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ABSTRACT 
In this paper, the theoretical base of the covariance approach for generating random phase screens is analyzed, and 

corresponding computer program is compiled. Preliminary numerical simulation investigation of this new approach is 
carried out. We propose to use three methods to evaluate the generated phase screens in a combining way. It is found that 
a comparison of the phase structure function of generated phase screens with the theoretical one is not enough and often 
inefficient. Open loop results and close loop results by using phase screens generated by the covariance approach are 
obtained and compared with those by using phase screens generated by the spectral approach for the first time within our 
knowledge. It is shown that the phase screens generated by covariance approach include more abundant frequency 
components than those generated by the spectral approach and these frequency components have obvious influences on 
the open loop results and the close loop results. 
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1. INTRUODUCTION 
Numerical simulation of an adaptive optics (AO) system for optical imaging and light propagation through a 

turbulent atmosphere requires an accurate simulation for atmospheric propagation of an optical wave. Multiple phase 
screen method is typically used to describe turbulent atmosphere. The structure constant of the index of refraction 
fluctuations, Cn

2, is used to characterize the turbulence strength.[1] The propagation path through the turbulent media can 
be divided into several segments which may have different lengths. It is thought that each segment may deform the phase 
of the optical wave independently. The contribution of the turbulent media segment to the phase of the optical wave can 
be “pressed” into a very thin phase screen and added to the initial phase of the wave. It is assumed that the phase screen 
does not have a significant influence on the amplitude of the wave. The amplitude of the optical wave is changed only in 
the propagation process of the wave with the deformed phase. It means that changes in phase and amplitude of an optical 
wave can be treated separately. 

The phase screen generator is numerically investigated in this paper. The computer program used for creating random 
arrays of phase values on a grid of sample points is compiled. The arrays have the same statistics as the turbulence-
induced atmospheric phase. The statistics of phase required to create the desired phase screens have been presented in 
Ref. [1]. The spectral approach has generally been used to generate phase screens, which are not modeled well in low 
frequencies of the Kolmogorov or von Karman spectrum. A new approach used for simulating effects of atmospheric 
turbulence is named as the covariance approach. It is quite different from the conventional spectral 
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approach. This approach can offer better performance in terms of giving the spatial and temporal statistics that match the 
desired statistics. Although this approach has several specific advantages, its application in a simulation of optical wave 
propagation through the turbulent atmosphere and AO system has not been studied, and its comparison with the spectral 
approach has not analyzed in details until now. 

 
2. PHASE SCREEN GENERATION APPORACH 

There are several approaches used to generate random phase screens with the proper point statistics and spatial and 
temporal correlation properties [2]. Conventional FFT based simulation or the spectral approach has been widely used to 
simulate atmospheric turbulence.[3, 4] In this approach, the very large spatial scales (which are responsible for low-order 
optical effects such as tilt) cannot be properly represented in a simulation that is limited by the FFT algorithm. In order to 
properly account for the low frequency contribution to the phase screens, it is necessary to sample the spectrum at scales 
outside of the inertial range [5-7]. A totally different approach i.e. the covariance approach was proposed several years 
ago.[1, 2, 8-10] This approach does not have such low frequency limitation. 

The Kolmogorov spectrum and the von Karman spectrum are commonly used in the atmospheric optics to describe a 

uniform isotropic turbulence. The Kolmogorov spectrum ( )Φ ,K
n κ z  is given by the following equation: 
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A simplified form of the von Karman spectrum that ignores the inner scale effect is given by: 
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where 0L  is the outer scale of the atmospheric turbulence. 
When using the delta function basis set, theoretical formulae for calculating the element of covariance matrix of the 

phase fluctuations for an N-Layer atmosphere are presented by Ref. [1], wherein Eq. (3.205) is for the von Karman 
spectrum and Eq. (3.214) is for the Kolmogorov spectrum. 

Using the relationship of structure function and the correlation function 

( ) ( ) ( )2 0Dψ ψ ψρ ρ⎡ ⎤= Γ − Γ⎣ ⎦
r r

, (3) 

we can obtain the phase structure function of von Karman power spectrum: 
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where 
ior  is defined by 

3 52 2 2
0 0.185 4 ( )
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For Kolmogorov power spectrum, the phase structure function is: 

( )5 3
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Direct simulation of phase screens can be achieved by using Singular Value Decomponent (SVD). Using SVD, the 

covariance matrix φΓ  can be factorized into a product of three square matrix,[11] the eigenvalue diagonal matrix of 

Λwhich is a matrix with eigenvalues on the diagonal and zero elsewhere, eigenvector column of U , and its transposed 

column of TU  where the superscript T represents the matrix transpose operator: 
TU UφΓ = Λ  (7) 

We generate a vector b of uncorrelated Gaussian random variables with zero mean and variance Λ  of length P by Q.  

( )TE bb = Λ  (8) 

Random phase screens are formed using: 
a Ub=  (9) 

This vector a is the column vector composed of the weights. Recall that when using the delta function basis set, the 

actual values of the weights correspond to the phase. 

It is straightforward to verify this new vector a has a covariance of φΓ  by using Eqs. (9) and (8): 

{ } ( ){ } { } { }TT T T T T TE aa E Ub Ub E Ubb U UE bb U U U φ= = = = Λ = Γ  (10) 

 
3. GENERATING AND VERIFYING PHASE SCREENS 

In order to generate phase screens, the following steps can be carried out. First, based on Eq. (3.205) and Eq. (3.214) 

given by Ref. [1] and using widely available mathematical computation software packages,[11] the covariance matrix 

φΓ can be computed. Second, the covariance matrix corresponding to a specific power spectrum can be factorized by 

using special SVD algorithm. Third, a vector b of uncorrelated Gaussian random variables with zero mean and variance 

Λ  of length P by Q can be obtained by using a proper random number generator. Finally, phase screens can be 

generated by the above-mentioned matrix operation. Here, FORTRAN has been used to accomplish such computation. 

After getting the generated phase screens, evaluation of these screens is an important issue. Three different methods 
are proposed to evaluate the generated phase screens in this paper.  

Firstly, the accuracy of generated phase screens can be evaluated by means of a comparison of their phase structure 
function [1] over an appropriately sized ensemble with the theoretical phase structure function described in Eqs. (4) and 
(6). Recall that Eqs. (4) and (6) are the phase structure function for the von Karman power spectrum and the phase 
structure function for the Kolmogorov power spectrum, respectively. It is shown later that the agreement in this 
comparison is necessary for an appropriate phase screen, but is neither enough nor efficient. That is to say, in many cases 
different generated phase screens show an excellent agreement between their phase structure functions and the 
theoretical one, but quite different results and/or behaviors can be obtained from them. 

The second method is directly to compare the covariance matrix of the generated phase screens φΓ % and the 

theoretical covariance matrix φΓ . The covariance matrix of the simulated phase screens φΓ % can be calculated as 

follows 
TEφ φφ⎡ ⎤Γ = ⎣ ⎦%

%%  (11) 
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where φ% is the vector of the generated random phases, [ ]E •  is the ensemble average operator. The mean square error 

per covariance array element, 2ε , was computed, where 2ε  is given by: 

( )22 2( )P Qφ φε = Γ −Γ ×∑ %  (12) 

where the summation is taken over all points in the covariance matrices. For the calculation corresponding to the results 
above, we can compare the differences between the covariance matrices of different generated phase screens and the 
theoretical one. 

The third method of evaluation is based on a simulation computation of the optical wave propagation through the 
multiple generated phase screens (the open-loop results) and the phase compensation of its deformed wavefront (the 
close-loop results) [4]. For example, the computational results of the open-loop and close-loop results of phase screens 
generated by the covariance approach can be compared with those of phase screens generated by the spectral approach. It 
is shown later that by using the simulation computation of the optical wave propagation through a turbulent media 
represented by the generated phase screens and its phase compensation, the difference between two approaches can be 
compared and investigated more thoroughly and more deeply. 

It is shown in this paper that in order to evaluate the generated phase screens more definitely, these three methods 
must be combined. 
 

4. TWO PROBLEMS IN PHASE SCREEN GENERATION USING COVARIANCE APPROACH 
While using covariance approach to produce the random phase screens, it is found that decomponent of the 

covariance matrix and the choice of the Gaussian random number generator are two problems to need studying carefully.  
4.1 Decomponent of the covariance matrix  

After getting the covariance matrix, the next problem is how to decompose it. This step is to decompose the 
covariance matrix into a product of several matrices. In Ref. [1] and Refs. [6, 7], Cholesky factorization and SVD are 
used to decompose the covariance matrix, respectively. 

We found by means of a numerical experiment that when using Cholesky factorization to decompose the covariance 
matrix, in many cases it is impossible to realize the decomponent. It is because the Cholesky factorization can be realized 
to factorize the covariance matrix into a product of two square matrices only when the covariance matrix is guaranteed to 
be real, symmetric, and positive definitely. The positive definite nature of the covariance matrix without including the 
time factor was proved in Ref. [12], but the positive definite nature of the covariance matrix after introducing the time 
factor was not proved.  

In actual operation, the SVD algorithm [11] is adopted to decompose the covariance matrix. Its requirement for the 
decomposed matrix is relatively low. It only requires the matrix is Hermitian, and the covariance matrix here obviously 
meets this requirement. In the following calculations including many different scenes, the SVD algorithm is used to 
decompose the covariance matrix without failing. We think that the SVD algorithm can be used to decompose the 
covariance matrix more widely than the Cholesky factorization does. 

Certainly, in the viewpoint of the algorithm complexity, the computational amount of the SVD algorithm is much 
more than the Cholesky factorization. However, the SVD algorithm is needed to be carried out only once in the process 
of phase screen generation, further computations are to produce the new random number array and to carry out simple 
matrix operation again and again for generating new phase screen(s), so that the computational amount of initial stage is 
not a serious problem to the whole process of generating random phase screen(s). 

Proc. of SPIE Vol. 5903  59030W-4

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 06/18/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



 

 

4.2 Influence of the random number generator to the phase screen generation 
Another problem in the process generating random phase screens is the choice of the random number generator. It 

can be known from Eq. (8) that this is an important factor influencing the phase screens’ performance. Different random 
number generators in Refs. [11, 13] have been compared in this section. 

A random number generator for producing random numbers between 0 and 1 must be used in the Gaussian random 
number generator Gasdev in Ref. [11]. RAN and RAN0-RAN4 are different random number generators for producing 
random numbers between 0 and 1. Among them, RAN is the internal function of Compaq Visual FORTRAN6.6 system, 
RAN0 to RAN4 are the standard functions offered in Ref. [13], and DRNNOA and DRNNOR are Gaussian random 
number generators adopted in Ref. [11]. 

Mean value and variance of 1,000,000 random numbers between 0 and 1 produced by these random number 
generators are calculated, but for briefness the results are not shown here. It is shown that all the random number 
generators for producing random numbers between 0 and 1 are good enough, it is very difficult to find out the better 
one(s) only based on comparing the variance and mean value of the produced random numbers. 
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Figure 1 Test of different random number generators 

In order to evaluate the influence of different standard random number generators on the phase screens generated by 
the covariance approach, we adopt a typical scene mentioned in Ref. [1] and produce 100,000 random phase screens, 
then calculate the average 2ε  using Eq. (12). The results are shown in Fig. 1. On the basis of 2ε , we can judge which 
random number generators are better for generating the phase screens by using the covariance approach. It is shown in 
Fig. 1 that average 2ε  of four generators, Gasdev [11] adopted RAN, RAN0 and RAN1, and the DRNNOR [13] can reach 
very low level for 100,000 times averaging, and the average 2ε  keep constant after 25,000 times averaging. In contrast, 
results of other generators are relatively poor. In view of above, any one of these four random number generators can be 
used to obtain better results. In following calculation, we have selected Gasdev as the Gaussian random number 
generator, and RAN1 has been used in Gasdev to produce the false random number between 0 and 1. 

On another hand, the phase structure functions of the random phase screens generated by using different random 
number generators have been compared with the theoretical formula; and all these generators show a quite similar 
behavior. These comparisons are not shown here for the sake of clarity. This indicates that it is not enough to judge the 
quality of the generated phase screens only based on comparing the phase structure function. In some cases, the average 

2ε  is more sensitive to distinguish the slight changes in generated phase screens. 
 

5. EXAMPLES OF GENERATED PHASE SCREENS AND DISCUSSION 
In this section, some examples of phase screens generated by the covariance approach by using the delta function 

basics set are shown. These random phase screens are separated in time. In order to compare with the result of Ref. [1], 
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the von Karman spectrum and the Kolmogorov spectrum are used with the SLC-Night Cn
2 profile shown in Ref. [1], and 

the same four layers model of this profile is used here. The value of the Fried parameter is r0=0.103 m. The outer scale 
for von Karman spectrum is set at L0=100 m. For the von Karman spectrum results, the length of one side of the square 
aperture is set equal to 1 m, and there are 21 phase sample points across one side of the aperture (i.e., P=21×21), which 
provided a sample spacing of ∆x=5 cm. The Kolmogorov spectrum results are calculated using Gegenbauer polynomial 
technique for a 1 m radius aperture. The Kolmogorov spectrum results are for the 1 m by 1 m square centered within the 
1 m radius circle. Results for three temporal realization of the phase screen (i.e., Q=3) are shown, which require 
computation and factorization of 1323×1323 element covariance arrays. 

Figure.2 shows the surface plots and grey scale images of three random time-sequential phase screens created using 
the von Karman spectrum. The grey scale plots were created by linearly stretching the phase screen values between 0 and 
255 gray levels. The wind velocities for each of the four layers are identical, with vx=0 m/s and vy=10 m/s, where vx and 
vy are the x- and y-directed component of v(z)r

. It is easy to note the movement of the major structures in phase screen is 
y-direction, because the time between phase screens is set to be 0.01s, the movement of the major structure is exactly two 
sample spacings of 10cm in the y direction. From the grey scale plot, the movement is along the downward direction 
(corresponding to the y increasing direction). However, it is very easy to notice that certain deformation of the phase 
screen surface has taken place in addition to the major structure’ movement. 

Phase screens for the Kolmogorov spectrum are also obtained by using the same random number seed used to 
generate Fig. 2. The data and figure show that the phase screens are quite similar although different power spectrums are 
adopted. In the set of phase screens using Kolmogorov spectrum, there are the movement of major structure and the 
deformation of phase screen surface as well. For briefness, these phase screens are not presented here. 

These results are very well comparable to those of Ref. [1]. 
Effects of the lateral wind and the Taylor’s frozen field hypothesis in the spectral approach are expressed in the 
following way: to produce large enough phase screens using the spectral approach, to choose an area among them as the 
initial area corresponding to the optical path of beacon. Because of the lateral wind, phase screens move certain distances 
within the time interval along the wind direction, which is perpendicular to the light propagation direction. Because the 
large phase screens remain to be constant in the whole process, there is no deformation of surfaces of phase screens. 

Like this, an important problem appears: based on the same Taylor’s frozen field hypothesis, movement of major 
structure and surface deformation exist in phase screens generated by the covariance approach, however, there is no 
surface deformation in addition to the movement of major structure in phase screens generated by using the spectral 
approach; which approach is better for generating phase screen(s)? 

Taylor’s frozen field hypothesis is utilized in the spectral approach after the generation of the phase screens. This is 
why the phase screens only move along the wind direction, and have no deformation at all. On the other hand, in the 
covariance approach the frozen field hypothesis is introduced in the process of calculating the covariance matrix, and the 
effect of such hypothesis has been “naturally” included in the generated phase screens. By investigating the algorithm, it 
is found that the number of singular value in the eigenvalue diagonal matrix is more than the product P of the grid point 
numbers in the x and y dimension of phase screen. Generally, a singular value corresponds to space frequency 
component(s). More none-zero singular value appeared in the eigenvalue diagonal matrix means that there are more 
space frequency component(s) to be included in the phase screens generated by the covariance approach. The influence 
of these more abundant frequency component(s) is to produce the phase screen surface deformation. The real 
atmospheric turbulence should be much more complicated than the Taylor’s frozen field hypothesis. At sequential 

Proc. of SPIE Vol. 5903  59030W-6

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 06/18/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



 

 

moments, in addition to the effect of the lateral wind, real-time deformations exist in the atmospheric turbulence, and 
frequency components should be much more abundant than what a limited density of phase screen can reflect. The time-
sequential phase screens generated by using the covariance approach are considered as a whole at the beginning, and  
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Figure 2  Three random, time sequential images for the case of atmospheric layers moving in the same direction and speed, 

and a von Karman spectrum: (a) surface plot of phase screen, t=0s; (b) grey scale image of (a); (c) surface plot of phase screen, 

t=0.01s; (d) grey scale image of (c); (e) surface plot of phase screen, t=0.02s; (f) grey scale image of (e). 
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then they are cut into the time-sequential portions having limited size. Thus, more information than those expressing the 
major structure shift are included in these phase screens. From this point of view, the phase screens generated by the 
covariance approach should be more realistic than those generated by the spectral approach. 

In order to verify above-mentioned thought, 
some singular values having smaller amount have 
been deleted from the singular value matrix when 
the number is greater than space sampling points. 
This is equivalent to removing the effect of the more 
abundant space frequency components in the 
covariance approach. After such artificial treatment, 
the movement of major structure remains in the 
generated phase screens, but the deformation of 
phase screen surface disappears. That is to say, the 
generated phase screens after this treatment are 
identical to those generated by the spectral approach. 
In fact, careful checking and comparing the data in 
the time-sequential phase screens shows that phase 
data in each previous phase screen after shifting two 
sample spacing in the y direction are exactly same to 
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Fig. 3 Comparison of phase structure functions 

those in the successive phase screen after removing “extra” singular values. It is shown that more abundant frequency 
components exist in the phase screens generated by the covariance approach and these components produce the surface 
deformation in the generated phase screens. 

For checking the influence of this treatment on the phase structure function of the generated phase screens, above-
mentioned 100,000 times average phase structure functions before and after removing smaller eigenvalues are calculated 
and compared with the theoretical one. Fig. 3 shows the corresponding result. Fig. 3 shows that this treatment does not 
have obvious influence on the phase structure function, the phase structure functions before and after the treatment are 
very well comparable to the theoretical one. It means that the effluences of the more abundant space frequency 
components cannot be reflected in the phase structure function. It is shown again that it is not enough only to compare 
the phase structure function of the generated phase screen(s) with the theoretical one for verifying quality of the 
generated phase screen(s). 

 
6. RESULTS OF LIGHT PROPAGATION AND PHASE COMPENSATION AND DISCUSSION 
In this section, simulation computational results of atmospheric propagation of a optical wave and its phase 

compensation using random phase screens generated by the covariance approach and the spectral approach are presented 
and compared. This is one of the important methods to evaluate the covariance approach as well. 

Six scenes are chosen as the simulation scenes. Similar to our previous work,[4] long-exposure results of atmospheric 
propagation without and with static phase compensation having time delay are calculated using 3000 sets of random 
phase screens generated by two approaches. In our previous paper,[4] phase screens generated by the spectral approach 
without and with low frequency correction are used to do the simulation computation separately. The results of von 
Karman (VON) spectrum and Kolmogorov (KOL) spectrum are calculated separately, using Strehl ratios, STRC and 
STRCC,[4] as the evaluation parameter. The main computational conditions are as follows: 3000m horizontal propagation 
path is chosen; the whole propagation path is evenly separated into 10 phase screens; the focusing light beam is adopted; 
the distances between sampling points of successive phase screens are 4.04cm, 3.62 cm, 3.21 cm, 2.80 cm, 2.38 cm, 1.97 
cm, 1.56 cm, 1.15 cm, 0.73 cm, 0.32 cm, respectively; a constant lateral wind speed along x direction is used for 10 

Proc. of SPIE Vol. 5903  59030W-8

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 06/18/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



 

 

phase screens, the wind speed of y direction is chosen as 0; Cn
2 is assumed to be uniform along the optical path; the grid 

number of calculation is 32×32; the delay time is 2.75ms; the light wavelength is 632.8nm; the aperture size is 60cm.  
Table 1 Comparison of simulation results of atmospheric propagation and phase compensation using phase screens generated 

by the covariance approach and the spectral approach (I) 

Open loop Close loop Computational condition 
STRC STRCC STRC STRCC 

Spectral approach without low frequency correction 0.1197 0.4411 0.9684 0.9757 
Spectral approach with low frequency correction 0.09879 0.3466 0.9677 0.9736 

Covariance approach for VON 0.02465 0.1035 0.9206 0.9467 

Wind velocity 
2.22m/s 

r0=9.504cm 
Covariance approach for KOL 0.01885 0.07922 0.9299 0.9502 

Spectral approach without low frequency correction 0.01930 0.07356 0.8280 0.8693 
Spectral approach with low frequency correction 0.01385 0.05795 0.8206 0.8676 

Covariance approach for VON 0.008950 0.03875 0.5522 0.6775 

Wind velocity 
2.42m/s 

r0=3.051cm 
Covariance approach for KOL 0.008999 0.03897 0.5837 0.6853 

Spectral approach without low frequency correction 0.008964 0.03902 0.4822 0.6074 
Spectral approach with low frequency correction 0.008736 0.03755 0.4791 0.6158 

Covariance approach for VON 0.009216 0.03983 0.08877 0.2356 

Wind velocity 
3.14m/s 

r0=1.716cm 
Covariance approach for KOL 0.009244 0.03988 0.1042 0.2663 

Because of the limitation of computer capability, a larger grid number cannot be used and it is impossible to carry out 
a simulation of a practical AO system under the present condition. This is why the complete phase compensation[4] is 
used in this paper. The complete phase compensation means that after a light beam passes through the turbulent 
atmosphere (i.e. the turbulence phase screens), the distorted wavefront can be obtained at the incoming aperture and an 
minus sign (-) is taken for all the grid point of the distorted wavefront in the emission aperture. Finally the phase 
compensated beam (the light beam having minus distorted wavefront) propagates in the opposite direction and through a 
translated (because of the time delay and the lateral wind) turbulent media again to reach the target. The complete phase 
compensation is much simpler than a practical AO system, but it represents a specific phase compensation of the 
distorted wavefront. Open loop results without phase compensation and close loop results with phase compensation are 
calculated. For briefness, results of only three scenes are shown in Table 1. 

It is shown in Table 1 that difference between open loop results of two approaches is relatively apparent in the case 
of weaker turbulence. As the turbulence intensity gets stronger, the difference becomes smaller. In the case of strong 
turbulence, results of the covariance approach can be well compared with those of the spectral approach. In contrast, 
close loop results of two approaches can be well compared in case of weaker turbulence; as the turbulence gets stronger, 
close loop results of the covariance approach is obviously lower than those of the spectral approach. In addition, change 
of open loop results of the spectral approach after including the low frequency correction is relatively obvious in the case 
of weaker turbulence; it is not very obvious in the case of stronger turbulence; and change of close loop results of the 
spectral approach after including the low frequency correction is not very obvious in the case of either weaker turbulence 
or stronger turbulence. Further, difference of the covariance approach results using two different power spectrums, i.e. 
von Karman spectrum and Kolmogorov spectrum is quite small. In the case of weaker turbulence, the complete phase 
compensation works very well, but in the case of stronger turbulence phase compensation results become very poor. This 
regulation is true for both the spectral approach and the covariance approach.  

Further, average phase structure functions of 3000 realizations of phase screens generated by the covariance 
approach using von Karman spectrum in the case of three different turbulence intensities have been calculated and shown 
in Fig. 4. The phase structure function of phase screens generated by the covariance approach using Kolmogorov 
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spectrum, the theoretical one and the phase structure functions of phase screens generated by the spectral approach using 
von Karman spectrum with and without low frequency correction are shown in Fig. 4 also.  
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C 

Fig. 4 Comparison of phase structure function 

Computational condition: The first phase screen has 

been selected from all ten screens, 3,000 

realizations.  

Fig. A Wind velocity=2.22m/s, r0=9.504cm,  

Fig. B Wind velocity=2.42 m/s, r0=3.051cm,  

Fig. C Wind velocity=3.14 m/s, r0=1.716cm. 

In comparison to the theoretical phase structure function, results of the covariance approach are the best; the 
differences are very small in case of 3000 realizations. Results of the spectral approach can roughly compare to the 
theoretical result; without low frequency correction, a greater difference appears in the low space frequency region; after 
including the low frequency correction, the result of the spectral approach can quite well compare to the theoretical one; 
but the agreement is not as perfect as that of the covariance approach. It is noted that there is very great difference 
between the phase structure function produced by the von Karman spectrum and that of the Kolmogorov spectrum.  

Open loop results and close loop results by using phase screens generated by the covariance approach for von 
Karman spectrum after removing “extra” smaller singular values are calculated and shown in Table 2. It is shown that 
after removing “extra” smaller eigenvalues artificially, the open loop results does not show great changes and the close 
loop results of the covariance approach tend to those of the spectral approach, although there still exist some obvious 
differences between them. This tendency is consistent with our expectation. After removing the frequency components 
corresponding to smaller eigenvalues, the correlation of successive phase screens has been improved and the phase 
surface deformation has been removed. This is why the close loop results of the covariance approach tend to those of the 
spectral approach and this tendency is more obvious for stronger turbulence. On the other hand, existence of some 
obvious difference between the covariance approach results and the spectral approach results indicates that the phase 
screens generated by the covariance approach are still not equivalent to those generated by the spectral approach even 
after removing “extra” smaller eigenvalues artificially in the covariance approach. 

Following the similar thought, for further investigating the covariance approach, 4 largest eigenvalues and other 
“extra” smaller eigenvalues are removed from the eigenvalue matrix simultaneously. Then, open loop results and close 
loop results by using phase screens generated by the covariance approach for von Karman spectrum are calculated and 
shown in Table 3. It is shown that after removing 4 largest eigenvalues and other “extra” smaller eigenvalues artificially, 
the open loop results of the covariance approach show larger changes in the case of weaker turbulence and tend to those 
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of the spectral approach; however, the open loop results of the covariance approach do not show obvious changes in the 
case of stronger turbulence; meanwhile, the close loop results of the covariance approach show some increases and tend 
to those of the spectral approach. After comparing to Table 2, it is found that these increases of the close loop results 
basically come from the treatment removing smaller eigenvalues. The treatment removing 4 largest eigenvalues does not 
have obvious influence on the close loop results (see Table 3). 
Table 2 Comparison of simulation results of atmospheric propagation and phase compensation using phase screens generated 

by the covariance approach and the spectral approach (II) 

Open loop Close loop Computational condition 
STRC STRCC STRC STRCC 

Covariance method – original 0.02465 0.1035 0.9206 0.9467 Wind velocity 
2.22m/s 

R0=9.504cm Covariance method – smaller eigenvalues removed 0.02623 0.1074 0.9394 0.9657 

Covariance method – original 0.008950 0.03875 0.5522 0.6775 Wind velocity 
2.42m/s 

R0=3.051cm Covariance method – smaller eigenvalues removed 0.009062 0.03925 0.6416 0.7882 

Covariance method – original 0.009216 0.03983 0.08877 0.2356 Wind velocity 
3.14m/s 

R0=1.716cm Covariance method – smaller eigenvalues removed 0.008942 0.03963 0.1823 0.3888 

Table 3 Comparison of simulation results of atmospheric propagation and phase compensation using phase screens generated 

by the covariance approach and the spectral approach (III) 

Open loop Close loop Computational condition 
STRC STRCC STRC STRCC 

Covariance method – original 0.02465 0.1035 0.9206 0.9467 Wind velocity 
2.22m/s 

R0=9.504cm Covariance method – 4 largest and other 
“extra” smaller eigenvalues removed 0.06574 0.2408 0.9433 0.9659 

Covariance method – original 0.008950 0.03875 0.5522 0.6775 Wind velocity 
2.42m/s 

R0=3.051cm Covariance method – 4 largest and other 
“extra” smaller eigenvalues removed 0.01077 0.04580 0.6633 0.7906 

Covariance method – original 0.009216 0.03983 0.08877 0.2356 Wind velocity 
3.14m/s 

R0=1.716cm Covariance method – 4 largest and other 
“extra” smaller eigenvalues removed 0.009445 0.03990 0.1622 0.3886 

 

7. CONCLUSION 
The covariance approach using delta function as base function is used to generate phase screens for the von Karman 

spectrum and the Kolmogorov spectrum and a preliminary numerical simulation investigation is carried out. Phase 
structure functions of phase screens generated by the covariance approach agree excellently with the theoretical one. The 
generated phase screens under the same conditions can be very well compared with those in Ref. [1]. It is found that the 
covariance matrix can not be factorized by using Cholesky factorization adopted in Ref. [1] in some cases; and the SVD 
algorithm can be adopted to realize the matrix factorization without failing. It is shown that different random number 
generators can influence on the generated random phase screens. Four better generators have been selected as the 
generator for generating the random numbers between 0 and 1. We propose to use three methods to evaluate the 
generated phase screens in a combining way. It is found that a comparison of the phase structure function of generated 
phase screens with the theoretical one is not enough and often inefficient. By contrast, a comparison of open loop and 
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close loop results by using generated phase screens can give a deeper insight. When the successive phase screens with 
temporal correlation property are generated, phase surface deformations have been found in addition to the movement of 
major structure. It is shown that these deformations can be removed by deleting the “extra” smaller eigenvalues in the 
covariance matrix and at the same time the phase structure function of generated phase screens does not have an obvious 
change. Open loop results and close loop results by using phase screens generated by the covariance approach are 
obtained and compared with those by using phase screens generated by the spectral approach for the first time within our 
knowledge. It is found that the open loop results of the covariance approach are lower than those of the spectral approach 
in case of weaker turbulence and its close loop results is obviously lower than those of the spectral approach in case of 
stronger turbulence. After deleting the “extra” smaller eigenvalues, the close loop results of the covariance approach tend 
to those of the spectral approach, and there is no obvious effect on the open loop results. If deleting 4 largest eigenvalues 
at the same time, the open loop results of the covariance approach tend to those of the spectral approach also. These 
indicate that the phase screens generated by the covariance approach include more abundant frequency components than 
the spectral approach and these frequency components have obvious influences on the open loop results and the close 
loop results.  

This paper presents a preliminary numerical investigation of the covariance approach. There are a lot of important 
problems left for further work.  
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