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As a structure size scales down to the order of a micron or smaller, there can be a significant 
changes in the mechanical properties as compared to its macroscopic ones. The nonlocal theo-
ries were developed to explain those changes, in which several material constants are involved. 
Those material constants are (assumed to be) related with the lattice length, grain size, inclusion 
and defects such as crack, dislocation and void, etc. However, there is still no a clear physical 
picture for those constants. Various experiments have been conducted to determine those mate-
rial constants, which always use several specimens and often result in controversial data. Here 
we propose to use only one specimen and the shifts of its resonant frequencies to determine 
those material constants. The mechanical properties of a submicron structure is very sensitive to 
the defects, which is a main reason for the inconclusive results of the above experiments with 
several specimens. The presence of the material constants can have significant influence on the 
micro/nanostructure resonant frequencies. By measuring the shifts of resonant frequencies for 
one specimen, we determine those material constants by solving an inverse problem. Physically, 
the inverse problem can be solved because the material constants impact on one resonant fre-
quency differently and the shifts of different resonant frequencies are different to one another. 
This inverse problem solving method gives not only a new but also a more reliable approach of 
experimentally determining the material constants. 

 
 

1. Introduction 
The nonlocal effects are due to the discrete and long-ranged nature of inter-atomistic/molecular 

interactions [1-6]. Because of the nonlocal effects, the mechanical behaviours, such as deformation 
and vibration, of nano/micrometer-scaled devices or even macroscopic ones, can significantly devi-
ate from what are predicated by the classical local theories [1-6]. The material constants are the 
parameters determining the nonlocal effects. The full utility of the nonlocal theories hinges on one’s 
ability to determine those intrinsic material constants. So far, there are very few works on determin-
ing the material constants and still no clear physical picture for them [5, 6]. To determine the mate-
rial constants by the shifts of the device resonant frequencies forms an inverse problem [7, 8]. De-
termining the material constants is not only an important and complementary part of the nonlocal 
theories’ development, but also of great help to the applications of nano/micrometer-scaled devices. 
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2. Model development and solution method 
The following governing equation for an Euler-Bernoulli beam with the nonlocal effect is de-

rived as follows [9]: 
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Here E and  are the beam Young’s modulus and density; I ,A  and o are the beam moment of 
inertial, cross-section area and initial axial stress, respectively. w and  are the beam displacement 

and the resonant frequency, respectively. 1l , 2l are two (unknown) length parameters, which de-
termine the nonlocal effects. It is noticed that now the governing equation is six order differential 

equation. When 021  ll , clearly, Eq. (1) recovers the classical 4th order Euler-Bernoulli beam 
vibration equation we often encounter. However, with the presence of these two nonzero parameters, 
the beam vibration can be quite different from the one as predicated by the classic Euler-Bernoulli 
beam theory. As mentioned above, the presence of these two parameters are due to the discrete and 
long-ranged nature of inter-atomistic/molecular interactions. Here the nonlocal effects are embodied 
by these two parameter, which stand out when the specimen size is small. Physically, these two 
parameters are related with the grain size, twin and defects such as dislocation, void etc. So far, 
there is still no a clear physical picture on these two parameters. It is extremely difficult if not im-
possible to derive an equation to link the two parameters with the material properties and defects 
though the nonlocal effects have often been observed in various experiments. 

The basic idea of determining the two parameters is to solve the inverse problem. Eq. (1) de-
scribes a continuous system with infinite resonant frequencies, which are also measurable in exper-
iments. Usually, the resonant frequencies are computed as a forward/direct problem after the pa-

rameters including 1l , 2l are supplied. As for inverse problem, the resonant frequencies are meas-

urable and known quantities; 1l , 2l are unknown. In logic terms, resonant frequencies are the re-

sults and 1l , 2l are the causes. To demonstrate this inverse problem solving process, we give the 
example of a similar scenario: solving the inverse problem of the force and mass sensing in a reso-
nantor [7]. In this scenario, there are actually three unknown parameters: the adsorbate mass, loca-
tion and induced force. To make it simple and presentable in figure, here we reduce the three pa-
rameters to two:  the adsorbate mass and location. The induced force is a fixed/given parameter. In 
Fig. 1, 1 and 2 are the dimensionless first and second resonant frequencies of the beam; α and 

o are the dimensionless adsorbate mass and location; β is the dimensionless induced force, which is 
fixed as β=10 for simplicity and illustration reason. To test the method of using the resonant fre-
quencies to solve the inverse, we firstly set (α, o  ) = (0.1, 0.3), which then leads to 1 = 23.5217 

and 2  = 59.5752.  In the inverse problem, 1 and 2  are the known quantities and α, o are un-

known. In Fig.1, the combinations of α and o  on the first two resonant frequencies are presented. 
As in both Fig. 1 (a) and (b), the intersections are both curves, which physically means that for a 
given resonant frequency, there are infinite combinations of α and o . Therefore, one resonant fre-
quency is not sufficient to determine two parameters. 
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(a)                                                      (b) 

Figure 1: (a) The variation of the first resonant frequency ( 1 ) as a function of α and o . The level plane is 

the one with the constant of 1 = 23.5217. The intersection of the two planes is marked with a solid curve. 
Here, the axial load is fixed as β = 10. 

(b) The variation of the second resonant frequency ( 2 ) as a function of α and o . The level plane is the 

one with the constant of 2  = 59.5752. The intersection of the two planes is marked with a dashed curve. 
Here, the axial load is fixed as β = 10. 

 

 

Figure 2: The projections of the two intersection curves obtained in Fig. 1 (a) and (b) into the α - o  plane. 

The intersection of the two curves is marked with a circle, which corresponds to (α, o  ) = (0.1, 0.3) exactly. 

However, if the two curves obtained in Fig. 1 are projected into the α - o plane, they intersect. As 

shown in Fig. 2, the intersection is marked with a circle, which corresponds to (α, o  ) = (0.1, 0.3) 
exactly. The inverse problem is thus solved. In the above example, the inverse problem can be 
solved because of the following two physical mechanisms: (1) different parameters have different 
impacts on one resonant frequency; (2) one parameter has different impacts on different resonant 
frequencies. Although there are some difference between the governing equations of the above sce-
nario of adsorbate and the nonlocal model, the above two mechanisms are believed to be still appli-
cable. As seen in Eq. (1), the two parameters appear differently in the equation, which implies dif-
ferent physical impacts on resonant frequencies. 
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3. Summary  
Using the resonant frequencies to determine the unknown parameters in the governing equation 

of a beam structure is demonstrated. Because there are infinite resonant frequencies in a continuous 
system, we can provide N resonant frequencies for N unknown parameters. However, one thing we 
should keep in mind is that most inverse problems are not well-posed problems. In the above exam-
ple, the inverse problem of two parameters is solved by two resonant frequencies, which may not be 
the general case. In some cases, resonant frequencies more than two are required to solve the in-
verse problem of two parameters.  
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