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SUMMARY

Hybrid schemes are very efficient for complex compressible flow simulation. However, for most existing
hybrid schemes in literature, empirical problem-dependent parameters are always needed to detect shock
waves and hence greatly decrease the robustness and accuracy of the hybrid scheme. In this paper, based on
the nonlinear weights of the weighted essentially non-oscillatory (WENO) scheme, a novel weighting switch
function is proposed. This function approaches 1 with high-order accuracy in smooth regions and 0 near dis-
continuities. Then, with the new weighting switch function, a seventh-order hybrid compact-reconstruction
WENO scheme (HCCS) is developed. The new hybrid scheme uses the same stencil as the fifth-order WENO
scheme, and it has seventh-order accuracy in smooth regions even at critical points. Numerical tests are pre-
sented to demonstrate the accuracy and robustness of both the switch function and HCCS. Comparisons also
reveal that HCCS has lower dissipation and less computational cost than the seventh-order WENO scheme.
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1. INTRODUCTION

Compressible turbulent flow is characterized by hierarchies of length and time scales, which cover
a very broad bandwidth, large gradients of flow variables in boundary layers and shear layers, and
discontinuities at high Mach numbers. Therefore, a desired numerical scheme for direct and large
eddy simulation of compressible turbulent flow should have high spectral resolution as well as the
shock-capturing capability.

The weighted essentially non-oscillatory (WENO) finite difference scheme [1, 2] has been widely
used in complex flow simulation because of its high-order accuracy and its capability of resolving
discontinuities without numerical oscillations. Within the general framework for smoothness indi-
cator and nonlinear weight design given by Jiang and Shu [2], many efforts were made to improve
the accuracy of the WENO scheme. Henrick et al. [3] suggested a mapping function to improve
the accuracy of the WENO scheme at critical points. Borges et al. [4, 5] introduced the WENO-
Z scheme, which calculates the nonlinear weights with a higher order smoothness indicator. The
WENO-Z scheme has lower dissipation and higher resolution than the classical WENO scheme of
Jiang and Shu [2], and its computational cost is less than the mapping function method. The accu-
racy of the WENO-Z scheme was further improved by Yamaleev and Carpenter [6, 7] and Fan
et al. [8] by introducing higher order smoothness indicators. Shen and Zha [9] showed that at transi-
tional points, which connect a smooth region and a discontinuity, the accuracy of fifth-order WENO
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schemes is second order, and a multi-step weighting method [10, 11] was developed to improve the
accuracy. Except for these improvements for the fifth-order WENO scheme, higher order WENO
schemes (higher than fifth order) were also developed [12–14]. However, even though the order
of accuracy for WENO schemes can be designed to be arbitrarily high, the spectral resolution of
WENO schemes is still not satisfactory [15–17]. Particularly, their excessive numerical dissipation
for small-scale structures in compressible turbulent flows may overwhelm physical dissipation [18].

Compact schemes [19] are attractive because of their spectral-like resolution. However, they gen-
erate numerical oscillations near shocks and large gradients and thus can not be directly applied to
compressible flow simulation. In order to develop shock-capturing compact schemes, Deng et al.
[20] developed the compact high-order nonlinear schemes by using the WENO scheme to calculate
cell interface fluxes for a central compact scheme. Jiang et al. [21] developed the weighted compact
scheme by substituting the low-order subschemes of the WENO scheme with low-order com-
pact schemes. Ghosh and Baeder [22] proposed the conservative fifth-order compact-reconstructed
WENO (CRWENO) scheme.

A more straightforward and efficient approach for high-resolution compressible flow simulation is
to use the hybrid scheme. The basic idea of hybrid schemes is to use low dissipation schemes such as
compact schemes in smooth regions and switch to shock-capturing schemes around discontinuities.
Adam and Shariff [23] proposed a hybrid compact-ENO scheme, which shows good performance
in both regions. Following a similar procedure, Pirozzoli [24] developed a hybrid compact-WENO
scheme. Instead of switching from the compact scheme to the WENO scheme abruptly, Ren et al.
[25] developed a characteristic-wise hybrid compact-WENO scheme, which is a weighted combi-
nation of these two schemes. Hill and Pullin [26] combined the tuned central-difference scheme and
the WENO scheme. Costa and Don [27] used the spectral method as the low dissipation subscheme.
Cheng et al. [28] combined the Runge–Kutta Discontinuous Galerkin method with the WENO
scheme. Numerical results showed that these hybrid schemes have lower dissipation for smooth
solution than shock-capturing schemes and maintain the capability of resolving discontinuities
without oscillations.

The most important issue of the hybrid scheme is how to detect a shock accurately and efficiently.
Many functions were proposed to develop shock detecting method, such as the flow variable differ-
ence between neighboring points [23, 24, 26], the flow gradients [18, 29], or the multi-resolution
coefficients [27, 30]. Although these functions have been successfully applied to develop hybrid
schemes, a common shortcoming is that empirical problem-dependent parameters are introduced as
threshold to turn on/off the shock-capturing scheme, and hence, the robustness and accuracy of the
corresponding hybrid scheme are greatly reduced [15, 25, 31–34].

In this paper, by applying the nonlinear weights of the WENO-Z scheme, a problem-independent
weighting switch function is proposed. Based on this new switch function and the weighting com-
bination methodology, a new hybrid scheme is developed, which increases the accuracy of the
fifth-order CRWENO scheme to seventh order in smooth region. The new scheme uses the same
point stencil as the fifth-order CRWENO scheme, and it is uniformly seventh-order accurate in
smooth regions while maintains the same shock-capturing capability as the CRWENO scheme.

This paper is organized as follows. High-order upwind compact schemes and the CRWENO
scheme are briefly introduced in Section 2. The weighting switch function is proposed and ana-
lyzed in Section 3. In section 4.2, the hybrid methodology is introduced, and a seventh-order hybrid
scheme is constructed. Numerical results and comparisons are presented in Section 5. Conclusions
are given in Section 6.

2. HIGH-ORDER UPWIND COMPACT SCHEMES

Without loss of generality, we describe the CRWENO scheme and the seventh-order upwind
compact scheme by considering the scalar conservation law given by

@u

@t
C
@f .u/

@x
D 0; (1)

where u.x; t/ is the conserved variable, and f .u/ is the flux function.
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On a uniform grid where �x D xiC1 � xi , we look for a numerical flux function OfiC 12
such that

the flux difference approximates f 0i D @f .u/=@xjxDxi to k-th order accuracy:

OfiC 12
� Ofi� 12
�x

D f 0i CO.�x
k/: (2)

The numerical flux OfiC 12
can be approximated by high-order tridiagonal compact schemes

expressed as follows [24]:

˛�1 Ofi� 12
C ˛0 OfiC 12

C ˛1 OfiC 32
D

M2X
mD�M1

ˇmf .xiCm/: (3)

M1 and M2 can be adjusted according to the desired accuracy and the size of the point stencil. On
the 5-points WENO stencil S5 D(xi�2; xi�1; xi ; xiC1; xiC2), the fifth (C5) and seventh-order (C7)
compact schemes are obtained as follows:

C5 W
3

10
Ofi� 12
C

6

10
OfiC 12
C

1

10
OfiC 32
D

1

30
fi�1 C

19

30
fi C

10

30
fiC1 (4)

C7 W
2

7
Ofi� 12
C
4

7
OfiC 12
C
1

7
OfiC 32
D �

1

420
fi�2C

19

420
fi�1C

239

420
fi C

53

140
fiC1C

1

105
fiC2: (5)

Eq. (4) can be expressed as a convex combination of three third-order compact schemes:

C 03 W
2

3
Ofi� 12
C
1

3
OfiC 12
D
1

6
fi�1 C

5

6
fi (6)

C 13 W
1

3
Ofi� 12
C
2

3
OfiC 12
D
5

6
fi C

1

6
fiC1 (7)

C 23 W
2

3
OfiC 12
C
1

3
OfiC 32
D
1

6
fi C

5

6
fiC1 (8)

with coefficients c0 D 2
10

, c1 D 5
10

, and c2 D 3
10

, respectively.
By replacing ck with nonlinear WENO weights, the CRWENO scheme [22] is constructed as

follows:

CCRWENO5 W Q̨
5
�1
Ofi� 12
C Q̨50

OfiC 12
C Q̨51

OfiC 32
D

1X
rD�1

Q̌5
r fiCr (9)

in which

Q̨5�1 D
2

3
!0 C

1

3
!1; Q̨50 D

1

3
!0 C

2

3
.!1 C !2/; Q̨51 D

1

3
!2;

Q̌5
�1 D

!0

6
; Q̌5

0 D
5.!0 C !1/C !2

6
; Q̌5

1 D
!1 C 5!2

6
;

and the nonlinear weights !k are defined as follows:

!k D
akP
i ai

; ak D
ck

."C ˇk/p
; k D ¹0; 1; 2º; p D 1; 2; : : : (10)

ˇk are the smoothness indicators given by [2]

ˇ0 D
13

12
.fi�2 � 2fi�1 C fi /

2 C
1

4
.fi�2 � 4fi�1 C 3fi /

2 (11)
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ˇ1 D
13

12
.fi�1 � 2fi C fiC1/

2 C
1

4
.fi�1 � fiC1/

2 (12)

ˇ2 D
13

12
.fi � 2fiC1 C fiC2/

2 C
1

4
.3fi � 4fiC1 C fiC2/

2: (13)

� is a small number to avoid division by zero.
As analyzed by Henrick et al. [3], for the fifth-order WENO scheme, nonlinear weights (10) do

not satisfy the necessary and sufficient conditions for fifth-order convergence; a mapping function
was introduced to improve the accuracy of the final weights (the WENO-M scheme). In [4], Borges
et al. introduced a parameter

�5 D jˇ0 � ˇ2j (14)

to calculate the weights as follows:

ak D ck

�
1C

�
�5

ˇk C "

�q�
; k D ¹0; 1; 2º; q D 1; 2; : : : (15)

This new scheme (the WENO-Z scheme) is less computational expensive than the WENO-M
scheme.

3. THE NEW WEIGHTING SWITCH FUNCTION

The switch method determines the performance of hybrid schemes. As mentioned previously, most
switch methods employ empirical problem-dependent parameters to turn on the shock-capturing
scheme. These parameters greatly limits the application range of hybrid schemes.

By using ˛k given in (15), a high-order problem-independent weighting switch function is
proposed as the following:

� D
1

1C .
P
k ak � 1/

2
: (16)

To evaluate the behavior of � at both smooth and discontinuous stencils, let us recall the main
features of �5 given in (14) and summarized in [4]:

� If the WENO stencil S5 D .xi�2; xi�1; xi ; xiC1; xiC2/ does not contain discontinuities, then,
�5 D O.�x

5/� ˇk for k D 0; 1; 2;
� if the solution is continuous at some of the Sk D .xi�2Ck; xi�1Ck; xiCk/; k D 0; 1; 2, but

discontinuous in the whole S5, then, ˇk � �5, for those k where the solution is continuous;
� �5 6 maxˇk; k D 0; 1; 2.

Therefore, for those stencils containing discontinuities, we have

X
k

ak � 1;

and thus,

� � 0:

For smooth stencils, performing Taylor expansion to fiCk D f .xi C k�x/ in the smoothness
indicators ˇk and �5 around xi :
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ˇ0 D f
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000
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�x4
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0000
i

�
�x5 CO.�x6/;

(17)

ˇ1 D f
02
i �x

2 C

�
13
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f 002i �

2

3
f 0i f

000
i

�
�x4 CO.�x6/; (18)
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02
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(19)

�5 D j
13

3
f 00i f

000
i � f

0
i f

.4/
i j�x

5 CO.�x6/; (20)

and

ak D ck

�
1C

�
�5

ˇk C �

�q�
D

²
ck CO.�x

3q/; f 0 ¤ 0
ck CO.�x

q/; f 0 D 0;
(21)

we obtain the truncation error of � :

� D
1

1C .
P
k ak � 1/

2
D 1 �O.�xp/; p D

²
6q; f 0 ¤ 0
2q; f 0 D 0:

(22)

Eq. (22) shows that � is a high-order approximation of 1 at smooth stencils. Clearly,

0 < � < 1:

In fact, the switch function � can be constructed in a general form:

�.x/ D
1

1C x´
; x D

X
k

ak � 1: (23)

Figure 1. �.x/ with different ´ values. [Colour figure can be viewed at wileyonlinelibrary.com]
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Figure 1 plots the profile of � versus x. It can be observed that, with larger ´, � converges to 1
faster. This property makes � flexible in applications. This will be discussed in the next section.

4. DEVELOPING HYBRID SCHEMES WITH � FUNCTION

4.1. Hybrid method

Based on � function, we apply the following method to hybridize a linear scheme and a WENO
scheme :

FHybrid D .1 � �/FWENO C �FLinear (24)

in which FWENO stands for the formula of a certain WENO scheme (e.g., WENO-Z or CRWENO),
and FLinear stands for a certain high-order linear scheme. For smooth regions, as � � 1, FHybrid
approaches FLinear . For discontinuities, � � 0 and, therefore, FHybrid approach FWENO . The
designed behavior of FHybrid around discontinuities indicates that the shock capability of hybrid
schemes developed with (24) is the same as the underlying WENO scheme.

In the following part, as an example, a seventh-order hybrid scheme is constructed with the
proposed method (24), and the accuracy of the new scheme is also analyzed.

4.2. The hybrid compact-CRWENO scheme

It has been shown that the fifth-order CRWENO scheme is more accurate than the fifth-order WENO
schemes [22, 35]. Utilizing the same stencil size and the same left hand side structure of the seventh-
order upwind compact scheme (5) and the CRWENO (9), we construct the new hybrid compact-
CRWENO scheme as the following:

CHCCS W .1 � �/CCRWENO5 C �C7; (25)

that is,

CHCCS W Q̨�1 Ofi� 12
C Q̨0 OfiC 12

C Q̨1 OfiC 32
D

2X
mD�2

Q̌
mfiCm; (26)

where Q̨k; Q̌k are given by

Q̨�1 D
2

7
� C .1 � �/

�
2

3
!0 C

1

3
!1

�
;

Q̨0 D
4

7
� C .1 � �/

�
1

3
!0 C

2

3
.!1 C !2/

�
;

Q̨1 D
1

7
� C .1 � �/

1

3
!2;

Q̌
�2 D �

1

420
�;

Q̌
�1 D
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420
� C .1 � �/

!0

6
;

Q̌
0 D
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420
� C .1 � �/

5.!0 C !1/C !2

6
;

Q̌
1 D

53

140
� C .1 � �/
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;
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2 D

1
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�:
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!k are the WENO-Z weights, and � is obtained with (16). Here, it should be pointed out that for-
mula (24) is an explicit weighted combination of different flux functions, while (25) is an implicit
one, because compact schemes are used.

To analyze the property of the new hybrid scheme, we rewrite (26) as

.1 � �/C5 C .1 � �/
X
k

.!k � ck/C
k
3 C �C7: (27)

Obviously, for non-smooth stencils, as � � 0, the new hybrid scheme approaches the CRWENO
scheme.

For smooth stencils, we have � � 1; and thus, HCCS approaches the seventh-order compact
scheme. Note that, for an n-th order compact scheme,

Cn W Cn;L.:::; fi�1=2; fiC1=2; fiC3=2; :::/ D Cn;R.:::; fi�1; fi ; fiC1; :::/: (28)

The right hand side of (28) is an n-th order approximation of the left hand side [24]:

Cn;L � Cn;R D O.�x
n/:

For example, for C5 (Eq. (4)), we have

C5;L � C5;R D
3

10
Ofi� 12
C

6

10
OfiC 12
C

1

10
OfiC 32
�

�
1

30
fi�1 C

19

30
fi C

10

30
fiC1

�
� O.�x5/:

Therefore, (27) can be then written as follows:

CHCCS;L � CHCCS;R D .1 � �/O5.�x
5/C .1 � �/

2X
kD0

.!k � ck/O
k
3 .�x

3/

C �O7.�x
7/:

(29)

If the leading order of the right hand side of (29) is seventh order, the new hybrid scheme is seventh-
order accurate for smooth stencils. Therefore, a sufficient condition for seventh-order convergence
of HCCS can be obtained as follows:²

1 � � D O.�x2/;

.1 � �/.!k � ck/ D O.�x
4/:

(30)

Furthermore, given that 1 � � D O.�xp/ (Eq. (22) ) and !k � ck D O.�xs/, the sufficient
condition becomes ²

p > 2;
p C s > 4: (31)

Consequently, if q D 2 is taken to calculate ˛k in Eq. (15), the new hybrid scheme is always
seventh-order accurate in smooth regions, even at critical points where s D 1.

It is worth noting that the aforementioned analysis still holds if one employs the general form of
� (23) with different ´ to combine WENO schemes with other linear schemes.

5. NUMERICAL TESTS

In this section, several numerical tests including scalar, one dimensional and two dimensional prob-
lems are considered to evaluate the performances of HCCS. To show that the proposed switch
function is problem independent, numerical results of HCCS for scalar problems are compared with
those of the hybrid scheme proposed in [24]. Results of HCCS are compared with the CRWENO
scheme, the WENO-Z scheme, and the seventh-order WENO scheme [12, 36] for all problems to
show numerical properties of the present hybrid method.
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The explicit third-order total variation diminishing Runge–Kutta method [37] is used for time
marching:

u.1/ D un C�tL.un/ (32)

u.2/ D
3

4
un CC

1

4
u.1/ C

1

4
�tL.u.1// (33)

unC1 D
1

3
un C

2

3
u.2/ C

2

3
�tL.u.2//: (34)

For one dimensional Euler’s equations with strong discontinuities, characteristic-wise reconstruc-
tion, which reconstructs the eigenvectors of the Euler flux [2], is used as in [22, 25]. For two
dimensional problems, the Steger–Warming flux splitting method [38] is applied. The value of "
may influence the result of numerical simulations [9]. " is set to 1 � 10�40 for linear equation tests
and 1 � 10�6 for remainder of the tests.

5.1. Linear advection equation

The linear advection equation is given by²
ut C ux D 0; �1 6 x 6 1
u.x; 0/ D u0.x/; periodic boundary:

(35)

The exact solution of (35) at time t with the initial condition u0.x/ is given by

u.x; t/ D u0.x � t /: (36)

Two initial conditions are considered in this section. The initial condition of the first case is given
by

u0.x/ D sin

�
�x �

sin�x

�

�
: (37)

This initial condition has two critical points, where f 0 D 0 and f 000 ¤ 0 [3]. The time step �t is
set to � xn=3, where n is the order of the scheme being studied.

Table I gives the errors and accuracy orders of different schemes with different grid number N .
The L2 norm of the error is obtained by comparison with the exact solution at t D 2 according to

L2 D

vuut 1

N

NX
iD1

.ui � uexact;i /
2:

The seventh-order WENO scheme is used to calculate the fluxes at boundaries for HCCS. It can
be seen that HCCS achieves near seventh order, and the errors are three magnitudes small than the

Table I. L2 errors and accuracy orders of different schemes for the initial condition (37)
at tD2.

WENO-Z CRWENO WENO-7 HCCS

N L2 order L2 order L2 order L2 order

20 3.92E-03 - 1.88E-03 - 6.05E-04 - 1.09E-03 -
40 1.38E-04 4.83 3.14E-05 5.90 5.10E-06 6.89 1.85E-06 9.23
80 4.39E-06 4.97 7.20E-07 5.48 4.16E-08 6.94 8.68E-09 7.76
160 1.37E-07 5.00 2.47E-08 4.86 3.29E-10 6.98 8.92E-11 6.62
320 4.28E-09 5.00 8.40E-10 4.88 2.58E-12 7.00 7.97E-13 6.83
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base CRWENO scheme. HCCS is also more accurate than the seventh-order WENO scheme for this
smooth problem.

In the case with very coarse mesh, for example, N D 20, the switch function is affected by the
mesh size severely, and hence, the error of HCCS approaches to CRWENO and WENO schemes.
But with refined mesh .N D 40/, the error of HCCS approaches to the seventh-order compact
scheme; therefore, Table I shows super-convergence(convergence order larger than ideal order)[2].
As grid number further increased, the accuracy order recovery about seventh order.

Different boundary formulas are tested for the first case. Table II compares the errors of HCCS by
using the sixth-order and eighth-order central schemes as boundary formula. It can be seen that, with
the sixth-order formula, HCCS converges at sixth order. With eighth-order formula, HCCS achieves
seventh order, and its errors are less than those with WENO-7 as boundary formula. Hence, for other
cases in this paper, the eighth-order central scheme is applied to calculate the fluxes at boundaries.

The influence of the parameter ´ in (23) on the accuracy of HCCS is also studied. The comparison
given in Table III shows that, with ´ D 1, the errors are almost an order of magnitude larger than
other cases. For ´ D 2; 3; 4, the differences are mainly on coarse meshes. Therefore, to achieve
seventh-order convergence, the value of ´ can be arbitrarily chosen as long as ´ > 2. Larger ´ only
has negligible effect on computation efficiency and accuracy.

CPU times per time step of different schemes are compared in Table IV. HCCS is about 20%
faster than the seventh-order WENO scheme. Figure 2 shows CPU time versus error for different
schemes. It can be seen that to obtain the same level of error, HCCS requires the least CPU time,
which indicates that HCCS is more efficient than the other schemes.

Table II. L2 errors of HCCS with the sixth and
eighth order central schemes at boundaries.

Sixth order Eighth order

N L2 order L2 order

20 1.05E-03 - 1.06E-03 -
40 7.38E-06 7.15 1.68E-06 9.32
80 1.75E-07 5.41 3.92E-09 8.74
160 3.63E-09 5.61 2.76E-11 7.15
320 6.46E-11 5.83 1.96E-13 7.14

Table III. Accuracy for hybrid compact-CRWENO scheme with different value of ´.

´ D 1 ´ D 2 ´ D 3 ´ D 4

N L2 order L2 order L2 order L2 order

20 9.79E-04 - 1.06E-03 - 1.15E-03 - 1.23E-03 -
40 5.26E-06 7.56 1.68E-06 9.32 6.49E-07 10.83 4.70E-07 14.72
80 2.47E-08 7.76 3.92E-09 8.74 3.61E-09 7.52 3.61E-09 7.02
160 2.91E-10 6.43 2.76E-11 7.15 2.72E-11 7.05 2.72E-11 7.05
320 3.14E-12 6.56 1.96E-13 7.14 1.95E-13 7.12 1.95E-13 7.12

Table IV. Averaged CPU times (in seconds) per time step
for different schemes.

N WENO-Z CRWENO WENO-7 HCCS

20 3.36E-04 3.83E-04 5.21E-04 4.34E-04
40 5.15E-04 6.60E-04 9.45E-04 7.38E-04
80 1.09E-03 1.30E-03 1.86E-03 1.48E-03
160 2.09E-03 2.58E-03 3.73E-03 2.91E-03
320 4.22E-03 5.10E-03 7.27E-03 5.71E-03
640 8.41E-03 1.02E-02 1.40E-02 1.13E-02
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Figure 2. CPU time versus Error. [Colour figure can be viewed at wileyonlinelibrary.com]

Figure 3. Results of the linear advection equation with the initial condition (37) at t D 6, N D 200. [Colour
figure can be viewed at wileyonlinelibrary.com]
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The initial condition of the second case is

u.x; 0/ D

8̂̂̂
<̂
ˆ̂̂̂:

1
6
.G.x; ˇ; ´ � ı/CG.x; ˇ; ´C ı/C 4G.x; ˇ; ´//; �0:8 6 x < �0:6
1; �0:4 6 x < �0:2
1 � j10.x � 0:1/j; 0 6 x < 0:2
1
6
.F.x; ˛; a � ı/C F.x; ˛; aC ı/C 4F.x; ˛; a//; 0:4 6 x < 0:6
0; otherwise

(38)

Table V. L2 errors and accuracy orders of HS-P and HCCS for the
initial condition (37) at t=2.

HS-P ˇ D 0:01 HS-P ˇ D 0:8 HCCS

N L2 order L2 order L2 order

20 3.62E-03 - 1.06E-03 - 1.06E-03 -
40 2.24E-04 4.01 3.16E-05 5.07 1.68E-06 9.32
80 6.43E-06 5.12 9.70E-07 5.02 3.92E-09 8.74
160 4.09E-07 3.97 2.95E-08 5.04 2.76E-11 7.15
320 1.47E-08 4.80 8.81E-10 5.06 1.96E-13 7.14

Figure 4. Comparison of HS-P and HCCS for the solutions of the Gaussian wave and the square wave.
HS-P, hybrid scheme proposed; HCCS, hybrid compact-CRWENO scheme.[Colour figure can be viewed at

wileyonlinelibrary.com]
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where

G.x; ˇ; ´/ D e�ˇ.x�´/
2

; F .x; ˛; a/ D
p

max.1 � ˛2.x � a/2; 0/;

a D 0:5; ´ D �0:7; ı D 0:005; ˛ D 10; ˇ D log2=36ı2:

The solution of (38) is consist of a smooth but narrow combination of Gaussians, a square wave,
a sharp triangle wave, and a half ellipse [2]. This is a widely used benchmark to test the shock-
capturing capability as well as the steep smooth wave resolution of a scheme. Results at t D 6

of different schemes are shown in Figure 3. It can be seen that WENO-7 resolves discontinuities
better than other schemes because of its wide discontinuity detecting point stencil (7 points are
used to detect discontinuities). However, HCCS maintains the essentially non-oscillation property of
CRWENO and obtains more accurate solution for smooth waves, that is, the Gaussian, the triangle,
and the ellipse waves.

To illustrate the advantage of the new switch function over traditional method, we compare HCCS
with the hybrid scheme proposed in [24] (referred as HS-P) for the aforementioned two linear
problems. Two different values for the threshold ˇ are considered 0.01 and 0.8. Table V gives the
convergence order of HCCS and HS-P for problem (37). Figure 4 shows the square and the Gaus-

Figure 5. Density distributions of solutions of the different 1d Euler problems, one of every three points is
displayed. [Colour figure can be viewed at wileyonlinelibrary.com]
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sian wave results of both schemes for initial condition (38). It can be seen that larger ˇ of HS-P
gives more accurate solution in smooth regions but generates oscillation near discontinuities and
otherwise for smaller ˇ. That means, for a complex problem, it is difficult to achieve a good solution
without the knowledge of how to select the problem-dependent parameter[31]. However, HCCS is
free of such parameter tuning process and gives accurate and non-oscilatory results for both smooth
and discontinous solutions.
5.2. One dimensional Euler equations

The one dimensional Euler’s equations are given by

Ut C F.U /x D 0; (39)

where U D .�; �u; e/T , and F.U / D .�u; �u2 C p; u.e C p//T . Here � is the density, u is the
velocity, e is the total energy, p is the pressure, and for ideal gas e D p

��1
C 1

2
�u2, � D 1:4 is the

ratio of specific heat.

Figure 6. Integrated kinetic energy evolution of the vortex convection problem. [Colour figure can be viewed
at wileyonlinelibrary.com]

Figure 7. Pressure distributions at y D 5 for different schemes at t D 2000. [Colour figure can be viewed at
wileyonlinelibrary.com]
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Four typical examples that contain strong discontinuities are considered here. The first example
is the Sod problem. The initial condition is as follows:

.�; u; p/ D

²
.1; 0; 1/ x 6 0
.0:125; 0; 0:1/ x > 0

with zero gradient boundary conditions applied at x D ˙0:5.
The second problem is the Lax problem, the initial condition is given by

.�; u; p/ D

²
.0:445; 0:698; 3:528/ x 6 0
.0:5; 0; 0:571/ x > 0

with zero gradient boundary conditions at x D ˙5.
The third problem is the Shu–Osher problem. It describes the interaction of a Mach 3 shock with

a density wave. The initial condition is given by

.�; u; p/ D

´ �
27
7
; 4
p
35
9
; 31
3

�
x < �4�

1C 1
5

sin5x; 0; 1
�
x > �4:

Figure 8. Density contours of the double Mach reflection problem at t D 0:2, ranging from � D 2:1793 to
24 with 30 equally separated levels, with gird number 960 � 240.

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2017; 83:681–703
DOI: 10.1002/fld



A NOVEL WEIGHTING SWITCH FUNCTION 695

Zero gradient boundary conditions are applied at x D ˙5.
The zero gradient boundary condition @f

@n
ji D 0 is given by

fi D .4fi�1 � fi�2/=3 (40)

at right boundary points i D .N � 2;N � 1;N / and

fi D 4fiC1 � 3fiC2 (41)

at left boundary points i D .0; 1; 2/ .
The last problem is the interacting blast waves case. The initial condition is given by

.�; u; p/ D

8<
:
.1; 0; 1000/ 0 6 x < 0:1
.1; 0; 0:01/ 0 6 x < 0:9
.1; 0; 100/ 0:9 6 x 6 1:

Reflecting boundary conditions are set at boundaries.
All cases are computed with N D 200. Reference results are obtained by the CRWENO scheme

with 2000 points. Figure 5 illustrates results of the aforementioned cases. It can be seen that HCCS
maintains the non-oscillatory property of the CRWENO scheme for strong shocks and that the

Figure 9. Density contours of the uprolling region at t D 0:2, ranging from � D 1:3999 to 24 with 30
equally separated levels, with gird number 480 � 120.
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hybriding method (24) does not introduce non-physical oscillations. Besides, HCCS shows better
resolution than other methods for smooth short waves for the Shu–Osher problem.

5.3. Two dimensional Euler equations

The two dimensional Euler equations of ideal gas are given by

Ut C Fx CGy D 0; (42)

where U , F , G vectors are written as follows:

U D

2
64
�

�u

�v

e

3
75 ; F D

2
664
�u

�u2 C p
�uv
euC pu

3
775 ; G D

2
664
�v

�uv
�v2 C p
evC pv

3
775 : (43)

In this section, two problems, the isentropic vortex convection problem and the double Mach reflec-
tion problem, are simulated with the WENO-Z scheme, the CRWENO scheme, the seventh-order
WENO scheme, and HCCS.

5.3.1. Isentropic vortex convection. This problem was suggested to test the dissipation property of
a certain scheme [39]. An isentropic vortex moves across the computational domain periodically.

Figure 10. Density contours of the uprolling region at t D 0:2, ranging from � D 1:3999 to 24 with 30
equally separated levels, with gridd number 960 � 240.
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The computational domain is Œ0; 10	 � Œ0; 10	 with the free stream conditions specified as �1 D
1; u1 D 0:5; v1 D 0; p1 D 1. The initial flow conditions are given by

� D

�
1 �

.� � 1/b2

8��2
e1�r

2

	 1
��1

I p D �� (44)

ıu D �
b

2�
e
1�r2

2 .y � yc/ (45)

ıv D
b

2�
e
1�r2

2 .x � xc/; (46)

where r2 D .x � xc/
2 C .y � yc/

2 is the distance from the vortex center .xc ; yc/ D .5; 5/;

and the vortex strength b is 0.5. Periodic boundary conditions are applied to all boundaries. Dis-
sipation is measured by instantaneous integrated kinetic energy over the computational domain:
Ek D

P
ij 0:5�ij .u

2
ij C v

2
ij /. The grid size is set to Nx �Ny D 61 � 61, and solution is integrated

to t D 2000.
Figure 6 shows the evolution of the integrated kinetic energy over the computational domain. As

the Euler equations are essentially inviscid, the damping of kinetic energy indicates the dissipation
caused by numerical methods. Less damping of HCCS implies that HCCS has very low dissipation.

Figure 11. Density contours of the uprolling region at t D 0:2, ranging from � D 1:3999 to 24 with 30
equally separated levels, with gridd number 1920 � 480.
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The pressure distributions at t D 2000 given in Figure 7 shows that HCCS obtains almost identical
pressure as the initial profile while other schemes show apparent error. Besides, the results given
by other schemes become asymmetric; however, the exact solution is symmetric. HCCS can keep
the symmetric structure of the solution. This low dissipation and symmetric maintaining property
of HCCS is very improtant for Direct Numerical Simulation (DNS) of turbulent flow. Even if very
small numerical dissipation of the scheme being used in DNS may affect the physical dissipation
and convection process [18].

5.3.2. Double Mach reflection. The double Mach reflection test is a mimic of planar shock reflec-
tion from a wedge. It has been extensively simulated to test the ability of shock-capturing and
small-scale structure resolution of a certain scheme. In the present simulation, the computational
domain is Œ0; 4	 � Œ0; 1	. The lower boundary is set to be reflecting wall starting from x D 1

6
. At

t D 0, a right-moving 60ı inclined Mach 10 shock is positioned at .1
6
; 0/. The upper boundary is

set to describe the exact motion of the Mach 10 shock:

.�; u; v; p/ D

´
.8; 8:25

p
3
2
;�8:251

2
; 116:5/; x 6 1

6
C 1p

3
.1C 20t/

.1:4; 0; 0; 1/; x > 1
6
C 1p

3
.1C 20t/:

(47)

Figure 12. Density isolines of Shock/Shear layer interaction solutions at t D 120, coarse grid Nx � Ny D
161 � 41.
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The left boundary at x D 0 is assigned with post-shock values. Outflow conditions with zero gradi-
ents @f

@x
D 0 are set at x D 4. Detailed description of the double Mach reflection test can be found

in [40]. Three grids are used in this simulation: Nx �Ny D 480� 120, Nx �Ny D 960� 240, and
Nx �Ny D 1920 � 480.

Density isolines obtained the 960 � 240 grid by different schemes are show in Figure 8. Shock
structures are well captured by all schemes. The zoomed uprolling regions are shown in Figure 9–11.
On finer grids, the contact instability structures can be better resolved. It can be seen that the com-
pact schemes, including CRWENO and HCCS schemes, obtain richer small structures caused by
Kelvin–Helmholtz instabilities than WENO-Z and WENO7. HCCS shows the best small-scale
structure resolution along the contact discontinuity line on each grid.

5.4. Two dimensional Navier–Stokes equations

The two dimensional Navier–Stokes equations for ideal gas are given by

Ut C Fx CGy D
1

Re
F vx C

1

Re
Gvy ; (48)

Figure 13. Density isolines of Shock/Shear layer interaction solutions at t D 120, medium grid Nx �Ny D
321 � 81.
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where U , F , G, vectors are the same as given in (39), and Fv , Gv are given by

F v D

2
64

0

�xx
�xy

u�xx C v�xy C qx

3
75 ; Gv D

2
64

0

�yx
�yy

u�yx C v�yy C qy

3
75 (49)

in which

�xx D 


�
4

3

@u

@x
�
2

3

@v

@y

�
; �yy D 


�
4

3

@v

@y
�
2

3

@u

@x

�
;

�xy D �yx D 


�
@u

@y
C
@v

@x

�
;

qx D 

1

.� � 1/M 2P r

@T

@x
;

qy D 

1

.� � 1/M 2P r

@T

@y
:

(50)

Figure 14. Density isolines of Shock/Shear layer interaction solutions at t D 120, fine grid Nx � Ny D
641 � 161.
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The viscous terms are discretized with the fourth-order central difference scheme [41].
The shock/shear layer interaction problem is designed to measure the resolution of schemes [42].

An oblique shock impacts on a Mach 0.6 shear layer and is reflected by a wall at the lower boundary.
The computational domain is Œ0; 200	 � Œ�20; 20	. A coarse grid Nx � Ny D 161 � 41, a medium
grid Nx � Ny D 321 � 81, and a fine grid Nx � Ny D 641 � 161 are used in the simulation. At
x D 0, the inlet condition is specified as

u D 2:5C 0:5tanh.2y/;

for the upper stream (y > 0), � D 1:6374, p D 0:3327 and for the lower stream (y < 0), � D
0:3626, p D 0:3327. Post shock conditions are set at the upper boundary, and a slip wall condition
is applied at the lower boundary. Fluctuations are added to the vertical velocity component:

v
0

D

2X
kD1

akcos.2�kt=T C �k/exp.�y
2=b/;

b D 10; a1 D a2 D 0:05; �1 D 0; �2 D �=2;

in which T D �=uc is the period, � D 30 is the wavelength, and uc D 2:68 is the convective
velocity. The Prandtl number P r is set to 0.72, and the Reynolds number Re is chosen to be 500.

Solutions at t D 120 are shown in Figure 12–14 for each grid. All schemes can capture shock
waves well. The vortex structures calculated by the compact schemes (i.e., CRWENO and HCCS)
and the explicit schemes (i.e., WENO-Z and WENO7) are different. The explicit schemes smear
the shear layer, while the compact schemes can well capture the vortices induced by shear layer
instability. Note that the shear layer fluctuations grow and affect the shear layer structure. Better
resolution of the shear layer growth indicates that the instability growing process is captured more
accurately. Compared with CRWENO, HCCS resolves slightly less smeared shear layer before it
interacts with shock on both coarse and fine grids. After the shear layer interacts with the shock,
the shear layer vortex structures calculated by different schemes are different because of different
upstream structure. Near the outflow boundary, the reflecting shock over the shear layer calculated
by HCCS is less smeared than CRWENO on the coarse grid and the medium grid. On the fine grid,
the reflecting shock structure given by HCCS and CRWENO is almost the same, which implies that
this grid is fine enough to resolve these structures.

6. CONCLUSION

In this paper, a problem-independent weighting switch function for developing high order hybrid
schemes is proposed. The function approaches 1 with high order accuracy in smooth regions and
zero in vicinity of discontinuities. By using the switch function, a seventh-order hybrid compact-
CRWENO scheme on the 5-points WENO stencil is constructed. Analysis and numerical tests
show that the new hybrid scheme is seventh-order accurate in smooth regions and has good shock-
capturing capability, and its low dissipation and low computational costs imply that HCCS is more
efficient than the seventh-order WENO scheme.

Moreover, the idea of the switch function can be easily extended to develop higher order function
for high-order hybrid schemes. Compared with those switch functions used in literatures, the present
one is problem independent. Hence, hybrid schemes developed with the new method are more robust
and can be applied to a wide range of complex flow simulations.
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