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ABSTRACT  
 

Fundamental relations of surface instability for micro-scale multilayer thin film systems are 
derived based on the Hill and Hutchinson bifurcation theory and the volume average integral. In 
the present relations, a size effect is considered through generalizing the plastic hardening 
modulus to include the strain gradient hardening effects. By using the model, firstly, the 
parameter-controlled instability region is divided and analyzed, secondly, the surface instability 
of the multilayer thin films are analyzed. In the surface instability analysis, several kinds of 
failure band formations are obtained, such as the kink bands and the compressive buckling bands 
in vertical direction and in inclined direction. Moreover, the failure mechanism of the multilayer 
thin film system due to surface instability is used to interpret the microstructure features of the 
surface-nanocrystallization materials. 
 
INTRODUCTION  
 

The micro-scale multilayer thin film system (MMTFS), with its special characteristics, is 
relevant to many advanced materials applications and widely used in the MEMS- as well as 
surface- and interfacial-engineering areas. Fundamental roles in the MEMS and in the advanced 
materials played by the MMTFS can be described as: protecting, connecting, strengthening, 
toughening, as well as some function devices, etc. [1,2]. Typical failure modes of MMTFS 
include interfacial cracking, thin film cracking perpendicular to the interface, and failure 
initiating at the surface, etc. The last failure formation is caused by material surface instability. It 
is well known that due to the residual compressive stress related to film deposition, or direct 
external compression, surface instability occurs as the main failure mode. In this case, the 
surface kink bands and damage bands are formed near the material surface. Additionally, the 
surface instability is accompanied by some kinds of failure patterns appearing on the material 
surface, such as surface layer thin film delamination, buckling, damaging, etc. The surface 
instability is as a major failure formation not only for a multilayer thin film material, but also for 
a uniform or a single crystal material, such as the damage bands within the surface layer of 
nanocrystalline Al [3], as shown in Figures 1(a) and (b).  

In order to investigate the failure mechanism related to surface instability, in the present 
research, a theoretical model considering strain gradient effect is presented and developed based 
on the Hill and Hill-Hutchinson’s bifurcation theory [4-6]. The surface instability description for 
the MMTFS is formulated through homogenizing a set of field equations of multilayer uniform 
thin film materials. Motivated by the development of strain gradient hardening theory, the 
surface instability analysis is extended to the micro-scale case through generalizing the plastic 
hardening modulus to include the strain gradient effect. The surface failure patterns, such as the 
kink bands, etc., are modeled and computed through bifurcation and post-bifurcation analyses. 
 
ELASTIC-PLASTIC BIFURCATION THEORY OF UNIFORM MATERIALS 
 

Firstly, let’s recall the bifurcation theory. Elastic-plastic fundamental equations of 
bifurcation for uniform materials can be written as follows [4]  
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                   (a)                                    (b) 
Figure 1. TEM micrographs showing the formed microbands within surface layer due to 
surface-nanocrystallization [3]. 
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where ijt&  is the normal stress rate, iv  is velocity, Dij is the velocity gradients, ijσ  is the 
Cauchy stress, Kijkl is elastic modulus, 

)( jkiljlikklijijklK δδδδµδλδ ++=                                  (2) 

 (i, j, k, l=1,3), DP
ij is the plastic tensor of the velocity gradients, and can be expressed as 

follows, 
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Where ijQ  is unit external normal tensor in stress space, which can be expressed as 

klklijijQ σσσ ′′′= /                                           (4) 

ijkkijij δσσσ 3
1−=′  is stress devitoric, H in (3) is plastic hardening modulus, can be determined 

from experiment through measuring material stress strain curve, ),(/ ηεεσ PP gH == , where 
),,( ηεσ P  are flow stress ( ησσ le += 2 , eσ  is effective stress [7]), effective plastic strain and 

effective strain gradient, respectively. ),( ηε Pg  can be determined in experiment through 
measuring the macro-scale stress-strain relation ( ee εσ ~ ), where eε  is effective strain, and 

P
ee E εσε =− / . H  has been considered to include the strain gradient effect [7-10]. Therefore, 

present analyses are suitable for micro-scale case.  
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For the incompressible plane strain elastic-plastic case, fundamental equations can be 
expressed as follows  
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where             
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Eq. (5) is the fundamental relation of instability for a uniform material in plane strain case. 
In order to look for a characteristic solution of instability for Eq. (5), a velocity potential function 

),( 21 xxϕ  is introduced, and is defined as  
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So, finding the characteristic solution of Eq. (5) is equivalent to solving the characteristic 
differential equation  
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Through considering a characteristic solution form of  

)( 21 xkx += ϕϕ                                               (9) 

and through determining the types of the equation (8) corresponding characteristic value of k , 
the instability features can be discussed. Substituting (9) to (8), one can arrive at a characteristic 
parameter equation 

0)()*2(2)( 2
124

2
1 =−+−++ σµµµσµ kk                        (10) 

Types of equation (8), elliptical type (E), hyperbolic type (H) or parabolic type (P), depend on 
the characteristics of roots of k  in (10):   
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Figure 2. Parameter regions of bifurcations.     Figure 3. Plastic hardening modulus (H). 
 

 
Figure 4. Homogenizing cell model of multilayer thin film system. 
 

The corresponding parameter regions of the Eqs. (11)-(13) are plotted in Figure 2. On the 
other hand, from Eq. (6), one can plot the combination parameter relationship of 

H/~*2/ µµµ (Figure 3). From Figure 3, the combination parameter *2/ µµ  should be larger 
than 1/2 (see dashed line in Figure 2).  
 
ELASTIC-PLASTIC BIFURCATION OF MULTILAYER THIN FILM SYSTEM 
 

Let’s consider the case of the multilayer thin films with two-layer periodic microstructure. 
During instability, each material deformation satisfies the equations (5). Consider a microscale 
cell model, as shown in Figure 4. Through volume average integration over the cell volume 
(referring to [11,12] for the fiber-reinforced composite), one can obtain the bifurcation equations 
as  
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where  
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IV and IIV  are volume fractions of two-layer periodic microstructures, respectively, 
1=+ III VV . If III bb /  and II µσ /  are small quantities and neglected, Eq. (14) will be reduced 

to the form of Eq. (5), however, corresponding shear modulus will be replaced by, 

22
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II
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II
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VV
                                            (16) 

where σ  expression is given in Eq. (15). From Eq. (16), when the MMTFS with the two-layer 
periodic microstructure is homogenized into an equivalent material, the equivalent shear 
modulus is a function of external loads.  
 
SURFACE INSTABILITY OF MULTILAYER THIN FILMS 
 

For surface instability of multilayer thin films, let’s discuss a specific form of velocity 
potential function (Eq. (9)) as follows 

,...)2,1(./,cos)( 12 === mmccxxf λπϕ                      (17) 

where λ  is wavelength of the instability model along 1x  direction.  
 
Vertical instability bands 

Substituting (17) into (8) and considering the first formula of (11) and free surface 
boundary condition, one can obtain solution  
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Inclined instability bands 
Substituting (17) into (8) and considering the second formula of (11) and free surface 

boundary condition, one can obtain solution  
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From solutions given in Eqs. (18) and (19), one can obtain the failure bands, as shown in 
Figure 5, where (a) and (b) are compressive buckling bands, (c) and (d) are kink bands, (a) and (c) 
are vertical instability bands, and (b) and (d) are inclined instability bands. 

 
Figure 5. The compressive buckling bands (a, b) and kink bands (c, d) are formed due to surface 
instability. (a, c) are vertical failure bands, and (b, d) are inclined failure bands. 
 
CONCLUSIONS 
 

The surface instability of the MMTFS has been investigated based on the bifurcation theory 
of Hill and Hutchinson. Through generalizing the plastic hardening modulus to include the strain 
gradient effect, the analysis can be used to the micro-scale bifurcation. In the surface instability, 
the kink bands or compressive buckling bands along vertical or inclined directions are formed 
near the material surface. As the instability bands nucleates and propagates, the band transection 
cracking within the band is taken place. From this point, the microstructure features of the 
surface-nanocrystalline materials can be interpreted.  
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