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ABSTRACT 
 Using analytical and finite element modeling, we study conical indentation in linear 
viscoelastic solids and examine the relationship between initial unloading slope, contact depth, 
and viscoelastic properties. We will then discuss whether the Oliver-Pharr method for 
determining contact depth, originally proposed for indentation in elastic and elastic-plastic 
solids, is applicable to indentation in viscoelastic solids. 
 
1. INTRODUCTION 

Instrumented indentation is playing an increasing role in the study of small-scale 
mechanical behavior of  “soft” matters, such as polymers, composites, biomaterials, and food 
products. Many of these materials exhibit viscoelastic behavior, especially at elevated 
temperatures. Modeling of indentation into viscoelastic solids thus forms the basis for analyzing 
indentation experiments in these materials. Theoretical studies of contacting linear viscoelastic 
bodies became active since the mid 1950s by the work of Lee [1], Radok [2], Lee and Radok [3], 
Hunter [4], Gramham [5, 6], Yang [7], and Ting [8, 9]. In recent years, a number of authors have 
extended the early work to the analysis of indentation measurements [10-15].  In this paper, we 
examine, through analytical and finite element modeling, the relationship between initial 
unloading slope, contact depth, and viscoelastic properties. We will then discuss whether the 
commonly used Oliver-Pharr method [16, 17] is applicable to indentation in viscoelastic solids.  

 
2. ANALYTICAL RESULTS 
 We consider a rigid, smooth, and frictionless conical indenter with half-angle θ  
indenting a viscoelastic solid that can be described by the constitutive relationships between 
deviatoric stress and strain, ijs  and ijd , and between dilatational stress and strain, iiσ  and iiε , as: 
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where )(tG  is the stress relaxation modulus in shear and )(tK  is the hydrostatic stress relaxation 
modulus. The time dependent Young’s modulus and Poisson’s ratio are then given by 

[ ] [ ])()(3/)()(9)( tGtKtGtKtE +=  and [ ] 1)(2/)()( −= tGtEtν , respectively. In this paper, we 

further assume that Poisson’s ratio is time independent, which is possible if ( )tK  and ( )tG  have 
the same time dependence. Under these assumptions, the relationship between load, )(tF , and 

displacement, ( )th , are given by [18]: 
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The load-displacement relationship can therefore be obtained if the viscoelastic properties of 
materials, )(tG  and ν , are known. Conversely, the viscoelastic properties may be obtained from 
measured )(tF  vs. )(th  relations by solving an integral equation. Eq. (2) reduces to the well-
known equation for conical indentation into purely elastic solids [19], 
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where G  and ν are the time-independent shear modulus and Poisson’s ratio, respectively.  
Eq. (2) is a special case of a more general expression derived first by Graham [5] and 

Ting [8].  They showed that Eq. (2) is valid for loading where the contact area is a monotonically 
increasing function of time. Under the same condition, the ratio of contact depth to indenter 
displacement is the same as that in the purely elastic case [5, 8],   
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The equations for unloading where the contact area decreases monotonically have also 
been derived [5, 8], though they are considerably more complicated. As a result, a number of 
authors have proposed methods for deducing ( )tG  from indentation loading curves using Eq. (2) 
without using the information contained in the indentation unloading curves [18]. However, we 
have recently shown [18] that Eqs. (2) and (4) can be used to evaluate the initial unloading slope 
of unloading curves.  Suppose unloading takes place at ttt m ∆+=  with a constant unloading 

rate of 0/ vdtdh
mt

−=+ , we have, using Eqs. (2) and (4) for ttt m ∆+≤≤0  and 0→∆t ,  
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Here, the use of Eq. (2) for analyzing initial unloading slope may be justified because the contact 
area has not yet decreased as .0→∆t  The second term on the right-hand side of Eq. (5) is a 
function of loading history. When the second term is negligible compared to the first term, which 
can be achieved by using fast unloading (i.e., large 0v ), the relationship between unloading slope 
and contact area, becomes identical to that for purely elastic contacts [16,19],  
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where ( )2tanθπ chA =  is the contact area at time, mt , when unloading takes place from mh .    
Eq. (5) suggests that the initial unloading slopes converge when the unloading rate is sufficiently 
fast. Once this limiting case is reached, Eq. (6) can be used to determine the “instantaneous” 
moduli, ( )ν−1/)0(G  or ( )21/)0( ν−E , provided that the contact depth, ch  or area, A , is known 

as a function of )( mm thh = . The latter condition is provided by Eq. (4). 
The most widely used method for estimating the contact depth or area is the procedure 

proposed by Oliver and Pharr [16, 17]. Based on the results of Sneddon [19] on the shape of the 
surface outside the area of elastic contacts for an indenter of conical and paraboloid of 
revolution, Oliver and Pharr developed an expression for, ch , at the indenter displacement, mh , 

m

m
mc dhdF

F
hh

)/(
ξ−= ,                                                        (7) 

R11.2.2



 

where mF  and mdhdF )/(  are the respective load and the initial slope of the unloading curve at 

the indenter displacement depth, mh . The numerical value of ξ  is ( )( )2/2 −ππ  for conical 
indenter. Although Eq. (7) is derived from solutions to elastic contact problems, it has been used 
to estimate contact depth for indentation in elastic-plastic solids [16, 17] and viscoelastic solids 
[20]. In the following, we examine the conditions for using Eq. (6) and the applicability of Eq. 
(7) by analyzing the complete loading-unloading curves and contact depths.  
 
3. NUMERICAL RESULTS 
 We consider a frictionless, rigid conical indenter of half angle 3.70=θ  degrees indenting 
an isotropic linear viscoelastic solid. A three-parameter “standard” linear viscoelastic model is 
used to describe the shear and hydrostatic relaxation modulus (see Fig. 1): 
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where the relaxation time ( )21/ GGs += ητ . Various parameters are given in Table 1.  

 
 
 
 
 
 
 
 
 
 
 

    Table 1. Parameters of a three-parameter linear viscoelastic model used for the calculations. 
 
The parameters are chosen such that Poisson’s ratio is time independent, though both 

( )tG  and ( )tK  are time dependent. Specifically, their values at 0=t  and ∞=t  are as follows: 
 MPa60.234)0( =G  and  MPa23.23)( =∞G ; MPa 62.687)0( =K  and MPa 08.68)( =∞K ; and 

4833.0=ν . The parameters of this fictitious model solid are used for illustration purposes. 
Because of linearity, the results can be scaled to represent other materials of the same general 
type when the dimensionless parameters, such as 21 / GG , 21 / KK , 11 / KG , and st τ/ , are equal. 
Finite element calculations were carried out using the classical isotropic linear viscoelastic model 
implemented in ABAQUS [21]. The finite element mesh is the same as that used in Ref. [22].  

G1(MPa) G2(MPa) K1(MPa) K2(MPa) τs(sec) 
234.60  25.78  687.62  75.56 0.99 
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G2

η
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η

Fig. 1. A three-parameter “standard” model for linear viscoelastic solids. 
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 For the constant indentation displacement rate profiles given in Figure 2a, the 
corresponding loading-unloading curves from finite element calculations are shown in Figure 2b.  
Also shown in Fig. 2b are the initial unloading slopes. These examples clearly show that, for the 
same loading history, the initial unloading slopes converge when unloading rate is sufficiently 
fast, in agreement with Eq. (5). In fact, the complete unloading curve converges to one limiting 
case as the unloading rate increases. Consequently, we may define this unloading curve as the 
“converged” unloading curve for a given loading history.   

 
 
 
 
  
 

The contact depth, ch , and contact area, A , are also obtained from finite element 
calculations.  The finite element results show that there is a small correction to Eq. (6),  
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where 02.005.1 ±=β . The same β  correction factor has also been seen in the modeling of 
indentation in purely elastic solids and in elastic-plastic solids. The origin of this correction 
factor has been discussed previously [17, 18].  From finite element calculations, we found that 

001.0658.0/ ±≈hhc , which is larger than 636.0/2 ≈π  predicted by Eq. (4). This suggests that 
Eq. (4) needs to be slightly modified to become,  

π
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where 001.0034.1 ±=α . 
 Additional finite element calculations were carried out using constant indentation 
displacement rate profiles given in Fig. 3a. The loading curves in Fig. 3b show that the force 
required to reach a given indentation depth increases with the loading rate, consistent with the 
expected behavior of viscoelastic solids. The unloading rates chosen in the calculations are 
sufficiently fast so that they generate the corresponding converged unloading curves. 
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Fig. 2. Displacement-time profiles (a) and the calculated loading-unloading curves (b) for 
the same loading rate and three different unloading rates. The tangent lines with initial 
unloading slopes are also shown (b). The loading-unloading curves are labeled by the time 
duration of unloading. 
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Furthermore, finite element calculations show that the contact depth, ch , is the same for all three 

cases shown in Fig. 3b, as expected from Eq. (4) or Eq. (10) since mh  is the same. According to 
Eq. (9), therefore, the unloading slopes are the same, which is evident from Fig. 3b. These finite 
element results further validate Eqs. (9) and (10).  
 

 
 
 
 

Fig. 3. Displacement-time profiles (a) and the calculated loading-unloading curves (b) for 
three different loading rates and sufficiently fast unloading rates. The tangent lines with 
initial unloading slopes are also shown (b). The loading-unloading curves are labeled by 
the time duration of loading. 
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On the other hand, Figure 3b demonstrates that the Oliver-Pharr procedure for estimating 
the contact depth, specifically Eq. (7), is not applicable to indentation in viscoelastic solids. This 
can be seen by the fact that Eq. (7) would have predicted different contact depths, ch , since mF  

is different while mh  and ( )mdhdF /  are the same for the three cases, contradicting the fact that 

ch  is the same.  This observation is not surprising since Eq. (7) was derived from Eq. (6) which 
is only valid for conical indentation in purely elastic solids.  
 
4. CONCLUSIONS 
  We have found that (1) a relationship, Eq. (9), between initial unloading slope, contact 
depth, and the instantaneous modulus for sufficiently high rate of unloading; (2) a relationship 
between contact depth and indenter displacement, Eq. (10); and (3) the Oliver-Pharr method for 
estimating the contact depth, Eq. (7), is not applicable to indentation in viscoelastic solids. 
Although these conclusions are based on the analysis of constant displacement rate loading 
conditions, the same conclusions hold for other loading conditions, such as constant loading-rate 
and constant indentation strain rate conditions.  
 
ACKNOWLEDGEMENT 
 The authors would like to thank Wangyang Ni, Mike Lukitsch, Yue Qi, Tom Perry, and 
Wes Capehart, Lou Hector, and Mark W. Verbrugge for valuable discussions. C.-M. Cheng 
would like to acknowledge partial support from NSF of China, Project No.10372101. 
 
REFERENCES 
1. E. H. Lee, Quarterly Appl. Math. 13 (1955) 183.  
2. J. R. M. Radok, Quarterly Appl. Math. 15 (1957) 198. 
3. E. H. Lee, J. R. M. Radok, J. Appl. Mech. 27 (1960) 438. 
4. S. C. Hunter, J. Mech. Phys. Solids 8 (1960) 219.  
5. G. A. C. Graham, Int. J. Engng. Sci. 3 (1965) 27.  
6. G. A. C. Graham, Int. J. Engng. Sci. 5 (1967) 495.  
7. W. H. Yang, J. Appl. Mech. 33 (1966) 395.   
8. T. C. T. Ting, J. Appl. Mech. 33 (1966) 845.  
9. T. C. T. Ting, J. Appl. Mech. 35 (1968) 248. 
10. L. Cheng, X. Xia, W. Yu, L. E. Scriven, W. W. Gerberich, J. Polymer Science: Part B:  
Polymer Physics 38 (2001) 10.  
11. P.-L. Larrson, S. Carlsson, Polymer Testing 17 (1998) 49.  
12. S. Shimizu, T. Yanagimoto, M. Sakai, J. Mat. Res. 14 (1999) 4075.  
13. M. Sakai, S. Shimizu, J. Non-cryst. Solids 282 (2001) 236.  
14. M. Sakai, Phil. Mag. A82 (2002) 1841.  
15. M. L. Oyen, R. F. Cook, J. Mat. Res. 18 (2003) 139. 
16 W. C. Oliver, G. M. Pharr, J. Mater. Res. 7 (1992) 1564. 

17. W .C. Oliver, G.M. Pharr, J. Mat. Res. 19 (2004) 3. 

18. Y.-T. Cheng and C.-M. Cheng,  Mat. Sci. Eng. Reports: A Review Journal R44 (2004) 91. 
19. I. N. Sneddon, Int. J. Eng. Sci. 3 (1965) 47. 
20. For a review see: M. R. VanLandingham, J. Res. Nat. Inst. Stand. Tech. 108 (2003) 249. 
21. HKS, Inc. (Pawtucket, Rhode Island 02860, USA). 

22. W. Ni, Y.-T. Cheng, C.-M. Cheng, D. S. Grummon, J. Mat. Res. 19 (2004) 149. 

R11.2.6


