter Mach number vs elastic-axis offset parameter a, 40 km,
α0 � 10 deg.
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Fig. 21 Flutter Mach number vs AOA at a � 0, 40 km.

Fig. 22 Waverider model.

Fig. 23 Effective shapes of waverider, atH � 55 km,M � 15.

Xcg

0.3 0.4 0.5 0.6 0.7 0.8
-2

-1.5

-1

-0.5

0

0.5
N-S
VLPT
LPT

Fig. 24 Damping-in-pitch derivative vs the relative position of center of

gravity at α0 � 0 deg.
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Fig. 25 Damping-in-pitch derivative vs AOA at Xcg � 0.6.
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different N-S or different LPT results, which demonstrates that the

current solver is credible in the application of aeroelasticity. In

addition, the flutter boundaries predicted by LPT are rather close to

those by N-S, showing that, in such conditions even with very high

Mach numbers, the viscous interaction effect is not strong enough to

affect the flutter boundaries significantly, and the use of LPT is

sufficient to obtain satisfying flutter results.

To verify the application of VLPTon aeroelasticity, the altitude of

40 km is chosen to perform the flutter predictions. Note that the flutter

Mach numbers should be no more than 30 so that the condition

Mτ < 1.0 for piston theory is satisfied. At 40 km, if the same

parameters of the double-wedge airfoil were used, the flutter Mach

numbers would be much higher than 30 due to the very low air

density. Therefore, a lower torsional stiffness,ωα � 7.96 Hz, is used
here, with the other parameters listed in Table 6 kept unchanged.

The flutter Mach numbers at different elastic-axis offset

positions, ranging from −0.3 to 0.4, at α0 � 10 deg are shown in

Fig. 20.With the N-S results taken as the benchmark solution, it can

be seen that the error of LPT increases as a decreases, and the

maximum relative error is 21.62% at a � −0.3. Nevertheless, the
error of VLPT is evidently lower than that of LPT, especially at the

position a ≤ 0. The maximum error of VLPT is simply 5.56% at

a � −0.3. Furthermore, flutter boundaries at different angles of

attack are predicted by the three different methods, shown in

Fig. 21. Apparently, a better agreement with the N-S results is

achieved by VLPT. The preceding results demonstrate that, under

the condition of strong viscous interaction, VLPT is able to predict

more accurate flutter boundaries than LPT, which may also indicate

that the effect of viscosity on the aeroelastic behavior could be

captured using effective shape corrections.

B. Damping-in-Pitch Derivative Calculations of a Waverider

An accurate evaluation of the damping-in-pitch derivative is

important for the design of any hypersonic aircraft in that it plays an

important role in the decay of the amplitude of AOA and represents

the single freedompitching dynamic stability characteristic. Here, we

employ a widely used method [26], based on the forced oscillation

technique, to evaluate the damping-in-pitch derivative, calculated as

follows:

C
ωz
m � C _α

m � 1

πdα

Z
π

−π
Cm cos�kτ� dτ (16)

A detailed derivation is given in Appendix A. We can see that an
accurate calculation of unsteady pitching moment is the key to the
evaluation of the damping-in-pitch derivative.
A typical hypersonic cone-derived waverider configuration is

studied here, shown in Fig. 22 (described in Appendix B). The
effective shapes are shown in Fig. 23. Note that the positive pitching
moment corresponding to the nose-up moment is ruled here. The
center of gravity along the Y axis is −0.15 m, and the origin of
coordinates is located at the nose of the waverider. At the flight
condition of H � 55 km and M � 15, the damping-in-pitch
derivatives as a function of the center of gravity and AOA are shown
in Figs. 24 and 25, respectively. The two approximate models both
underestimate the pitching dynamic stability at all centers of gravity
and angles of attack, whereas VLPT exhibits evidently higher
accuracy than LPT. Furthermore, a set of viscous interaction
parameters are chosen, listed in Table 7, to assess the damping-in-
pitch derivative. The results are shown in Fig. 26. Likewise, VLPT
agrees better with N-S results, with themaximum relative error being
only 20%, which is acceptable for the calculation of damping-in-
pitch derivative. Comparing the results obtained from LPT and
VLPT, we can conclude that the viscous interaction has a stabilizing
effect on the pitching dynamic characteristics for the waverider
configuration.

VII. Conclusions

The accuracy of Euler-based local piston theory is greatly reduced
at high altitudes and large Mach numbers due to the strong inviscid–
viscous interactions. This paper introduces amethod to determine the
effective shape through a relationship between vorticity and the
viscous interaction parameter, based on the laminar boundary-layer
displacement thickness formula and the solution of steady N-S
equations. Then, a local piston theory with viscous correction is
developed by using the effective shape.
It is found that the effective shape becomes thicker with the

increase in the strength of the viscous interaction. The influence
of large airfoil thickness and large AOA on the accuracy of
VLPT is investigated by two-dimensional circular-arc airfoil cases.
A high accuracy is obtained by VLPT up to the airfoil with a
thickness of 16%. It is also found that the applicable maximum
AOA lowers as the airfoil thickness increases. Compared
with LPT, significant improvement in accuracy is also achieved
by VLPT for a three-dimensional all-body model. Furthermore,
VLPT is applied for the flutter boundary predictions of a
double-wedge airfoil and the pitching dynamic stability evaluations
of a three-dimensional hypersonic waverider configuration. The
flutter Mach numbers obtained by VLPT show good agreement
with those by the unsteady N-S equations, whereas large deviations
emerge for LPT as a result of the strong viscous interaction effect.
Results suggest that the effect of viscosity on the aeroelastic
behavior could be captured using effective shape corrections.
Likewise, the damping-in-pitch derivative calculated by VLPT is
close to that by the unsteady N-S equations. We also find that the
viscous interaction effect acts in a stabilizing manner for the
pitching dynamic characteristics.
In summary, the results show that the proposed VLPT is an

effective tool to efficiently and accurately evaluate the unsteady
aerodynamic characteristics of hypersonic aircraft in the preliminary
design phase.

Appendix A: Derivation of the Damping-in-Pitch
Derivative

The forced pitching oscillation is described in a dimensionless
form of Eq. (5):

α � α0 � dα · sin�kcτc� (A1)

0.005 0.01 0.015 0.02

-0.6

-0.5

-0.4

-0.3

-0.2 N-S
VLPT
LPT

Fig. 26 Damping-in-pitch derivative vs viscous interaction parameter
at Xcg � 0.6 and α0 � 0 deg.

Table 7 Viscous interaction
parameter at different conditions

H, km M �V 0 (×10−3)
10 45 5.48
15 50 8.45
15 55 11.3
20 60 16.1
20 65 22.1
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where

kc �
ωc

u∞
; τc �

t

c∕u∞

According to the Etkin model [27], for a harmonic motion, the
pitching moment coefficient can be written as

Cm � Cm�α; _α; �α; : : : ;ωz; _ωz; �ωz; : : : � (A2)

For hypersonic problems, only the linear items need to be kept as a
result of the weak time-history effect. Therefore, based on Taylor
series expansion, we have

Cm � Cm0
� Cα

mΔα� C
ωz
m Δωz � C _α

mΔ _α� C
_ωz
m Δ _ωz (A3)

for the pitching forced oscillation motion, Δα � Δ _ωz, combined
with Eq. (A1), we obtain

Cm � Cm0
� �Cα

m − k2cC
_ωz
m �dα · sin�kcτc�

� �Cωz
m � C _α

m�kcdα · cos�kcτc�
(A4)

Cm can be expanded as the following form of Fourier series:

Cm � 1

2π

Z
π

−π
Cm d�kcτc�

� 1

π

Z
π

−π
Cm sin�kcτc� d�kcτc� · sin�kcτc�

� 1

π

Z
π

−π
Cm cos�kcτc� d�kcτc� · cos�kcτc�

(A5)

Compare the third term of the right side of Eqs. (A4) and (A5); we
can obtain the following expression of the damping-in-pitch
derivative:

C
ωz
m � C _α

m � 1

πdα

Z
π

−π
Cm cos�kcτc� dτc (A6)

Appendix B: Generation of the Waverider

The detailed introduction of the cone-derived waverider can be
seen in [28]. Given a basic flowfield of a cone, the shape of the
waverider can be determined through a base curve on the base
surface, shown in Fig. B1. The basic curve is described with the
following fourth-order polynomials:

Y � −�b0 � b2Z
2 � b4Z

4� (B1)

Define a parameter kwr � R0∕Rs, and choose a boundary
condition where the slope is zero at the points the base curve
intersects the shock curve in the base surface [29]; then, the
coefficients in the preceding equation can be determined as

8>>><
>>>:

b0 � kwrLc tan β

b2 �
	
cosφ
kwr

− 1


·

2b0
L2
c tan

2βsin2φ

b4 � − b2
2L2

ctan
2βsin2φ

(B2)

The basic flow condition and relevant parameters are listed in
Table B1. The created waverider is scaled up to 5 m length. Finally, a
radius of 10 mm is blunted along the leading edge. The blunting
method proposed in [30] is employed.
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