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Abstract. The mass sensing superiority of a micro/nanomechanical resonator sensor over conventional mass 
spectrometry has been, or at least, is being firmly established. Because the sensing mechanism of a mechanical resonator 
sensor is the shifts of resonant frequencies, how to link the shifts of resonant frequencies with the material properties of 
an analyte formulates an inverse problem. Besides the analyte/adsorbate mass, many other factors such as position and 
axial force can also cause the shifts of resonant frequencies. The in-situ measurement of the adsorbate position and axial 
force is extremely difficult if not impossible, especially when an adsorbate is as small as a molecule or an atom. Extra 
instruments are also required. In this study, an inverse problem of using three resonant frequencies to determine the mass, 
position and axial force is formulated and solved. The accuracy of the inverse problem solving method is demonstrated 
and how the method can be used in the real application of a nanomechanical resonator is also discussed. Solving the 
inverse problem is helpful to the development and application of mechanical resonator sensor on two things: reducing 
extra experimental equipments and achieving better mass sensing by considering more factors. 
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INTRODUCTION 

 Mass spectrometry is a widely used analytical tool in biology and chemistry, which is also expected to play an 
important role in proteomics [1, 2]. However, whether mass spectrometry can be the mainstay instrument in 
proteomics is questionable [2, 3, 4]. During the application of mass spectrometry, there are three stages: ionization, 
separation and detection [5]. The structural change of protein [3] or damage of fragile biological macromolecules [6] 
caused by ionization is a serious problem in the application of mass spectrometry. Mass spectrometry also has the 
problem of being applied to small and thermostable compounds because of the difficulty of ionization and 
transferring ionized analytes from the condensed phase into the gas phase [2]. On the other hand, the sensing 
mechanism of a mechanical mass resonator is the shifts of resonant frequencies, which can work with the 
electrically neutral analytes. The first two stages of ionization and separation are thus unnecessary for a mechanical 
mass resonator [4]. 
 

MODEL DEVELOPMENT 

When an adsorbate is on a carbon nanotube (CNT)-based resonator with the length of L , the governing equation 
of the resonator which is modeled as a beam is given as follows [7, 8] 
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Where m  is the resonator mass per unit length; oM and ox  are the mass and position of the adsorbate, which is 

modeled as a concentrated mass by the Dirac delta function of   [7, 8]. w is the beam displacement; T is the axial 
load, T > 0 is tension and T  < 0 is compression. D is the beam bending stiffness and D EI  ( E  and I are the 
beam Young’s modulus and the moment of inertia, respectively). 

By introducing /x L  , 4/ ( )EI mL t  and /W w L  [7], Eq. (1) is nondimensionalized as follows 
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Where the dimensionless parameter / ( )oM mL   is the ratio of the adsorbate mass to that of the resonator; 
2 /TL D  is the ratio of the axial load to the beam transverse stiffness; /o ox L  is the adsorbate location. 

When the compressive axial load reaches a critical value, the beam buckles. Eq. (2) is a linear equation, which 

cannot describe the beam vibration in the post-buckling region.  For Eq. (2) to apply, 24   for the clamped-

clamped beam and 2 / 4    for the cantilever beam are required. 

The Galerkin method is an efficient method for the eigenfrequency computation of a beam with small 

concentrated masses40, which assumes the following form for ( , )W    
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where N  is the mode number and ( )ja   is the unknown jth modal amplitude. ( )j  is the jth mode of a 

uniform clamped-clamped beam. Substitute Eq. (3) into Eq. (2), time ( )i  and integrate from 0 to 1, the following 

governing equations are derived 
 0 Mq Kq . (4)  

Here () / 


    and q  is a vector given as 1 2( , , , )T
Na a aq  . M  and K  are the N N  matrices of 

mass and stiffness, respectively, which are given as the following by using both the orthonormality property of 

( )j   and the integration property of the Dirac function [7, 8]: 
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Where ij  is the Kronecker delta function and it is noticed that the presence of the concentrated mass ( ) 

makes the mass matrix non-diagonal; 2
j is the jth (dimensionless) eigenfrequency of a uniform undamped beam 

with no axial load. Clearly, the presence of the axial load ( ) has the direct impact on the stiffness matrix K , 

which also leads to the variation of the resonant frequencies. The first three 2
j  of a clamped-clamped beam are 

given as follows: 
2 2 2 2 2 2

1 1 2 2 3 34.73 22.3733, 7.8532 61.6728, 10.9956 120.9034o o o               (6) 

To find out the resonant frequencies of the beam with the concentrated mass and axial load, ( ) i
j ja b e    

( jb is the unknown constant and   is the resonant frequency) is assumed and substituted into Eq. (4), which leads 

to the following eigenvalue problem 

 2 0 K M . (7) 

To find the eigenfrequency/resonant frequency of  , the adsorbate mass ( ), location ( o ) and axial load ( ) 

are needed. Here up to three resonant frequencies are calculated, 3N  is required. By carefully choosing the lower 

and upper bounds for each resonant frequency, different   is solved one by one by the Newton-Rhaphson method 

[8]. 
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RESULTS AND DISCUSSION 

Now let us present how to use the mechanism to solve the inverse problem. Here the computation example of  = 

0.1, o = 0.3 and  = 10 is given, which results in the following three resonant frequencies as given by Eq. (7) 

 1 =23.5217,   2 =59.5752,    3 =121.8384. (8) 

Tension stiffens the beam and thus increases the resonant frequencies; on the other hand, the adsorbate mass always 
reduces the resonant frequencies. Compared with the three resonant frequencies of  =  = 0 as given in Eq. (6), 

the competition between tension and mass leads to the decrease of the second resonant frequency and the increase of 

the first and third ones. In most case, the eigenfrequencies are solved as a forward problem by supplying , o  and 

  into Eq. (7). However, in the real application of the resonator sensor, the resonant frequencies are the measured 

quantities which, in this computation example, are given in Eq. (8);  , o  and    in general are the unknowns to 

be determined. In order to present a better and graphic illustration on how the inverse problem is solved, we start 

with the simpler case of two variables. In this case,   = 10 is known,  and o  are the two unknowns to be 

determined. Because the original axial load (or surface stress) can be determined during an experimental calibration 
process by measuring the shift of a resonant frequency [9], this inverse problem solving technique for two variables 
can correspondingly be applied to the case that adsorption induces no surface stress. 

 
FIGURE 1.  (a) The variation of the first resonant frequency ( 1 ) as a function of  and o . The level plane is the one with 

the constant of 1 = 23.5217. The intersection of the two planes is marked with a solid curve. Here the axial load is fixed as  = 

10. 
 

Figure 1 presents the variation of the first resonant frequency ( 1 ) as the function of and o . Here   varies 

from 0 to 0.2; o  varies from 0 to 0.5. Because the C-C beam is a symmetric structure, the adsorbate at o  and 1 −

o  results in the same change for any arbitrary resonant frequency. Therefore, only half of the beam span is 

examined here. The level plane is the one with 1 = 23.5217. The intersection of the two planes are marked with a 

solid line, which indicates the combinations of  and o  resulting the same first resonant frequency of 1  = 

23.5217. This solid line also indicates that the combinations are infinite. Figure 2 presents the variation of the 

second resonant frequency ( 2 ) as the function of  and o . The level plane is the one with 2 = 59.5752. Again, 

the intersection of the two planes is the combinations of and o  resulting the same second resonant frequency of 

2 = 59.5752, which is marked a dashed line. Once again, the dashed line indicates that the infinite combinations of 

 and o  resulting the same second resonant frequency of 2  = 59.5752. When  , o  and    are given, each 

eigenfrequency is uniquely determined by Eq. (7) as a forward problem. In comparison, in this two variables case of 

the inverse problem, for a given eigenfrequency, there are infinite combinations of  and o . However, when these 
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two curves obtained in Figs. 1(a) and (b) are projected into the o −  plane, they intersect and the intersection 

point is marked as a circle, which is exactly ( , o )=(0.1, 0.3). Physically, the reason for the two curves to 

intersect is that the mechanism mentioned above:  and o  have different impacts on different resonant frequencies; 

different resonant frequency responds differently to the given  and o . Mathematically, as seen in Eq. (5),  is a 

coefficient and o  is embedded in the function of mode shape in the mass matrix. 

 
FIGURE 2.  The variation of the second resonant frequency ( 2 ) as a function of  and o . The level plane is the one with 

the constant of 2  = 59.5752. The intersection of the two planes is marked with a dashed curve. Here the axial load is fixed as 

  = 10. 
 

SUMMARY 

That the inverse problem can be solved is based on the following two facts: (1) Mass, position and axial load have 
different impact on a given resonant frequency; (2) for given mass, position and axial load, different resonant 
frequency varies differently. The graphic solution procedure for the two-variable case is presented and it can provide 
valuable information to guess the initial values for the Newton-Raphson method in the multiple-variable case. 
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