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ABSTRACT 
Based on Navier-Stokes equations and structural and flight dynamic equations of motion, 

dynamic responses in vertical discrete gust flow perturbation are investigated for a supersonic 
transport model. A tightly coupled method was developed by the subiteration between 
aerodynamic equations and dynamic equations of motion. First, under the assumption of 
rigid-body and single freedom of motion in the vertical plunging, the results of 
direct-coupling method are compared with the results of quasi-steady model method. Then 
gust responses for the one-minus-cosine gust profile are analyzed with two freedoms of 
motion in plunging and pitching for the rigid and flexible airplane configurations.  

 
1. Introduction 

 
Gust load is one of the important dynamic loads 

considered in aircraft structure design. Due to its 
multidisciplinary nature with aerodynamics, flight 
dynamics, aeroelasticity and atmospheric turbulence, up 
to now, only the doublet-lattice, unsteady linear 
aerodynamic code (DLM) coupled with the equation of 
motion of flexible vehicle was used for the gust response 
analysis [1-3].  

Gusts in nature tend to random. The early design 
methods for gust loads were based on a single discrete 
gust having one-minus-cosine velocity profile. Recently 
the statistical discrete gust (SDG) method and the power 
spectral density (PSD) method [4] in the frequency 
domain are used to define the gust loads, however, which 
are still difficult to combine with the modern 
Navier-Stokes numerical method.  

In the paper, the fully implicit multiblock Navier- 
Stokes aeroelastic solver implemented by the authors [5], 
coupled with the flight and structural dynamic equations 
of motion, has been developed to simulate gust dynamic 
responses for the supersonic transport (SST) designed by 
National Aerospace Laboratory of Japan (NAL) [6]. To 
study the effects of dynamic response due to flow 
perturbation and airplane motion, only the consideration 

of vertical plunging motion, a comparative study was 
first done for the rigid airplane in the harmonic flow 
perturbation with the direct-coupling method and the 
quasi-steady model method. Then the gust responses in a 
one-minus-cosine gust velocity profile are analyzed with 
two freedoms of motion in plunging and pitching for the 
rigid and flexible airplane models. 

 
2. Aerodynamic Equations and Numerical Method 

 
Aerodynamic governing equations are the unsteady, 

three-dimensional thin-layer Navier-Stokes equations in 
strong conservation law form, which can be written in 
curvilinear coordinates as 

GCLvt SHHGFQ +∂=∂+∂+∂+∂ ζζηξ
ˆ        (1) 

The source term is obtained from the geometric 
conservation for a moving mesh [7]. In the formulation, 
all variables are normalized by the appropriate 
combination of freestream density, freestream velocity 
and mean aerodynamic chord length. The viscosity 
coefficient

GCLS

µ  in  is computed as the sum of laminar 
and turbulent viscosity coefficients, which are evaluated 
by the Sutherland’s law and Baldwin-Lomax model [8]. 

vH

LU-SGS method [9], employing a Newton-like 
subiteration, is used for solving Eq. 1. Second order 
temporal accuracy is obtained by utilizing three-point 
backward difference in the subiteration procedure. The 
numerical algorithm can be deduced as 
 
1Present position: Professor, Institute of Mechanics, Chinese Academy 
of Sciences, 100080 Beijing, China. 
2Professor, Institute of Fluid Science, Associate Fellow AIAA 
Copyright 2003 by the American Institute of Aeronautics and 
Astronautics, Inc. All rights reserved. 

 



))}((

)21()1{( 1

1

p
v

pppp
GCL

p

nnpi

HHGFtJStQJ

QQQ

QULD

−++∆+∆−

++−+−=

∆
−

−

ζηξ δδδ

φφφφ   (2) 

where 

)( 1,,,1,,,1
+

−
+
−

+
− ++∆+= kjikjikji

i CBAtJIL φρ  

ID ρ=  

)( 1,,,1,,,1
−

+
−
+

−
+ ++∆−= kjikjikji

i CBAtJIU φρ  

and 

))()()((1 CBAtJi ρρρφρ ++∆+=  

)1/(1 φφ +=i  

pp QQQ −=∆ +1  

Here 5.0=φ and is the subiteration 

approximation to . As , . The 

deduced subiteration scheme reverts to the standard 
first-order LU-SGS scheme for 

pQ

1+nQ ∞→p 1+→ np QQ

0=φ  and 1=p .  
The inviscid terms in Eq. 1 are approximated by the 

modified third-order upwind HLLEW scheme of 
Obayashi et al [10]. For the isentropic flow, the scheme 
results in the standard upwind-biased flux-difference 
splitting scheme of Roe, and as the jump in entropy 
becomes large in the flow, the scheme turns into the 
standard HLLE scheme. Thin-layer viscous term in Eq. 1 
is discretized by second-order central difference.  

For multiblock-grid application, the Navier-Stokes 
equations are solved in each block separately. To 
calculate the convective and viscous fluxes in the block 
boundary, data communication is performed through 
two-level halo cells. The detail about the multiblock 
Navier-Stokes solver can be found in references [5] [11]. 
 

3. Equations of Motion and Numerical Method 
 

In the present study of dynamic response, the airplane 
is permitted freedom in vertical plunging and pitching, 
and the following assumptions are made, 

1. The disturbed motion is symmetrical with respect 
to the airplane’s longitudinal plane of symmetry. 

2. The airplane is initially in horizontal flight at 
cruise velocity. 

3. The vertical gust perturbation is normal to the 
flight path, and is uniform in the spanwise 
direction. 

4. For the flexible analyses, only the structural 
deformation of the wing is considered and its 
deformation is approximated to the elastic plate 
model. 

 
3.1 Direct-coupling method 

With the above assumptions, the equilibriums of total 
force along the z-axis and total pitching moment about 
the y-axis are: 

∫∫ ∫∫∆=
S S

dxdytyxpdxdytyxw ),,(),,( ρ&&     (3a) 

∫∫ ∫∫∆=
S S

xdxdytyxpxdxdytyxw ),,(),,( ρ&&   (3b) 

For the equilibrium of an element, we obtain: 
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In the system of equations, the unknown quantity 
is , which represents the disturbed displacement 
of elastic airplane from its original equilibrium state. The 
pressure change of 

),,( tyxw

),,( tyxp∆ based on cruise condition 
is calculated by the aerodynamic equations, which 
depends on the instantaneous values of displacement, 
velocity, acceleration of airplane, as well as the past 
history of the motion. 
  Introducing natural modes with the Rayleigh-Ritz 
method [12], we have, 
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where ),( yxiφ is normalized natural mode shapes of the 
airplane including rigid modes and  generalized 
displacement. Then Equations (3a-3c) can be deduced to 
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The first equation in Eq. 5 is the equation of motion in 
vertical plunging. In the equation, the generalized mass 

 represents the mass of airplane, and  the 
plunging displacement. Similarly, the second equation is 
the equation of motion in pitching. ,  represent 
the pitching moment of inertia and angular displacement 
in pitching, respectively. 

1M 1q

2M 2q

iω , iς  are the natural 
frequency of structural modes and the damping ratio in 
the th mode, which are 0 for the first two equations. i
  The subiteration method can also be used for Eq. 5. 
The resulting numerical scheme is  

            (6) 
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As , a full implicit second-order temporal 
accuracy scheme for the numerical simulation of 
dynamic response is formed by the coupling solutions of 
Eqs. 2 and 6. Numerical experiments [13] indicate, in 
general, the calculated results are nearly unchangeable 
as . In the following calculation, the number of 
subiteration is set to 3. 

∞→p

3≥p

If the airplane is assumed as the rigid body, then only 
the first two equations of Eq. 5 coupled with the 
aerodynamic equations are needed. If the pitching 
motion can be further neglected, the dynamic response is 
only considered in the motion of vertical plunging. For 
the simpler case, the quasi-steady model method can be 
introduced as follows. 

    
3.2 Quasi-steady model method 

If the time lag in the lift increase is neglected and the 
incremental lift is considered only due to the change of 
angle of attack, then the model equation of motion can 
be written simply as,   
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where represents the vertical perturbation velocity 

profile. The normalized equation can be written as:   
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αLC  is the derivative of lift coefficient which can be 
determined by a steady flow calculation or wind tunnel 
experiment. Through the comparison of this method with 
the direct-coupling method, the dynamic responses under 
the quasi-steady assumption can be studied.   
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Fig. 1 SST configuration  
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Fig. 2 Multiblock grid with 30 blocks for SST  
 

4. Results and Discussions 
 

Dynamic responses in vertical flow perturbation are 
studied for the SST experimental model [6] shown in Fig. 
1. For the experimental aircraft, the fuselage length is 
11.5m, the mean aerodynamic chord 2.754m, the 
reference area , the weight 1950kg, the 
center of gravity from the nose of the airplane 6.05266m 

and the pitching moment of inertia .  

212.10 mS =

210632kgmI yy =



The design cruise point is at , 0.2=∞M °= 2α and 

, and the flight altitude 15,000m. The 
aircraft is initially assumed at cruise flight, and then 
encounters a gust turbulence atmosphere. So the 
calculation of gust dynamic response needs to start from 
the cruise steady flowfield. 
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 Fig. 3 The comparison of the predicted lift, drag 
and pitching moment coefficients with 
experimental data 

 
The H-H type multiblock grid with 30 blocks was 

generated for the SST configuration shown in Fig. 2. The 
comparison of the predicted coefficients of lift, drag and 
pitching moment with the experimental data of wind 
tunnel is depicted in Fig. 3, which agrees each other very 
well. The cruise lift coefficient at cruise condition of 

, 0.2=∞M °= 2α is predicted as , which 
is in correspondence with the experimental value of 

0.110. For the quasi-steady model equation of motion, 
the derivative of lift coefficient needs to be known. 
Based on the lift curve, the derivative can be 
approximately calculated as . 

112.00 =LC

15.2=αLC
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Fig. 4 Time histories of vertical displacement, change 
of angle of attack and incremental load factor for SST 
at 0.2=∞M , °= 2α  
 
4.1 Supersonic dynamic response at 0.2=∞M  

As the aircraft is cruising at , 0.2=∞M °= 2α , a 
vertical harmonic flow perturbation is added to the 
aircraft with 

       )sin()( 0 twtw ω=                 (9) 
The amplitude of the flow perturbation is set to be as 

sftw /500 = and the reduced frequency 
5.12// πω == ∞Vck , which are corresponding to the 



design cruise gust speed (the effect of altitude is not 
considered) and the frequency of one-minus-cosine 
discrete gust profile [4].  
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Fig. 5 Time histories of vertical displacement, angle of 
attack and incremental load factor for SST at 

, 9.0=∞M °= 14.2α  
 

The airplane is assumed as rigid body and only the 
motion in vertical plunging is considered. Dynamic 
responses are calculated with the above two methods. 
For the solution of the equations of motion, the initial 
conditions are assumed as . Fig. 4 
shows the time histories of vertical displacement , 

change of angle of attack due to motion

0 ,0 00 == == tt zz &

)(tz

∞≈∆ Vtzt /)()( &α  
and incremental load factor . For the 
comparison, the dynamic responses of ‘quasi-steady 
model’ method after the translation of lag time 

gtztn /)()( &&=∆

93.60 =t  are also depicted in the figure. If the time lag 
of the ‘quasi-steady model’ method can be ignored, the 
results of the two methods show nearly the same. In fact, 
the incremental load factor is equivalent to the lift 
coefficient. It indicates, in this case, the dynamic lift 
increase due to airplane motion is small and can be 
neglected.  

In the above comparison, although the two methods 
can be used for dynamic response analyses, the 
computational expenses are completely different. 
Comparing the direct-coupling method, the time cost of 
the quasi-steady method can be ignored, but the method 
cannot provide any information of flowfield and the 
corresponding load distribution, and the lag time is 
unknown before the direct-coupling method is 
implemented.  
 
4.2 Transonic dynamic response at 9.0=∞M  

The SST experimental model is designed for cruise 
flight at 0.2=∞M , °= 2α and the flight altitude of 
15,000m. A future SST is expected to cruise at a 
supersonic speed only over the sea and to cruise at a 
transonic speed over the land. Due to the strong 
nonlinearity of transonic flows, the transonic dynamic 
response may be interested. Therefore, it is assumed that 
the experimental airplane may cruise at 9.0=∞M  and 
the flight altitude of 9,000m. At the cruise flight, due to 
the equilibrium of various forces and moments, the 
cruise lift should be equal to the total weight of airplane. 
From the lift curve at , the cruise angle of 
attack is estimated as 

9.0=∞M
°= 14.2α . The numerical results 

show the pitching moment about the gravity center of the 
airplane still exists for this case. In fact, to guarantee the 
cruise flight of the airplane at transonic Mach number, 
the high-lift-system and the empennage deflection should 
be used to keep the equilibrium of forces and moments. 
In the paper, only the same full aircraft of the above 
supersonic dynamic analyses is used for the transonic 
dynamic analyses.  

The time histories of dynamic responses are shown in 
Fig. 5, in which the dynamic responses of the 



‘quasi-steady model’ method after the translation of lag 
time  are also depicted in the figure. Even no 
consideration of time lag, comparing direct-coupling 
method, the quasi-steady method predicts the slower 
growth of displacement with time and the smaller 
maximum load incremental factor. It indicates the 
quasi-steady method is unsuitable for the analyses of 
transonic dynamic responses. In other words, for 
transonic gust response analyses, the effect of pitching 
motion should be considered. The direct-coupling 
method can treat such a problem, while the quasi-steady 
model method is only suitable for analyses of single 
freedom motion. 
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Fig. 6 One-minus-cosine gust velocity profile 
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Fig. 7 Time histories of the coefficients of lift, drag, 
pitching moment and bending moment for rigid and 
flexible configurations at , 9.0=∞M °= 14.2α  
 
4.3 Dynamic response for one-minus-cosine gust 

The early design methods for gust loads were based on 
the discrete gust having one-minus-cosine velocity 
profile, namely, 
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               (13) 

0W  is the design cruise gust velocity, which is specified 
as 50ft/s at the altitudes from sea level to 20,000ft and 
then decreases linearly as the functions of altitudes [4]. 
In the present calculation of cruise altitude of 9,000 m, 

 is assumed as 50ft/s. The gust gradient distance H is 
taken as the 12.5 times mean geometric chord lengths 
based on the experimental evidence [4]. Before and after 
the discrete gust pulse, there is no gust flow perturbation, 
which velocity profile is shown in Fig. 6. In the 
following, we need to study how the airplane moves in 
plunging and pitching, how the loads change and how 
the structure deforms under the discrete gust profile.  
For the solution of structural deformation, the data of the 
structural oscillating natural modes and frequencies 
based on the wind tunnel model are provided by the 
NAL. In the paper, total four cases named as 
‘Rigid+Plung’, ‘Flexible+Plung’ ‘Rigid+Plung+Pitch’, 
and ‘Flexible+Plung+Pitch’ are simulated. The fourth 
case is the most complicated case, which need to 
simulate the motion of the aircraft in plunging and 
pitching with its structural deformation.  

0W

The time histories of the load coefficients of lift, drag, 
pitching moment and bending moment are shown in Fig. 
7, which indicates the loads are nearly unchangeable due 
to the consideration of structural deformation because of 
the strong structural rigidity of the present SST model 
airplane. When the airplane flights through the gust pulse, 
forces and moments also experience a pulse, but a little 
large maximum load is predicted without the 
consideration of the motion in pitching. After the pulse 
response, the loads tend to recover the equilibrium state 
or emerge to oscillate in decay for the methods with and 
without the consideration of the motion in pitching.  

The displacement in plunging and the angular 
displacement in pitch are depicted in Fig. 8. Without the 
consideration of motion in pitching, the displacement in 
plunging increases very quickly with the time, which is 
obviously contrary to the fact. So the method neglected 
pitching motion cannot simulate correctly the response 
motion of the aircraft. Under the consideration of 
airplane motion in plunging and pitching, the responses 
of the airplane appear two freedoms of oscillation. As the 

airplane plunges up, the airplane pitches down 
simultaneously, which can be used for the explanation of 
the change of loads in Fig. 7, namely due to the decrease 
of angle of attack, the lift, drag and bending moments 
increase and pitching moment decreases. On the contrary, 
when the airplane plunges down and pitches up, due to 
the decrease of angle of attack, the lift, drag and bending 
moment decrease and the pitching moment increases. 
The maximum amplitudes of the plunging and pitching 
oscillation are about 0.1 times mean aerodynamic chord 
lengths and 1.8 degree, respectively. The numerical 
results also show that the pitching oscillation decays 
much faster than that of plunging oscillation.  
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Fig. 8 Time histories of the vertical plunging 
displacement and angular displacement in pitch for 
rigid and flexible configurations at 9.0=∞M , 

°= 14.2α  
 
Due to the structural rigidity of the SST model 

airplane, the loads and the response motions in plunging 
and pitching are nearly no differences for rigid and  
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Fig. 9 Time histories of structural deformation of the 
first six modes for the flexible configuration with and 
without the pitching motion at , 9.0=∞M °= 14.2α  
 
flexible analyses. Fig. 9 gives the time histories of 
structural deformation of the generalized displacements 
with and without the consideration of the motion in 
pitching. For the airplane of rigidity, although the 
deformation is smaller, the airplane experiences a larger 
structural deformation in the gust process, which has the 
same changeable tendency of the loads in Fig. 7. After 
the pulse response, structural deformation oscillates to 
revert the original equilibrium state without the 
consideration of the motion in pitching, and with the 
consideration of two freedoms of motion, the structural 
deformation oscillates in much more complicated form, 
which couples the natural structural oscillation of high 
frequency and the airplane motion of long period in 
plunging and pitching. Finally, the dynamic responses of 
the first two modes with and without the consideration of 
pitching motion are shown in Fig. 10. Through the 
comparison, we know both methods can simulate 

correctly the structural deformation in the process of gust 
pulse, but complete different process of structural 
deformation after the gust pulse.   
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Fig. 10 The comparison of structural deformation of 
the first two modes for the flexible configuration with 
and without the pitching motion at 9.0=∞M , 

°= 14.2α  
 

Conclusion 
  In the paper, a solver for the analyses of discrete gust 
response has been developed through the coupling of 
Navier-Stokes equations and structural and flight 
dynamic equations of motion. The gust responses for the 
SST model have been analyzed with the resulting solver. 
Numerical results indicate the loads and structural 
deformation experience a larger pulse change in the 
discrete gust encounter, then the airplane moves in two 
degrees of freedoms in plunging and pitching oscillations. 
Without the consideration of the motion in pitching, the 
time histories of the airplane motion cannot be simulated 



correctly. Due to the stronger rigidity for the present SST 
structural model, there is nearly no any influence for the 
loads and motions of the aircraft due to the consideration 
of structural deformation.  
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