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Abstract Increasing the cutting speed to an ultra-high
level usually gives rise to a chip flow transition from
continuously serrated to discontinuously segmented,
which is one of the most fundamental and challenging
problems in metal cutting. In this work, we experimen-
tally performed the ultra-high-speed cutting on Ti-6Al-
4V with a maximum cutting speed of 210 m/s, focusing
on the physical phenomena accompanying the discontin-
uously segmented chip flow. It reveals that the discon-
tinuously segmented chip flow can be attributed to the
shear fracture induced by the fully matured shear
banding, and there exists a ductile-brittle transition of
the shear fracture as the cutting speed increases to an
ultra-high level. In addition, the critical condition for
the onset of segmented chip flow is presented using
the momentum diffusion-based shear band evolution
model, which gives good prediction for the chip
segmentation.
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NomenclatureGreek alphabet
α Thermal softening coefficient
γ Shear strain
γo Shear strain rate
γre f Reference strain rate in J-C law
η Strain rate-hardening coefficient
θ Temperature rise
λ Thermal diffusivity
μ Tool-chip friction coefficient
ξ The width of rigid region
ρ Work material density
τ Shear band stress
τy The initial yield shear stress
τA Initial yield stress in J-C law
τB Hardening modulus in J-C law
φ Shear angle
ψ Shear band slip distance
ω Tool rake angle
Γ Energy dissipated in shear banding
English alphabet
a Shear band thickness
b Uncut chip thickness
c Strain gradient coefficient
C Strain rate coefficient in J-C law
Cp Thermal capacity
h PSZ thickness
t Shear band evolution time
V Cutting speed
Vs Tool velocity along shear direction
Vf Material convection velocity
X Shear band evolution degree
Winput Energy inputted into PSZ
Subscript
c Critical condition at which the shear band is fully matured
u The ultimate evolution condition for the shear band in

serrated chip flow
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1 Introduction

The growing demand for enhancing production efficiency and
product quality has led to the rapid development of high-speed
cutting or machining technology [1–3]. In spite of extensive
studies, several fundamental aspects of the high-speed cutting
process are poorly understood. One of these aspects is the
onset of discontinuously segmented chip flow.

There usually exist two distinct transitions of the chip flow
pattern as the cutting speed increases from low to very high.
The chip flow is usually continuously smooth at low cutting
speed. Increasing the cutting speed leads to a breakdown of
the steady chip flow and results in a serrated chip flow pattern.
The other transition, from continuously serrated to discontin-
uously segmented chip flow, usually occurs at very high cut-
ting speeds. These two transitions of chip flow pattern are two
of the most fundamental and challenging problems in metal
cutting.

The formation of continuously serrated chip flow has been
extensively studied [4–7]. It is found that the emergence of
serrated chip flow is related to the cracking initiated at the free
surface [6, 8] or the shear banding occurred in the primary
shear zone (PSZ) [9–15]. A number of researchers studied
the occurrence condition of shear banding in high-speed ma-
chining, and several classical models have been developed to
derive the condition under which the continuously smooth
chip flow becomes unstable [16–23].

With regard to discontinuously segmented chip flow, it
usually forms at very high cutting speeds. It is favored for
machined components because continuously smooth and ser-
rated chips get tangled and are not appropriate for automated
processes. The discontinuous segmentation is however be-
lieved to be a critical aspect due to periodic variations in the
cutting forces that increase tool wear rate and degradation of
the machined surface finish. The causes and effects of chip
segmentation have received important attention in the aim of
selecting the optimal cutting conditions to improve the pro-
duction and increase both the tool life and surface quality.
Hi ther to , however, the format ion mechanism of

discontinuously segmented chip flow, which usually occurs
at very high cutting speed, has not been well understood.
Only a few researches have dealt with the formation mecha-
nism of discontinuous chip. The puzzle of why serrated chip
flow gives way to discontinuously segmented chip flow as the
cutting speed increases to a extremely high level still remains
elusive.

Sowerby and Chandrasekaran [24] presented a method to
predict the chip segmentation using a critical damage factor.
Later, Marusich and Ortiz [25] estimated the crack propaga-
tion in serrated chip using the dynamic fracture factor together
with the maximum loop stress criterion. They found that dis-
continuous chip flow usually occurs at negative rake angle.
Based on the theory of strain energy density, Lin and his co-
workers [26, 27] developed an elastic-plastic finite element
model (FEM) to simulate the discontinuous chip formation.
Also, using the FEMmethod, Guo and Yen [28] simulated the
chip crack initiation and propagation in discontinuous chip.
They stated that the discontinuous chip is due to the internal
crack initiation and extension in front of the tool and meeting
with the surface crack, and the adiabatic shearing was found to
play an important role in discontinuous chip formation. More
recently, Liu and Su [29] studied the correlation between the
chip morphology and the dynamic mechanical properties of
work material; they attributed the discontinuous chip flow to
the brittle fracture occurred in high-speed cutting. Using a
specific ballistic setup together with a high-speed imaging
system, Sutter and List [30] investigated the transition of ser-
rated chip to discontinuously segmented chip. They stated that
the chip segmentation is governed by the phenomena of shear
band propagation and crack formation. Gu et al. [31] carried
out the high-speed cutting experiments on AISI 1045 steel
with a maximum speed of 23 m/s. The adiabatic shear local-
ized fracture is claimed to be the key reason for chip segmen-
tation, and a theoretical model is further proposed to achieve
the fracture criterion. Recently, Cui et al. [32] showed in their
work that the high temperature in the area between the adja-
cent sawteeth has a great effect on the formation of discontin-
uous chip.

These pioneering works provide important clues to study
the discontinuously segmented chip flow. However, the range
of very high cutting speeds when machining metal alloys is
still largely unexploited. The formation mechanism and, espe-
cially, the onset condition for the discontinuously segmented
chip flow are so far unclear. It should be pointed out that the
discontinuously segmented chip formation involves highly
nonlinear thermo-viscoplastic flow and fracture of material.
And, the coupled effects of momentum diffusion and thermal
diffusion can become extremely complex at very high speeds.
All of these factors make the problem much more complex,
and the emergence of discontinuously segmented chip flow
still remains one of the least understood manufacturing phe-
nomena. In the present work, orthogonal cutting experiments
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were carried out over a very wide range of cutting speeds to
illustrate the reason for the emergence of discontinuously seg-
mented chip flow. Furthermore, we developed the momentum
diffusion-based shear band evolution model, which was first
established in our previous work, to predict the onset of dis-
continuous chip flow.

2 Experimental

The titanium alloy Ti-6Al-4V, which is widely employed in
the aerospace industries, was chosen as workpiece. The chem-
ical compositions and heat treatments for the Ti-6Al-4Valloy
are given in Table 1.

To reproduce high-speed cutting process, an original exper-
imental setup was developed [33] and schematically presented
in Fig. 1, and the actual experimental setup is presented in
Fig. 2. The cutting tool is propelled by a light-gas gun in a
launch tube, and two symmetrical workpieces are fixed at the
exit of the tube. Orthogonal cutting occurs when the tool im-
pacts the workpieces. To achieve ultra-high cutting speeds, we
reduced the weight of the projectile and elevated the gas pres-
sure, and a maximum cutting speed of 210 m/s was achieved.

In addition, to investigate the evolution of the chip flow
from low to high cutting speeds and to capture the two signif-
icant transitions of the chip flow pattern, the low-speed cutting
experiments were also performed, using a computer-
controlled lathe.

In this way, orthogonal cutting experiments were per-
formed on the Ti-6Al-4V alloy over a very wide range of
cutting speeds, from 0.05 to 210m/s. The uncut chip thickness
was set to be 100 μm and the tool rake angle to be 0°.
Uncoated P10 carbide tools with a tool edge radius of
0.01 mm were applied. To minimize the influence of cutting
tool wear on experimental results, the cutting length was lim-
ited, and the cutting insert was replaced after each cutting.

Chips generated were collected and observed by a high-
resolution scanning electron microscopy.

3 Results and discussion

3.1 The evolution of chip flow pattern

The evolution of chip flow pattern with cutting speed for Ti-
6Al-4V is shown in Fig. 3.

Here, to show clearly the whole evolution process of the
chip flow pattern from low to ultra-high cutting speeds and,
thus, to reveal the underlying mechanism of the initiation of
discontinuously segmented chip flow, the morphology images
of the chips obtained at low cutting speeds are shown together
with that obtained at high cutting speeds, although the low-
seed cutting experimental results for Ti-6Al-4V have been
widely reported [34–36].

At very low cutting speeds, chips undergo a relatively ho-
mogenous shear deformation, giving rise to a continuously
smooth chip flow pattern (see Fig. 3a). At higher cutting
speeds, the thermoplastic instability-induced shear banding
emerges because the smooth chip flow is not sufficient to
dissipate the energy through homogeneous plastic flow (see
Fig. 3c, g). This results in a serrated or sawtooth-like chip flow
pattern, which is still continuous.

As increasing the cutting speed to a higher level, the shear
band between the “sawteeth” evolves much more sufficiently,
leading to a higher serration degree. At the cutting speed of
68.9 m/s, the chip is highly serrated. In this case, a few shear
bands developed to a significant high level, and cracking oc-
curs near the roots of these shear bands. Consequently, the
corresponding sawteeth separate with their adjacent ones
along these shear bands, although most sawteeth are still con-
tinuously connected (see Fig. 3e, h).

When the cutting speed is elevated up to 86.5 m/s, all the
sawteeth separate with each other, and the chip turns out to be
discontinuously segmented, as shown in Fig. 4. Each isolated
chip is a piece of “sawtooth.”

3.2 The microstructure evolution before segmentation

The evolution of the microstructure of the chip free surface
with cutting speed (before segmentation) is shown in Fig. 5.

It can be noted from Fig. 5a–d that higher cutting speed
results in more remarkable shear front surfaces, implying that
increasing the cutting speed promotes the evolution of the
shear band.

As the cutting speed increases to 68.9 m/s, the shear front
surfaces are especially obvious. Most areas of the shear front
surfaces show severe elongated dimple structures, which is a
most significant feature of the shear localization fracture [37].
In this case, the chip is still continuous, but a few pieces of the
sawteeth are going to separate with their adjacent ones along
the shear surfaces (see Fig. 5e). It is easy to imagine that, as
further increasing the cutting speed to an extremely high level,

Table 1 Chemical compositions
and heat treatments for Ti-6Al-4V Component wt. % Heat treatments

Ti Al V Fe N H O C Annealed at 973 /2 h, quick cool
Bal 5.99 4.2 0.2 0.004 0.005 0.1 0.01
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all the sawteeth will separate with each other along the signif-
icantly developed shear bands, and the discontinuously seg-
mented chip flow will be imminent.

All of these show clearly that the evolution of the shear
band between the sawteeth is the key reason for the emergence
of discontinuously segmented chip flow. However, the neces-
sary evolution degree of the shear band for the onset of dis-
continuous chip flow is unclear, and whether the shear band is
fully matured when the segmentation occurs cannot be deter-
mined yet. This will be further investigated through the exam-
ination of the microstructure of the tool-chip contact surfaces.

The evolution of the microstructure of the tool-chip contact
surface with cutting speed (before segmentation) is shown in
Fig. 6.

The cutting process is stable at very low cutting speed, and
the tool-chip contact surface is quite smooth (see Fig. 6a, d).

For the serrated chip flow, dimpled regions are clearly ev-
ident in the tool-chip contact surface( see Fig. 6b, e). The
dimples are elongated along the chip flow direction, and the
dimple regions are regularly distributed, which are approxi-
mately 60μm apart (at V=7.8 m/s). This is in accordance with
the shear band space Lc marked in Fig. 3c. This implies that
the regularly distributed dimple structure on the tool-chip con-
tact surface is related to the periodical shear banding inside the
PSZ. In addition, the periodical dimple features indicate that
the chip movement over the tool rake face is stick slip in
nature. The dimple feature can be attributed to the welding

of the chip to the tool face and subsequent fracture upon cat-
astrophic shear localization inside the PSZ [38].

When the cutting speed reaches to 68.9 m/s, the roots of the
shear bands become observable on the tool-chip contact sur-
face (see Fig. 6c). This implies that the shear bands have
evolved to a very high level. In this case, local melting occurs
along the root of the shear band (see Fig. 6f, h, i). This is
resulted from the high temperature rise caused by the high-
rate shear localization. It also can be imagined from Fig. 6
that, as further increasing the cutting speed to an extremely
high level, the shear band can be fully melted; thus, the chip
will be segmented by the fully melted shear bands to render a
discontinuous chip flow.

It should be noted that the fully melted shear band has
actually lose its bearing capability, which is regarded to be
fully matured [39]. Therefore, the emergence of discontinu-
ously segmented chip flow can be attributed to the full devel-
opment of the shear bands located between the sawteeth.

3.3 The microstructure evolution after segmentation

The discontinuously segmented chip formation process is
schematically presented in Fig. 7. The chip is segmented by
the fully developed shear bands to be pieces of isolated saw-
teeth. Each sawtooth has four surfaces: free surface, tool-chip
contact surface, and two shear fracture surfaces, namely the
upper one and the lower one (see Fig. 7). In what follows, the
evolutions of the microstructures of the two fracture surfaces
and the tool-chip contact surface with cutting speed were
investigated.

Figure 8 shows the microstructure of the lower shear frac-
ture surface evolving with cutting speed; the view direction is
shown in Fig. 7 (view direction 1).

At V=86.5 m/s, the chip flow just changes from continu-
ously serrated to discontinuously segmented. In this case, melt
droplets can be wildly observed on the lower shear fracture
surface (see Fig. 8a, e, f). Similar to the periodical melting
bands observed on the tool-chip interface just before the seg-
mentation occurs (see Fig. 6c, f), the melt droplets are resulted
from the high temperature rise caused by the large shear plas-
tic deformation occurring inside the fully matured shear
bands. The widely observed melt droplets demonstrate, again,

Fig. 1 Diagram of the light-gas-
gun-based cutting setup

Fig. 2 The actual experimental setup
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that the onset of discontinuously segmented chip flow is re-
sulted from the full development of the shear bands. The melt
droplet, however, disappears as the cutting speed increases to
an ultra-high level (see Fig. 8b–d), and the lower shear frac-
ture surface turns out to be smooth at higher cutting speeds.

Moreover, at V=86.5 m/s, the elongated dimple structures
are clearly visible on the front area of the fracture surface (near
the free surface) (see Fig. 8j). This means that the chip seg-
mentation process is dominated by ductile shear fracture.With
further increasing the cutting speed to much higher values
(V=128.5, 168.4, 210.3 m/s), the dimple decreases while the
ductile fracture induced smooth area increases (see Fig. 8k–
m). This indicates that there exists a ductile-brittle transition of
the shear fracture between the sawteeth. According to the
research of Fukumasu et al. [40], increasing strain rate reduces
the fractural toughness of titanium alloy. This means that the

work material could change to be much more brittle at higher
cutting speed. So, when the cutting speed reaches a critical

Fig. 4 The discontinuously segmented chips obtained at V= 86.5 m/s

Fig. 3 The chip flow patterns at
different cutting speeds
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high level, the fracture between the sawteeth changes to be
dominated by ductile fracture. As thus, the plastic deformation
inside the PSZ is restricted, and the heat generation is reduced.
As a result, the temperature in the PSZ decreases. This could
be the reason why the melt droplet disappears on the shear
fracture surface at much higher cutting speeds.

The evolutions of the microstructures of upper shear frac-
ture surface and tool-chip contact surface with cutting speed
for discontinuously segmented chip are shown in Fig. 9.

The examination of the upper shear fracture surface also
shows a decrease tendency of the dimple with increasing the
cutting speed (see Fig. 9k–n). This is in accordance with that

Fig. 5 The microstructure of the chip free surface at different cutting speeds

Fig. 6 Tool-chip contact surfaces at different cutting speeds
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of the lower shear fracture surface, which demonstrates again
the existence of the ductile-brittle transition of the dominated
shear fracture mechanism.

When the discontinuously segmented chip just forms at
V=86.5 m/s, the tool-chip contact surface is covered by melt
droplets, as shown in Fig. 9a, e, f. The melt droplets are caused
by the high temperature rise induced from the severe tool-chip
friction. At V=86.5 m/s, some of the chip materials on the
contact surface melt under the high contact temperature. The
melted materials then solidify after they move away from the
tool-chip contact zone. Consequently, the melt droplets form
on the tool-chip contact surface.

As increasing the cutting speed to a much higher value
(V=128.5 m/s), the melt droplets disappear, but the flow
marks of liquid metal become evident on the contact surface
(see Fig. 9b, g, h). At such high cutting speed, the friction
between the tool and the chip becomes more severe, and the
whole chip materials on the contact surface melt. Then, the
flow marks of the melted materials leave on the contact sur-
face after the chip flows away from the tool face.

It can be seen from Fig. 9g, i, j that the flow marks become
more obvious as the cutting speed increases to a higher level.
At ultra-high cutting speeds, the chip materials near the con-
tact surface are softened by the high contact temperature. The
high-temperature-effected zone becomes deeper at a higher
cutting speed, giving rise to a thicker soften layer. It is worth
noting that the sticking friction occurs on the tool-chip

Fig. 7 Schematic for the discontinuously segmented chip formation
process

Fig. 8 The microstructures of the lower shear fracture surface at different cutting speeds
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interface during cutting [41, 42]. Thus, the soften layer is
dragged by the severe tool-chip friction during the chip for-
mation process, resulting in an elongated layer at the chip root
(see Fig. 9c, d). The elongated soften layer becomes more
obvious at higher cutting speeds.

All of these demonstrate that, after the chip is segmented at
an extremely high cutting speed, the tool-chip interface tem-
perature is maintained at a high level, and the high-
temperature-effected zone becomes deeper with further ele-
vating the cutting speed.

4 Onset criterion of discontinuously segmented chip
flow

The high-speed cutting experimental results have shown that
the transition from continuously serrated chip flow to discon-
tinuously segmented chip flow is dominated by the evolution
of shear band. Therefore, the emergence of discontinuously
segmented chip flow can be investigated by building a shear
band evolution model for the serrated chip flow. In our previ-
ous work [43], we have already presented a momentum
diffusion-based shear band evolution model to predict the
shear band spacing for the serrated chip flow. In what follows,
the momentum diffusion-based shear band evolution model

was further developed to predict the onset of discontinuously
segmented chip flow.

4.1 Modeling the shear band evolution in serrated chip
flow

Although the full governing equations and various specializa-
tions for the shear band evolution model have been described
in our previous paper [43], the essentials will be sketched
again for clarity.

The formation process of the serrated chip is schematically
presented in Fig. 10a. The workpiece is motionless, and the
cutting tool moves with a constant cutting speed V. Before
shear banding, all the deformation of the material occurs with-
in the PSZ which is assumed to be parallel-sided with a finite
thickness h [44]. The lower-boundary CD is taken as motion-
less, and the upper-boundary EF moves with a constant shear
velocity Vs.

When the serrated chip forms, shear banding initiates at the
center of the PSZ (along AB). The shear banding results in
stress release within the shear band, which further propagates
outward. Consequently, two rigid regions form between the
shear band and the plastic deformation zones due to the mo-
mentum diffusion caused by the stress relaxation.

Fig. 9 Microstructures of the upper shear fracture surface and the tool-chip contact surface at different cutting speeds
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The shear band relaxation process is schematically shown
in Fig. 10b. Some necessary assumptions are made as follows:

1. The shear band is assumed to be much thinner than the
PSZ [45, 46]. Thus, the evolution of the shear band can be
described by the boundary displacement at y=h/2. The
boundary displacement ψ increases as the shear band
evolves.

2. The two rigid regions caused by the stress relax are
assumed to be have a same width ξ. Thus, the lower
and upper half regions of the PSZ are essentially
symmetric.

3. A linear relaxation of the shear stress is used to approxi-
mately describe the relation of the unloading stress inside
the shear band [45, 46],

τ tð Þ ¼ τ y 1−X tð Þð Þ ð1Þ

where t is the evolution time of the shear banding and τy is
the initial yield shear stress within the plastic region which
is treated as constant. The parameter X(t) is defined to
describe the evolution degree of the shear band, which is
given by

X tð Þ ¼ ψ tð Þ
ψc

0≤X ≤1ð Þ ð2Þ

where ψc is the critical shear displacement at which the
shear band stress vanishes and the shear band is regarded
to be fully matured. When the evolution degree reaches
Χ=1, the shear band is fully developed. In this case, the
shear band loses its bearing capacity and the discontinu-
ously segmented chip flow will be imminent.

As shear band evolves, the shear band stress decreases, and
the rigid-plastic interface propagates outward. The governing
equations controlling this process can be given as follows:

dψ tð Þ
dt

¼ Vs

h
ξ tð Þ ð3Þ

ργ0ξ tð Þ dξ tð Þ
dt

¼ τy−τ tð Þ ð4Þ

τ tð Þ ¼ τy 1−αθ tð Þ½ � þ η⋅
2

a
dψ tð Þ
dt

þ 4c
a3

ψ ð5Þ

dθ tð Þ
dt

¼ 2τ tð Þ
ρCpa

dψ tð Þ
dt

−
2λ
a2

θ tð Þ− Vsinφ
a

θ tð Þ ð6Þ

where Eq. (3) is the compatible equation for the slip boundary,
Eq. (4) is the momentum equation, Eq. (5) is the constitutive
equation describing the plastic flow inside the shear band, and
Eq. (6) is the energy equation governing the thermo-mechanical
deformation of shear band. In these equations, ρ is the mass
density, Cp is the thermal capacity, λ is the thermal diffusivity,
θ is the temperature rise inside shear band, α is the thermal
softening coefficient, η is the strain rate-hardening coefficient, c
is the strain gradient coefficient, φ is the shear angle,ω is the tool
rake angle, and a is the shear band thickness.

In Eq. (5), the first term in the right side of the equation
reflects the thermal softening effect, the second term reflects the
strain rate-hardening effect, and the third term reflects the strain
gradient effect. It should be pointed out that, when the shear band
forms, the strain gradient is very significant in the shear band.
And, according to the researches of Aifantis [47] and Tsagrakis
and Aifantis [48], the higher-order strain gradient affects the
initiation and propagation of the shear band. So, in this work,
we take the strain gradient effect into consideration.

Fig. 10 Theoretical model. a Serrated chip flow model. b The corresponding shear band evolution model
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By using Eqs. (1)–(6) with the initial condition
X(0) = ψ(0) = ξ(0) = 0, an implicit relation of the

ultimate dissipation energy with shear band thickness
is obtained,
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where Xu is the ultimate evolution degree of the shear band
during chip formation. Γu is the total energy dissipation during

the whole shear band relaxation process, which is defined as
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The dimensionless numberM reflects the effect of the ma-
terial convection which is caused by the rapid chip flow, and R
and S reflect the effect of rate hardening and strain gradient
hardening of material, respectively.

Using the minimum energy principle ∂Γu/∂a = 0
[45, 46], another relation between the dissipation
energy and op t imum shear band th ickness i s
obtained:
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Solving the system of Eqs. (7) and (9), the ultimate energy
dissipation Γu is determined.

4.2 Onset criterion for the discontinuously segmented chip
flow

When the transition of serrated to discontinuously segmented
chip flow occurs, the shear band in the serrated chip is fully
developed, namely, Xu=Xc=1. In this case, Eqs. (7) and (9)
reduce to
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where Γ c ¼ Γ cα
2ρc

9ρ3C2
pλ

3

τ3yα
2γ0

� �−1=4
, in which Γc reflects the

total energy dissipation for the fully developed shear
band. Solving the equation system of Eqs. (10) and
(11), the energy dissipation for the fully developed
shear band can be determined.

Noting that, during the shear band relaxation process,
the tool exerts a constant shear stress τy on the upper
boundary of the PSZ, causing the upper boundary to
move with a constant velocity Vs (see Fig. 10b).
Therefore, during the whole shear banding process, the
energy inputted into the PSZ, or the energy dissipated
in the PSZ, can be determined by multiplying the shear
stress by its moving distance, that is

W input ¼ τy⋅Vs⋅tc ð12Þ

where tc is the critical evolution time for the fully ma-
tured shear band, which can be determined by solving
Eqs. (1)–(6) with setting X(t) =Xu= 1, that is

tc ¼ 1

τy

18ρΓ 2
c

γ0

 !1

.
3

ð13Þ

It should be pointed out that the energy inputted into the
PSZ is smaller than the total energy input during cutting, be-
cause the energy can be dissipated not only in the PSZ but also
in the secondary shear zone, where large plastic deformation
and friction occur. Here, we are focusing on the energy dissi-
pation in the PSZ. It can be noted that the plastic shear defor-
mation almost takes place inside the shear band for the serrat-
ed chip flow, and the material outside the shear band remains
almost undeformed, as shown in Fig. 3g. Therefore, we fur-
ther assume that all the energies inputted into PSZ are dissi-
pated through shear banding.

To make sure that the shear band can be fully developed to
result in a discontinuously segmented chip flow, the inputted
energy Winput should be larger than the whole dissipation en-
ergy for the fully matured shear band Γc. As thus, the critical
condition for the onset of discontinuously segmented chip
flow can be described by

Φ ¼ W input

.
Γ c ¼ Vs

18ρ

γ0Γ c

 !1

.
3

≥1 ð14Þ

Once the critical condition is achieved, namely Φ≥1, the
shear band can be fully developed. In this way, the flow stress
inside the shear band decreases to zero, and the shear band
lose its bearing capacity. Subsequently, all the sawteeth in the
serrated chip separate with their adjacent ones along the fully
developed shear bands, giving rise to a discontinuously seg-
mented chip flow.

4.3 Validation for the onset criterion

For given cutting conditions and work material, the energy
dissipation of the fully matured shear band (Γc) can be deter-
mined by solving Eqs. (10) and (11). Thus, the onset of dis-
continuously segmented chip flow can be predicted according
to the criterion (14). In this section, the predicted results will
be compared with the experimental findings for Ti-6Al-4V to
validate the onset criterion.

It should be noted that, before shear banding, the work
material has undergone a homogeneous plastic shear
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deformation at constant shear rate γ0. So, the initial yield
stress τy is related to the homogeneous shear strain γ0 and
the shear strain rate γ0, namely, τ y ¼ τ y γ0; γ0ð Þ. Following
the Johnson-Cook (J-C) model, the initial yield stress is given
in the form of

τ y γ0; γ0
� �

¼ τA þ τB
γ0ffiffiffi
3

p
� �n� �

1þ Cln
γ0

γre f

0
@

1
A

2
4

3
5 ð15Þ

where τA, τB, n, C, and γre f are the parameters for J-C model.
They are defined in Table 2 together with other mechanical
parameters for Ti-6Al-4V [43, 49].

The shear velocity and the average shear strain for the
homogeneous deformation can be estimated by Vs=V cosω/
cos(φ−ω) and γ0= cosω/2 sinφ cos(φ−ω), respectively [44].
The shear angle φ is set to be 45° according to the experimen-
tal findings, and the PSZ thickness h is set to be 1/10 of the
uncut chip thickness [21].

Solving Eqs. (10) and (11) with the cutting conditions and
the mechanical parameters listed in Table 2, the energy dissi-
pation Γc is determined. In this way, the ratio of the input
energy to the total dissipation energy in the PSZ is achieved
according to Eq. (14); thus, the onset of segmented chip flow
can be investigated.

The evolution of the ratio of input energy to the total dis-
sipation energy (Φ) with cutting speed for Ti-6Al-4V is shown
in Fig. 11. It can be seen that Φ increases with increasing
the cutting speed, which means that increasing the cut-
ting speed promotes the onset of discontinuously seg-
mented chip flow. This is in accordance with the exper-
imental findings. It also can be seen that the flow pat-
terns are discontinuously segmented in the zone of Φ> 1
and that the continuously smooth and serrated flow pat-
terns fall in the zone of Φ< 1. Most importantly, the
transition of the flow pattern from continuously serrated
to discontinuously segmented almost always occurs
around Φ= 1. This figure implies that the onset criterion

Table 2 Mechanical properties
and parameters for Ti-6Al-4V Properties and parameters Notation Value

Density ρ 4430 kg m−3

Thermal diffusivity λ 2.95 × 10−6 m2 s−1

Specific heat c 520 J kg−1 K−1

Initial yield stress for J-C model τA 452 MPa

Hardening modulus for J-C model τB 287 MPa

Strain rate dependency coefficient for J-C model C 0.028

Work-hardening exponent for J-C model n 0.28

The reference stain rate for J-C model 1.73 × 10−5 s−1

Thermal softening coefficient α 6.5 × 10−4 K−1

Strain rate-hardening coefficient η 0.75 Pa s−1

Strain gradient coefficient c 2.5 × 10−5 N

Fig. 11 Φ evolves with cutting speed for Ti-6AL-4V (b = 100 μm,
ω= 0°) Fig. 12 Φ evolves with cutting speed for Ti-6AL-4V
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(14) allows the prediction of the emergence of discon-
tinuously segmented chip flow.

Furthermore, the influences of the rate hardening and the
material convection on the onset of segmented chip flow are
further investigated. Four typical cases are discussed: case (i),
in which the effects of strain gradient hardening, rate harden-
ing, and material convection are considered; case (ii), where
the effect of strain gradient effect is neglected, only the rate
hardening and material convection are considered; case (iii) in
which the material convection and strain gradient hardening
are neglected, only the rate-hardening effect of the work ma-
terial is considered; and case (iv), in which the effects of strain
gradient hardening, rate hardening, and material convection
are neglected. For case (iv), the dimensionless numbers M,
R, and S are vanished in Eqs. (10) and (11). For case (iii), M
and S vanish. For case (ii), only S vanishes.

Φ evolving with cutting speed for these three cases is pre-
sented in Fig. 12. Comparing cases (ii), (iii), and (iv) with case
(i), it can be seen that neglecting the effects of material con-
vection, rate hardening, and strain gradient hardening leads to
a lower cutting speed at which the shear band is fully devel-
oped (Φ=1). This figure implies that the material convection,
rate hardening, and strain gradient hardening limit the tenden-
cy toward segmentation. It should be noted that the material
convection, rate hardening, and strain gradient hardening hin-
der the thermal softening and, hence, the shear relaxation [43].
This leads to a larger energy dissipation for the shear band
evolution and thus retards the emergence of discontinuously
segmented chip flow.

5 Conclusions

In conclusion, orthogonal cutting experiments were per-
formed on Ti-6Al-4V over a very wide range of cutting
speeds, from 0.05 to 210 m/s. The transitions of chip flow
pattern from continuously smooth to serrated and further to
discontinuously segmented with increasing cutting speed
were observed. Examination of the evolutions of the micro-
structures shows clearly that the serrated chip flow can be
attributed to the repeated catastrophic shear banding occurred
in the PSZ. When the shear band is fully matured, shear frac-
ture takes place near the shear band root, and the discontinu-
ously segmented chip flow emerges. We further investigated
the evolution of the shear fracture surfaces of the segmented
chips. It reveals that there exists a ductile-brittle transition of
the dominated fracture mechanism with increasing the cutting
speed to an ultra-high level. More importantly, we developed
the momentum diffusion-based shear band evolution model to
predict the onset of discontinuously segmented chip flow. It is
found that once the energy inputted into the PSZ is large
enough for the shear band to fully develop, the discontinuous-
ly segmented chip flow will be imminent. We compared the

onset criterion with the experimental results, and good agree-
ments were achieved, implying that the onset criterion allows
the prediction of the emergence of discontinuously segmented
chip flow. At last, the influences of the rate hardening and the
material convection on the onset of discontinuously segment-
ed chip flow are further investigated, which shows that both
the material convection and the rate-hardening limit the ten-
dency toward segmentation.
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