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A B S T R A C T

Ilk et al.’s deconvolution algorithm using B-splines involves the Laplace transformation of the convolution
equation with respect to production rate and wellbore pressure based on Duhamel principle. However, for
common cases, the production rate function has “discontinuity” with respect to production time; it does not
satisfy the precondition that the function to be transformed by Laplace transformation should be continuous.
This inherent defect may directly cause enormous amount of computational time or even the failure of the
numerical Laplace inversion in the deconvolution process. Based on these concerns, a fundamentally improved
deconvolution algorithm using B-splines is presented here. In the convolution equation, the wellbore pressure
derivative corresponding to constant unit production rate as the target of deconvolution is still represented by
weighted summation of second-order B-splines; however, the computation process of the deconvolution is kept
in the level of integral in the real time space instead of the Laplace space, for the reason that there will be no
continuity requirement for the production rate function in the application of Duhamel principle for the
deconvolution computation problem. According to the real production rate history, a technique of piecewise
analytical integration is adopted for obtaining the elements of sensitivity matrix of a linear system with respect
to weight coefficients; the linear system is generated by substituting the measured wellbore pressure data and
corresponding variable production rate data into the convolution equation containing B-splines. The proposed
direct analytical solution method of the integration for calculating the elements of the sensitivity matrix can not
only guarantee the success of the deconvolution computation, but also can largely enhance the deconvolution
computation speed. Moreover, in order to further improve the computation speed, a binary search method is
also applied to find which production segments (with constant production rate) the measured wellbore pressure
data points locate at in the deconvolution computation process. Another linear system with respect to weight
coefficients for the regularization from Ilk et al.’s deconvolution algorithm is appended in order to overcome the
effect of data errors. The two linear systems are combined together as an over-determined linear system, which
can be solved by the least square method. Eventually, the reconstructed wellbore pressure and its derivative by
B-splines corresponding to the constant unit production rate can be obtained.

Numerical experimental tests demonstrate that the improved deconvolution algorithm exhibits good
accuracy, computation speed and stability of data error tolerance. And the statement on how to perform the
regularization when data error exists is also made in order to deconvolve the correct wellbore pressure
derivative. The improved deconvolution algorithm is also applied into an actual field example. It is found that
the deconvolution results by the improved deconvolution algorithm have good agreement with the ones by Von
Schroeter et al.’s deconvolution algorithm and by Levitan et al.’s deconvolution algorithm as a whole; and the
feature of typical log-log curves of the wellbore pressure drop and the wellbore pressure derivative
corresponding to the improved algorithm is very close to the one of typical log-log curves calculated directly
from the wellbore pressure data in the well shut-in period. In addition, through many numerical experimental
tests, it is also concluded that as the quantity of data largely increases, the improved Ilk et al.'s deconvolution
algorithm exhibits the big advantage in fast computational speed over von Schroeter et al.’s algorithm and
Levitan et al.’s algorithm.
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1. Introduction

The production rate from the wellbore in the reservoirs can’t keep
constant all the time during the process of well testing. Therefore, for
the well testing data, the measured wellbore pressure actually corre-
sponds to the variable production rate at the whole time. However, it is
well known that the reservoir models for the well-test analysis
commonly have the inner boundary conditions with constant produc-
tion rate. In order to conquer the inconsistency in reality, a pressure
build up testing at the well shut-in period has been widely applied in
reservoir engineering. Nevertheless, the investigation radius is short
just for the shut-in period although the well test interpretation for the
pressure buildup data can help to offer reliable results due to the less
production rate measurement uncertainties. In order to make use of
the well testing data corresponding to variable production rate at the
whole production time, the deconvolution is introduced by researchers.

In a linear system as Darcy's flow, according to the Duhamel
principle (Ilk, 2005; Vaferi and Eslamloueyan, 2015), the wellbore
pressure under variable production rate can be obtained through a
convolution, as follows:

∫p p q t τ p τ τ− = ( − ) ( )dini

t

u
0

′
(1)

where t is the time; τ is a variable for the integral; q is the variable
production rate; p is the wellbore pressure corresponding to variable
production rate; pu is the wellbore pressure drop corresponding to the
constant unit production rate; pini is the initial formation pressure.
The purpose of the deconvolution process is to obtain the pressure
response pu corresponding to the constant unit production rate with a
duration equal to the whole production time, when the data of variable
production rate q and the corresponding wellbore pressure p during
the whole production time are both given.

The related deconvolution algorithms have been studied for more
than 40 years. The main difficulty is that the deconvolution algorithm is
very sensitive to the data error (from the measured wellbore pressure
and production rate), which shows an inherent property of instability
(Onur et al., 2006; Çınar et al., 2006). As far as we know, only three
representative deconvolution algorithms with good stability are devel-
oped by von Schroeter et al. (2002, 2004), Levitan (2005); Levitan et al.
(2006) and Ilk (2005), Ilk et al. (2005), respectively. They offer
necessary stability to make the deconvolution as a viable tool for
well-test analysis (Onur et al., 2006; Çınar et al., 2006); wherein just
the two representative deconvolution algorithms by von Schroeter et al.
(2002, 2004) and Levitan (2005); Levitan et al. (2006) have been
implemented into Saphir as the pressure transient analysis module of
KAPPA software due to their well performance. Von Schroeter et al.’s
deconvolution algorithm and Levitan et al.’s deconvolution algorithm
are both based on the same concept of minimizing a nonlinear
weighted least-square objective function, involving the sum of three
mismatch terms of pressure, rate and curvature, for reconstructing the
deconvolved pressure drop and its logarithmic derivative; their differ-
ence mainly lies in the aspects of model assumption and specific
definition of objective functions. In von Schroeter et al.’s deconvolution
algorithm, it is assumed that a wellbore-storage unit-slope trend of
typical curves of transient wellbore pressure is satisfied at or before the
first node (Onur et al., 2006). However, in practice the wellbore-storage
unit-slope trend is rare at the start of a transient wellbore pressure
typical curve; and thus von Schroeter et al.’s deconvolution algorithm
can not reconstruct the logarithmic pressure derivative corresponding
to the constant unit production rate for the first log-cycle (Onur et al.,
2006). In Levitan et al.’s deconvolution algorithm, the restriction
assumption is removed by assuming that the time corresponding to
the first node is sufficiently small. For the application of this kind of
deconvolution algorithms base on optimization (minimization),
Gringarten (2010) has given some recommendations on how to
perform the deconvolution and verify the deconvolution results. It

does provide great encouragement for the engineers to use deconvolu-
tion confidently as one part of the well test analysis process. At present,
von Schroeter et al.’s deconvolution algorithm or Levitan et al.’s
deconvolution algorithm has been further developed and extended.
For example, based on a weighted Euclidean norm, Pimonov et al.
(2009) improved the objective functions proposed by von Schroeter
et al. and Levitan et al. The weights can be assigned to individual
pressure and rate measurement points, and different error estimates
are defined for different sections of data, which are very useful to
mitigate of the effects of data errors. Cumming et al. (2013) extended
the single-well deconvolution algorithm by von Schroeter et al. to the
multi-well deconvolution algorithm by considering the interference
effects among the wells. The feasibility of the extended deconvolution
algorithm is also demonstrated by a synthetic example. Ilk et al.’s
deconvolution algorithm (Ilk, 2005; Ilk et al., 2005) is another different
method. It is formulated by using 2-order B-splines for representing
the derivative of the wellbore pressure p′u corresponding to the constant
unit production rate, and requires numerical inversion of the Laplace
transform; and a regularization method is implemented for handling
the high levels of data errors. It is worth to mention that although these
aforementioned deconvolution algorithms are only valid for linear
systems i. e. reservoir models of Darcy's flow with slightly compressible
fluid when Duhamel principle holds, they can be also applied to
nonlinear systems through the linearized relationship between the
defined pseudopressure and the production rate in the cases of gas or
multiphase flow (Kim et al., 2015).

Onur et al. (2006) have presented an investigation of these three
deconvolution algorithms, and discussed the specific features asso-
ciated with the use of each algorithm. For the two deconvolution
algorithms by von Schroeter et al. (2002, 2004) and Levitan (2005);
Levitan et al. (2006), it has to be assumed that the variable production
rate function should be given in a stepwise manner. In contrast, Ilk
et al.’s deconvolution algorithm (Ilk, 2005; Ilk et al., 2005) allows for a
general production rate function but with the restriction that the
function must be transformed into Laplace space as an analytical
formula. In view of this, Ilk et al.’s deconvolution algorithm is
applicable for more cases. However, there still exist two problems in
Ilk et al.’s deconvolution algorithm, as follows:

First, due to the fact that the 2-order B-spline functions are defined
piecewise (first-order derivable at the knots of B-spline functions),
Laplace inverse transformation would contain “discontinuity” in its
higher derivatives. Moreover, whenever the production rate undergoes
an abrupt change, the required condition for a successful numerical
Laplace inversion is not satisfied (the function transformed by Laplace
transformation should be continuous). In particular, the inverse
Laplace transformation can fail at the discontinuities when computing
the elements of the sensitivity matrix; therefore, the success or failure
of Ilk et al.’s deconvolution algorithm depends primarily on the
numerical Laplace transform inversion (Ilk, 2005; Ilk et al., 2005). In
order to keep safe numerical inversion, the Gaver-Wynn-Rho algorithm
(Ilk, 2005; Ilk et al., 2005) is used to improve numerical Laplace
inversion at the discontinuity points, but higher values of precision (at
least 64 digits or over) have to be used for accuracy. However, on one
hand, the failure in the inverse Laplace transformation may still
happen at the discontinuities despite using very high precision (Ilk,
2005; Ilk et al., 2005); on the other hand, even if the accurate results
are obtained with using very high precision, this takes enormous
amount of computational time which makes it impossible to apply
for practical purposes (Ilk, 2005; Ilk et al., 2005). Although Ilk (2005)
and Ilk et al. (2005) try to overcome these issues by modifying the rate
approximation by dividing the production rate history into any number
of segments, and use the type of function whose Laplace transform
exists for approximating the rate within each segment, the effect is not
good: As the number of segments increases, the computational time
will increase significantly (Ilk, 2005; Ilk et al., 2005).

Second, it has been known that Ilk et al.’s deconvolution algorithm
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requires accurately fitting the discrete production rate data through
continuous functions for every segment. What's more, it is also
required that these continuous functions can be transformed into
Laplace space as an analytical formula (Ilk, 2005; Ilk et al., 2005).
The data fitting job by transformable functions for every segment
introduces big inconvenience in the application of Ilk et al.’s deconvo-
lution algorithm.

In fact, from the point of view of mathematics, the two aforemen-
tioned problems in Ilk et al.’s deconvolution algorithm can be
attributed to the Laplace transformation of the convolution equation
(i. e., Eq. (1)). In the convolution equation, there is no continuity
requirement for the variable production rate function q and the
derivative of wellbore pressure function p′u in the integral. In other
words, even if the two functions have finite “discontinuity” points with
respect to production time, the integral can still hold. However, it is
known that the function to be transformed by Laplace transformation
should be continuous; therefore, when Eq. (1) is transformed by
Laplace transformation, the continuity requirement for q and p′u will
be higher: They have to be continuous. Then if the functions in the
convolution equation have large discontinuity, which is common in
reality, Eq. (1) cannot be transformed correctly by Laplace transforma-
tion; and the subsequent numerical Laplace inversion will become very
difficult in the deconvolution computation process.

Based on these concerns, Ilk et al.’s deconvolution algorithm is
improved fundamentally here. The whole computation process of the
deconvolution will be implemented in the level of integral, which has
lower continuity requirement for functions in the convolution equa-
tion; Laplace transform is not involved. It avoids the unsuccessful
Laplace transformation and its inverse in Ilk et al.’s deconvolution
algorithm when the function of production rate is commonly discon-
tinuous. The key computation techniques include: according to the real
production rate history, a technique of piecewise analytical integration
is adopted for obtaining the elements of sensitivity matrix of a linear
system (Ilk, 2005; Ilk et al., 2005) with respect to weight coefficients in
the deconvolution computation process. The piecewise analytical
integration technique also conquers the difficulty in the time-consum-
ing numerical computation of the integral for the case of production
rate history with large discontinuity, and can largely improve the
deconvolution computation speed. Furthermore, obviously, because
the Laplace transformation of the convolution equation is avoided, the
treatment for fitting the production rate data through transformable
functions for every segment will be not involved in our improved
deconvolution algorithm.

When significant errors exist in the data, the regularization method
from Ilk et al.’s deconvolution algorithm (Ilk, 2005; Ilk et al., 2005) is
still incorporated. The effect of data error on the deconvolution
computation can be largely eliminated through selecting the logarith-
mic distribution of B-spline knots and tuning the regularization
parameter simultaneously.

2. Improvement of Ilk et al.’s deconvolution algorithm

A spline function can be represented by the linear combination of
B-spline functions. When the knots are set, the generation of B-splines
is easy due to their intrinsic recurrence relation. The knots are
distributed logarithmically, as follows (Ilk, 2005; Ilk et al., 2005):

t b b i= , > 1 = 0, ± 1, ± 2, …i
i (2)

where b is the base; ti is the knot; i is the index for the knots. In order
to reveal the characteristic reservoir behavior, the number of knots
should be on the order of at least 2–6 knots per log cycle, as Ilk et al.
suggested (Ilk, 2005; Ilk et al., 2005).

When the value of the base b is determined, the i-th zero-order B-
splines are defined as follows (Ilk, 2005; Ilk et al., 2005):

⎧⎨⎩B t t t= 1 < <
0 otherwisei

i i0 +1

(3)

Then higher order B-splines are generated recursively, as follows
(Ilk, 2005; Ilk et al., 2005):

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥B t t t

t t
B t t t

t t
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−
( ) + −

−
( )i
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i
k

+

−1 + +1

+ +1 +1
+1
−1

(4)

where k is the order of B-splines.
Here, the derivative of wellbore pressure function p′u corresponding

to the constant unit production rate is also considered as a spline
function, which can be represented by a weighted summation of 2-
order B-splines (Ilk, 2005; Ilk et al., 2005):

∑p t τ c B t τ( − ) = ( − )u
i

u

i i
′

=1

2

(5)

where ci is the undetermined weight coefficient; u is the number of
undetermined coefficients.

The objective is to determine the values of ci by using the measured
wellbore pressure and corresponding production rate data.

According to the property of convolution, Eq. (1) can be rewritten
as follows:

∫ ∫p p p τ q t τ τ p t τ q τ τ− = ( ) ( − )d = ( − ) ( )dini

t

u

t

u
0

′

0

′
(6)

Substituting Eq. (5) into Eq. (6) yields:

∫

∫

∫

p p p t τ q τ τ

c B t τ q τ τ

c B t τ q τ τ

− = ( − ) ( )d

= [∑ ( − )] ( )d

= ∑ ( − ) ( )d

ini
t

u
t

i
u

i i

i
u

i
t

i

0
′

0 =1
2

=1 0
2

(7)

It is assumed that the number of production segments is m with
different constant production rate qj, j=0, 1,…, m−1. The time domain
corresponding to the production segment with the production rate qj is
[Tj, Tj+1), which covers nj measured wellbore pressure data T p( , )k

j
k
j ,

k=0,…,nj−1; where T T=j
j0 , T T=n

j
j+1j .

Then the integral ∫ B t τ q τ τ( − ) ( )d
t

i0
2 in Eq. (7) can be split into

several independent integrals according to the production segments
with different production rates (see Fig. 1), as follows:

∫

∫ ∫

∫ ∫

B t τ q τ τ

B t τ q τ τ B t τ q τ τ

B t τ q τ τ B t τ q τ τ

( − ) ( )d

= ( − ) ( )d + ( − ) ( )d +

( − ) ( )d + ...... + ( − ) ( )d

t
i

T
i T

T
i

T

T
i T

t
i l

0
2

0
2

0
2

1

2
2

2
l

1

1

2

2

3

(8)

where t T T∈ [ , )l l+1 .
In Eq. (8), the discontinuity of the piecewise constant production

rate function q(τ) at Tl does not affect the integration result. It is very
convenient for computing the elements of sensitivity matrix (Ilk, 2005;
Ilk et al., 2005) for the deconvolution problem. It is also found through
numerical tests that if the technique of integral splitting is not taken,
the deconvolution results will be distorted seriously. The split integrals
in Eq. (8) can be solved analytically, as follows:

∫ ∫ ∫B t τ q τ τ q B τ τ q B τ τ( − ) ( )d = ⋅ ( )d − ⋅ ( )d
T

T

i i i

t T

i i

t T

i
2

0

−
2

0

−
2

i

i i i+1 +1

(9)

∫ ∫B t τ q τ τ q B τ τ( − ) ( )d = ⋅ ( )d
T

t

i l l

t T

i
2

0

−
2

l

l

(10)

where the integral of B t( )i
2 in the above equations can be analytically

formulated from the integrals of the piecewise polynomials of B-
splines.

It should be noted that when qi is a general production rate
function with respect to t, Eqs. (9) and (10) will not hold. However,
this problem can be solved by further approximating the production
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rate functions through adequate piecewise constant production rate
steps. In the general cases, the measured production rate data by
flowmeters are discrete points, which can be considered as the
piecewise constant production rate steps directly. Hence, in our
improved deconvolution algorithm, the input data of the variable
production rate are piecewise constant production rates.

Here, Laplace transform is not involved in the improved Ilk et al.’s
deconvolution algorithm. Based on the above deduced analytical
formula from the convolution equation, the deconvolution process
based on B-splines can be kept in the level of integral in the real time
space as follows.

By using the measured wellbore pressure and variable production
rate data for the deconvolution, from Eq. (7) and the analytical
solutions of the integration i.e. Eqs. (8)–(10), the over-determined
linear system is obtained as follows (Ilk, 2005; Ilk et al., 2005):

ΔΧ C P⋅ = (11)

where X is the mn×u sensitivity matrix; C is the u-vector of
undetermined coefficients ci; and ΔP is the mn-vector of measured
wellbore pressure drop pini-pjk; where mn n= ∑ j

m
j=0

−1 . The elements of
the sensitivity matrix are as follows:

∫ B T τ q τ τΧ = ( − ) ( )djk i
T

i k
j

,
0

2k
j

(12)

In Eq. (12), the value of the integral Χjk i, can be obtained by
substituting t T= k

j into the analytical formula Eq. (8). It is worth to
mention that in order to further improve the deconvolution computa-
tion speed, the binary search method is also applied to find which
production segment (with constant production rate) the measured
wellbore pressure data point T p( , )k

j
k
j locates at. It is necessary

especially for the cases when the quantity of production segments
(the number of measured production rate data in reality) is abundant.

In comparison with Ilk et al.’s deconvolution algorithm by using
Laplace transformation, the proposed direct analytical solution method
of the integration for calculating the elements of the sensitivity matrix
can not only guarantee the success of the deconvolution computation
process based on B-splines, but also can largely enhance the deconvo-
lution computation speed.

When the level of data error increases, the least square method

can’t provide a sufficient regularization (Ilk, 2005; Ilk et al., 2005).
Therefore, additional regularization is required in order to ensure the
relevance of the spline representation with well testing typical curves
from reservoir modeling. As in Ilk et al.’s deconvolution algorithm (Ilk,
2005; Ilk et al., 2005), for the over-determined linear system, the
following two conditions are appended for each spline interval:

⎡

⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤

⎦
⎥⎥∑ ∑α t c B t t c B t( ) − ( ) = 0

i

u

i i
t t i

u

i i
t t=1

2

= =1

2

=k k+1/2 (13)
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⎦
⎥⎥∑ ∑α t c B t t c B t( ) − ( ) = 0

i

u

i i
t t i

u

i i
t t=1

2

= =1

2

=k k+1/2 +1 (14)

In other words, it is required that the logarithmic derivative of the
wellbore pressure corresponding to the constant unit production rate
differ slightly between the knot and the middle location between knots
(Ilk, 2005; Ilk et al., 2005). When the measured wellbore pressure and
production rate have no errors, the regularization parameter α is equal
to zero. When the measured data have errors, a positive value of α is
selected to eliminate the error effect. The range for the value of α is
[0,1].

Then the over-determined linear system which incorporates the
appended regularization can be written as follows:

α Χ C = 0r (15)

α α ΔΧC P(1 − )⋅ = (1 − )⋅ (16)

where Xr is the kn×u matrix;
⎛
⎝⎜

⎞
⎠⎟kn n=2· ∑ −1j

m
j=0

−1 . The linear systems of

Eqs. (15) and (16) can be solved together by the least square method
(Burden and Faires, 2010) to determine the value of C. Eventually,
according to Eq. (5), the derivative of wellbore pressure function
p′ucorresponding to the constant unit production rate can be recon-
structed. The log-log typical curves for well testing also need the
wellbore pressure pu, which can be deduced by the integration of both
sides of Eq. (5), as follows:

∫ ∫∑p t t c B t t( )d = ( )d
t

u
i

u

i
t

i
0

′

=1 0

2

(17)

Eq. (17) can be further deduced as follows:

∫∑p t p c B t t( ) − = ( )du ini
i

u

i
t

i
=1 0

2

(18)

Eq. (18) can be rewritten as follows:

∫∑p t p c B t t( ) = + ( )du ini
i

u

i
t

i
=1 0

2

(19)

Once the value of C is determined, the functions of transient
wellbore pressure pu and its derivative p′u can be obtained by Eqs. (19)
and (5), respectively; the data of transient wellbore pressure pu and its
derivative p′ucorresponding to the constant unit production rate can be
output for well test analysis. In addition, the wellbore pressure p
corresponding to the variable production rate as the reconstructed
pressure response by B-splines from Eq. (6) can be compared with the
measured wellbore pressure data. It can be used as the constraint for
restricting the value assignment of the base b and the regularization
parameter α during the regularization process.

3. Validation of the improved deconvolution algorithm

The problem considered here involves the radial Darcy's flow in an
infinite dual-porosity reservoir. The reservoir is homogeneous, isotro-
pic and isothermal. And the single-phase horizontal flow does not have
any gravity effect. Both the wellbore storage and skin effect are
considered. The Newtonian fluid and rocks are slightly compressible.

Fig. 1. The production segments with different production rates.
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The values of reservoir parameters are shown in Table 1. The
production history for a production well includes eight production
durations with different production rates (see Table 2 for details). The
data for the wellbore pressure response corresponding to the variable
production rate is shown in Fig. 2. The total number of wellbore
pressure data is 426. The initial pressure is 50.0 MPa. The exact
solution of the wellbore pressure response corresponding to the
constant unit production rate 1.0 STB/D for 400 days is shown in
Fig. 3.

Then the improved deconvolution algorithm can be adopted to
transfer the wellbore pressure response corresponding to the discon-
tinuous variable production rate to the one corresponding to the
constant unit production rate. Here, the value of b is set as 1.8; the
regularization parameter α is set as 0. The aforementioned exact
solution can be used to verify its correctness.

Fig. 4 shows the comparison of the deconvolution results regarding
the wellbore pressure drop and its derivative by our deconvolution
algorithm with the exact solutions. From Fig. 4, it can be seen that the

deconvolution results have good agreement with the exact solutions.
Figs. 5 and 6 show the absolute error and relative error for the
deconvolved wellbore pressure, respectively; it can be seen that the
absolute and relative errors both tend to increase with the time
increasing; the absolute error is less than 0.006 MPa, and the relative
error is no more than 0.4%, which indicates high accuracy of the
improved deconvolution algorithm. Besides, the computation time for
the improved deconvolution process is just 0.01 s by using an ordinary
computer, which is equipped with double central processing units of
3.40 GHz core frequency and random access memory of 4.00 GB size.
The improved deconvolution algorithm shows high computation speed.

Table 1
Reservoir parameters.

Reservoir parameters Values

Wellbore storage coefficient 0.001 bbl/psi
Skin factor 5.0
Permeability 1.0 md
Reservoir thickness 10.0 ft
Initial pressure 50.0 MPa
Porosity 0.1
Well radius 0.3 ft
Viscosity 1.0 cp
Formation volume factor 1.0 B/STB
Total compressibility 3.0×10−6 psi−1

Elastic storage ratio of fracture 0.1
Inter-porosity flow coefficient 1.0×10−6

Table 2
The data of production rate.

Production duration (Day) Production rate (STB/D)

1 0.5
4 1.0
5 0.75
10 1.25
30 2.25
50 1.0
100 1.5
200 1.0

Fig. 2. Wellbore pressure response corresponding to the variable production rate.

Fig. 3. Wellbore pressure response corresponding to the constant unit production rate.

Fig. 4. Comparison of the deconvolution results with the exact solutions.

Fig. 5. The absolute error curve.
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4. Stability test of the improved deconvolution algorithm

4.1. Case study for stability test when data error exists

In order to test the stability of the improved deconvolution
algorithm, a 5% random relative error is added into the measured
wellbore pressure drop corresponding to the same variable production
rate data as in Section 3, which is shown in Fig. 7. Due to the existence
of data errors, the aforementioned regularization method has to be
employed to overcome the effect of data errors in the deconvolution
process. It has been recommended that the selection of the optimum
values of the regularization parameter α and the base b for logarithmic
distribution of B-spline knots should be combined together in order to
efficiently eliminate the data noise (Ilk, 2005; Ilk et al., 2005). As the
constraint of the value assignment of the two parameters, it should be
guaranteed that the reconstructed wellbore pressure response by B-
splines can match the measured wellbore pressure data.

In order to smooth the typical curves, the value of the regularization
parameter α is set as the largest one under the constraint. Then the
value selection of the base b is the key job. According to Ilk et al.’s
suggestion that the number of knots should be on the order of at least
2–6 knots per log cycle (Ilk, 2005; Ilk et al., 2005), it can be deduced
from Eq. (2) that the value of the base b should be on the order of 1.47–
3.16. Fig. 8 shows the comparison of the deconvolution results under
different values of the base b from the data with errors with the exact
solutions. From Fig. 8(A), it can be seen that if the value of b is too
small, the regularization is insufficient; the distribution of the wellbore

pressure derivative p′u points from the deconvolution results is dis-
persive, and out of order. Then it will lead to the difficulty in the well
test analysis for the deconvolved wellbore pressure data due to its
disorder and uncertainty. If the value of b is too large, the distribution
of the wellbore pressure derivative points becomes too tight, and sharp
turning emerges; some basic reservoir-model characteristics of typical
log-log curves of wellbore pressure derivative for identifying a relevant
reservoir model during the well test analysis process can be removed,
as shown in Fig. 8(C).

From Fig. 8(B), it can be noted that by tuning the value of
regularization parameter α as 0.01 and setting the value of b as 2.6,
the deconvolution algorithm can successfully recover the transient
wellbore pressure features of the reservoir model for the whole
production duration. And for the constraint, the reconstructed wellbore
pressure response by B-splines still matches the measured wellbore
pressure data (see Fig. 9). The improved Ilk et al.’s deconvolution
algorithm exhibits its good stability of data error tolerance.

From the deconvolution results, it can also be concluded that the
deconvolved wellbore pressure pu has better agreement with the
related exact solutions than the deconvolved wellbore pressure deriva-
tive p′u. The reason is that the deconvolved wellbore pressure is more
tolerant to the data errors than the devonvolved wellbore pressure
derivative.

4.2. Statement on how to perform the regularization

From the above case study for testing the stability of the improved
deconvolution algorithm, it can be seen that determination of coeffi-
cients b and α is very important in the regularization process when data
errors exist, because different coefficient value assignment may lead to
different deconvolution results.

Through many numerical experiments for the improved deconvolu-
tion algorithm, it is found that when the initial formation pressure is
known, the deconvolved wellbore pressure pu is unique and very stable,
and tuning the coefficients b and α have little effect on the typical log-
log curves of the deconvolved wellbore pressure; the key problem is
that the typical log-log curves of the deconvolved wellbore pressure
derivative p′u is very sensitive to the data errors (The same problem also
exists in other deconvolution algorithms such as von Schroeter et al.’s
algorithm and Levitan et al.’s algorithm.), and the regularization is
performed mainly for smoothing the typical log-log curves of the
deconvolved wellbore pressure derivative by tuning the coefficients b
and α, so as to reduce the uncertainty of the subsequent well testing
interpretation by the typical curve analysis method. However, it is
fortunate that the measured data for well testing generally have high
accuracy (in comparison with the wellbore production data). Therefore,
the deconvolution approach can still be widely applied in well test
analysis. For the improved deconvolution algorithm, it is found that as
the value assignment of α satisfies the constraint, and the value of the
base b is set on the order of 1.47–3.16, the basic reservoir-model
characteristics of typical log-log curves of the wellbore pressure drop
and the wellbore pressure derivative can be identified from the
deconvolution results through the regularization process.

In order to deconvolve a correct wellbore pressure derivative p′u for
the well testing by the deconvolution approach and the involved
regularization method, it is also necessary to make full use of an
accurate knowledge of initial pressure, the knowledge from the sources
of reservoir geology and reservoir characterization (such as a pressure
build up testing), and some engineering experiences (Osman and
Thwaites, 2014). For example, if it is known from the sources of
reservoir geology that the reservoir is a dual-porosity reservoir, it can
provide the information that the typical log-log curves of the decon-
volved wellbore pressure derivative should have the seepage flow
features in dual-porosity reservoirs. And if a pressure build up testing
can be conducted at a shut-in period in advance, its accurate typical
log-log curves of the wellbore pressure derivative in the relatively short

Fig. 6. The relative error curve.

Fig. 7. Wellbore pressure drop with 5% random relative error corresponding to the
variable production rate.
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period can give the direct guidance for deconvolving the wellbore
pressure derivative at the whole period; after all, they belong to the
same typical curves for reservoir model identification, just with
different time length.

5. Application to field example

Here, the improved deconvolution algorithm is applied to a real
field example of the well SapGS02 from the example file of the KAPPA
software. The production history for a production well includes thirteen
production periods with different piecewise constant production rates,

among which the last one is the well shut-in period; the corresponding
wellbore pressure is measured. The data of the production rate and the
wellbore pressure are shown in Fig. 10. The total number of the data
points for the measured wellbore pressure is 485. The initial pressure is
27.0 MPa.

The improved deconvolution algorithm is applied in order to
transfer the wellbore pressure data corresponding to the discontinuous
variable production rate into the one corresponding to the constant
unit production rate for the entire production history. The computation
time is just 0.015 s. Fig. 11 shows the typical log-log curves of the

Fig. 8. Comparison of the deconvolution results with the exact solutions.

Fig. 9. Comparison of the reconstructed wellbore pressure response with the measured
wellbore pressure data. Fig. 10. The data of the wellbore pressure and the corresponding production rate for the

well SapGS02.
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wellbore pressure drop and the wellbore pressure derivative from the
deconvolution results; where the value of regularization parameter α is
set as 0.003 and the value of b is set as 2.3. The reconstructed wellbore
pressure response by B-splines matches the measured wellbore pres-
sure data very well in Fig. 12.

The typical log-log curves calculated from the wellbore pressure
data in the last well shut-in period are also plotted, as shown in Fig. 13.
From Figs. 12 and 13, it can be seen that the deconvolved typical log-

log curves have very similar features with the ones directly from the
data in the well shut-in period.

Besides, the deconvolution results by von Schroeter et al.’s algo-
rithm and Levitan et al.’s algorithm are also obtained through the
KAPPA Software, respectively; wherein the regularization parameters
for the two algorithms are both set as the default values in the Software.
Fig. 14 shows the comparison of three couples of typical log-log curves
of the wellbore pressure drop and the wellbore pressure derivative,
which are plotted from the deconvolved results by the three different
deconvolution algorithms, respectively. From Fig. 14, it can be seen
that the three couples of log-log typical curves have good agreement, as
a whole. The two wellbore pressure drop curves, obtained by von
Schroeter et al.’s deconvolution algorithm and our improved deconvo-
lution algorithm respectively, are very close; however, they both have
some difference from the wellbore pressure drop curve obtained by the
Levitan et al.’s deconvolution algorithm at the early stage. The wellbore
pressure derivative curves obtained by the three deconvolution algo-
rithms also have some difference at the “concave” parts; however, the
difference could have little effect on the well testing interpretation for
the deconvolved data. From Figs. 14 and 13, it is also indicated that the
feature of the typical log-log curves corresponding to the improved
deconvolution algorithm is very close to the one of the typical log-log
curves calculated directly from the wellbore pressure data in the last
well shut-in period.

In addition, through many numerical experimental tests, it is also
concluded that as the quantity of data largely increases, the improved
Ilk et al.'s deconvolution algorithm exhibits the big advantage in fast
computational speed over von Schroeter et al.’s algorithm and Levitan
et al.’s algorithm.

6. Conclusions

It is realized that the variable production rate commonly have large
discontinuities in reality, and then Duhamel principle can’t be trans-
formed by Laplace transformation. It is the root of the two aforemen-
tioned problems existent in Ilk et al.’s deconvolution algorithm. Here,
in terms of the root of the problems, Ilk et al.’s deconvolution algorithm
is improved fundamentally: We keep the computation process of the
deconvolution in the level of integral in the real time space instead of
the Laplace space because it has lower requirement for the continuity
of the variable production rate. According to the real production rate
history, a technique of piecewise analytical integration is adopted for
obtaining the elements of sensitivity matrix in the deconvolution
process. The proposed analytical integration method can not only
largely enhance the computation speed in comparison with the time-
consuming numerical integration method, but also guarantee the

Fig. 11. The typical log-log curves of the wellbore pressure drop and the wellbore
pressure derivative from the deconvolution results.

Fig. 12. Comparison of the reconstructed wellbore pressure response with the measured
wellbore pressure data.

Fig. 13. The typical log-log curves calculated from the wellbore pressure data in the last
well shut-in period.

Fig. 14. Comparison of three couples of typical log-log curves of the wellbore pressure
drop and the wellbore pressure derivative by three different deconvolution algorithms.
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success of the deconvolution computation process due to the reason
that Laplace transformation can be avoided. Besides, as in Ilk et al.’s
deconvolution algorithm, the same regularization method is incorpo-
rated for eliminating the effect of data error.

Numerical experimental tests demonstrate that the improved
deconvolution algorithm exhibits good accuracy, computation speed
and stability of data error tolerance. And the statement on how to
perform the regularization when data error exists is also made in order
to deconvolve the correct wellbore pressure derivative. Through the
application of the improved algorithm into a field example, it is
indicated that by and large the deconvolution results by the improved
algorithm have good agreement with the ones by von Schroeter et al.’s
algorithm and Levitan et al.’s algorithm; and the feature of typical log-
log curves of the wellbore pressure drop and the wellbore pressure
derivative corresponding to the improved algorithm is very close to the
one of typical log-log curves calculated directly from the wellbore
pressure data in the last well shut-in period.

What's more, as the quantity of data largely increases, the improved
Ilk et al.'s algorithm exhibits the big advantage in the fast computa-
tional speed over von Schroeter et al.’s algorithm and Levitan et al.’s
algorithm. As a result, the improved Ilk et al.'s deconvolution algorithm
is more suitable for dealing with the deconvolution problems with large
amounts of data.
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