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Abstract 
 
A generalized finite sine transform method (FSTM) is presented in this paper and applied to the 
eigenfrequency computation of a rectangular plate with arbitrarily distributed concentrated masses and 
translational springs. Compared with the analytical-and-numerical combined method (ANCM), FSTM 
keeps the same number of mode shapes in the system eigenfrequencies computation in order to have the 
convergence. However, unlike ANCM or the finite element method (FEM), whose eigenfrequency 
computation depends on the number of mode or element. The eigenfrequency computation by FSTM is 
mainly dependent on the total number of concentrated masses and springs. Therefore, the FSTM 
computation on the system eigenfrequencies is much faster when the total number of concentrated 
masses and springs is small. 
 

NOMENCLATURE 

,E υ :Young’s modulus and Poisson’s ratio of the plate. 
, ,a b h : Plate length, width and thickness, respectively. 

,M D : Mass per unit area of the plate and plate flexural rigidity, 
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υ
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−
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,iK Mi : Concentrated spring stiffness and mass, respectively. 
,i ia b  : Concentrated translational spring coordinates. 
,i iu v  : Concentrated mass coordinates. 

4∇ : Operator defined as 
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4
4 2 42

4

4x x y y
∂ ∂

∇ = + +
∂ ∂ ∂ ∂

∂  

,W ω : Plate transverse displacement and eigenfrequency, respectively. 
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1. INTRODUCTION 

When a mass is added to a structure, it results in the shift of the system resonant frequencies, 
traveling wave propagation and damping etc [1, 2]. Those shifting properties have been utilized 
as the mechanisms for the development of various mass sensing sensors [1-8]. With the coating 
design which can specify the certain chemical vapor deposition distribution on the resonator, 
the chemical components of vapor adsorbed can be analyzed with this mass sensing resonator 
[2, 7, 8]. Or with the information on the deposition layer distribution, the added mass to the 
accuracy of attogram scale can be determined [5, 6]. Clearly, the amount of the adsorbed mass 
and its location on the resonator structures are the only two factors determining the system 
resonant frequency shift if the mass is modeled as concentrated mass [3, 9-15]. Compared with 
the whole resonator, the size of adsorbed mass is very small in many nanoelectromechanical 
(NEMS) mass sensing applications [3, 6]; therefore, the concentrated mass model is applied. 
Recent experiment of an E.Coli bacteria adsorption on a mass resonator by Ramos et al.[16] 
shows a surprising 24% eigenfrequency increase instead of decrease. Because adding inertia 
mass can only decrease the system eigenfrequency, Ramos et al.[16] argue that the adsorption 
of the bacteria also increases the system rigidity and this rigidity increase surpasses the increase 
of inertia mass, which results in the increase of the system eigenfrequency. Incorporating the 
concentrated translational spring in the model in essence plays the role of increasing the system 
rigidity. 

Among the literatures [9-15], two major methods of modeling the plate with concentrated 
masses/springs can be roughly categorized. The first one is to treat concentrated masses/springs 
as constraints [9, 10, 11]. In the constraint method, the concentrated masses/springs do not 
appear in the governing equation explicitly. Instead, it is that inertial forces which can be 
related to the concentrated masses/springs appear in the governing equation and the problem is 
solved by using the displacement constraint condition [9, 10] or by using the Green’s function 
of a constrained system [11]. As shown in those three papers [9, 10, 11], the constraint approach 
is rather complex and lengthy in both modeling and solution. The second method is to use Dirac 
delta function to incorporate the concentrated masses/springs in the governing equation [12, 13, 
14]. Amba-Rao [12] develops the finite sine transform method (FSTM) for the plate with four 
edges simply-supported. Magrab [13] extends Amba-Rao’s FSTM to the Levy plates by using 
Laplace transform. Shah and Datta14] incorporate the effect of moment of inertia of the 
concentrated mass. Chiba and Sugimoto [15] equivalently use Dirac delta function to model the 
effects of the concentrated spring and mass for a cantilever plate. As the concentrated 
mass/spring can severely distort the mode shapes of a uniform plate and shift its 
eigenfrequencies, the eigenfrequency computation of the plate carrying concentrated 
masses/springs requires a large number of elements or modes to converge. In Wu and Luo’s 
computation example [10], the eigenfrequency computation is to solve the eigenvalue problem 
of an 175 × 175 matrix (FEM) or a 30 × 30 matrix (ANCM). The eigenfrequency computation 
by Chiba and Sugimoto’s [15] is an eigenvalue problem of a 50×50 matrix. Obviously, such 
computation is very expensive for the mass sensing sensor or the sensor array which consists of 
hundreds or thousands of micro-sensors. As pointed out by Wu and Luo [10] and also to 
author’s best knowledge, FSTM so far is only applied to the simple case of single one 
concentrated mass [12, 13, 14]. In this paper, the generalized FSTM on the eigenfrequency 
computation of the rectangular plate carrying arbitrary number of concentrated masses and 
springs is presented. The eigenfrequencies obtained by the generalized FSTM are also 
compared with those of FEM and ANCM. 
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2. GOVERNING EQUATIONS AND FSTM 

The governing equation of a rectangular plate with single one concentrated mass is given by 
Amba-Rao [12], Magrab [13], Shah and Datta [14]. In all of these three papers [12, 13, 14], the 
presence of the concentrated mass is modeled by the Dirac delta function. Shah and Datta’s 
model [14] considers the effect of moment of inertia of the concentrated mass. For the sake of 
brevity, the governing equation for a rectangular plate with arbitrarily distributed masses and 
translational springs is directly given as follows 
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. δ is the Dirac delta function. There are r concentrated masses and s 

concentrated translational springs. The plate is assumed isotropic and homogeneous. The 
equation above does not include the concentrated mass effect of moment of inertia. 
The plate transverse displacement W is assumed to have the following solution form 

( , ) i tW x y e ωψ=                                                                            (2) 
Substitute equation (2) into equation (1), the following equation is obtained 
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ψ(x, y) is the spatial part solution of the plate with the concentrated masses / springs and 
assumed to have the following expression when the four edges of the plate are 
simply-supported [12] 

1 1

4( , ) sin( )sin( )mn m n
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= Ω∑∑                         (4) 

Equation (4) is a double Fourier expansion of ψ(x, y) and mnΩ  is thus defined as 

0 0
( , )sin( )sin( )

a b

mn m nx y x y dxψ α βΩ = ∫ ∫ dy                              (5) 

m
m
a
πα =  and n

n
b
πβ = . sin( )sin( )m nx yα β is the m−nth mode shape of a uniform plate with 

four edges simply-supported. 
Times equation (3) withsin( )sin( )m nx yα β and have a double integral operation, the following 
equation is derived 
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(6) 
Substitute equation (4) into equation (6) except the terms related to the concentrated masses and 
springs. Via the integration by parts and using the boundary conditions, the Dirac delta function 
integration property and the orthogonality of the sine functions, equation (6) is now re-written 
as 
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From the above equation, is solved as follows mnΩ
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Substitute equation (8) into equation (4), ψ(x, y) is now re-written as the following 
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Equation (9) is valid for any x, y, so let (x, y,) = ( ) (i = 1 to r) and(x, y,) = ( ) (i = 1 to 
s) into equation (9) and after simple manipulation, the following equation is obtained 

, iiu v , iia b

0CV =                                                                  (10) 
C is a (r + s) × (r + s) matrix and C = C(ω). C(ω) is given as follows 
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V is a r + s vector and 
. As far as 

not all of and ( are on the plate nodes, which mathematically means V has a 
nontrivial solution, the determinant of C must be zero. |C| = 0 is the characteristic equation to 
determine the eigenfrequency ω of the plate with the concentrated masses and springs. 

1 1 2 2 1 1 2 2[ ( , ), ( , ), ... ( , ), ( , ), ( , ), ... ( , )]T
r r s sV u v u v u v a b a b a bψ ψ ψ ψ ψ ψ=

( , )i iu v , )i ia b

 

3. COMPUTATION EXAMPLE 

All the following elastic properties and dimensions of plate are taken from Wu and Luo’s 
computation example [10] in order to have a comparison with their ANCM and FEM results. 
The schematic diagram of the rectangular plate with three concentrated masses and three 
translational springs is shown in figure 1. The parameters related to the computation are listed 
as follows: 
a = 2.0 m, b = 3.0 m, h = 0.005 m; E = 2.051 × Pa, M = 39.25 kg/ , 1110 2m υ  = 0.3; 

1M = 70.0 kg,  = 0.375a,  = 0.25b; 1u 1v 2M  = 50.0 kg,  = 0.5a,  = 0.625b; 2u 2v

3M  = 60.0 kg, = 0.75a,  = 0.5b;  = 106 N/m,  = 0.125a,  = 0.25b; 3u 3v 1K 1a 1b

2K  = 104 N/m,  = 0.5a,  = 0.5b;  = 105 N/m, = 0.625a,  = 0.625b. 2a 2b 3K 3a 3b
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Although in equation (4), ψ(x, y) is symbolically expressed by the mode summation from m = 1 
to ∞ and n = 1 to ∞, only finite number of mode can be used during the computation. Generally, 
the modes with the lowest eigenfrequencies should be given the priority to be used in the modal 
expansion of ψ(x, y). For a uniform plate with four edges hinged, the natural frequency mnω  is 
given as follows [17] 

2 2 2 2[ (mn
2) ]M aa m n

D b
ω π= +                                                      (11) 

With this formula and the plate dimensions given above, the first 9 modes with lowest 
frequencies for the uniform plate are 1-1, 1-2, 2-1, 1-3, 2-2, 2-3, 1-4, 3-1 and 3-2 modes ( First 
number is m, the second is n. m − n mode in this case is sin(mπx/a )sin(nπy/b )). Equation (11) 
gives the idea on how to take the modes with the lowest frequencies. In order to compare with 
Wu and Luo’s ANCM results [10], m is taken from 1 to 6 and n is taken from 1 to 5. So there are 
total 30 modes used in the computation. The reason of taking some many modes in computation 
mentioned in introduction part is that the concentrated mass/spring can severely distort the 
mode shapes of a uniform plate and the large mode number is required for the convergence. 
FSTM also shows very good convergence when mode number increases. 

 
 

Figure 1: Schematic diagram of the plate with three concentrated masses (solid round dots) and three 
concentrated springs (solid triangle dots) in the computation example. 

 
 

Because there are three concentrated masses and three concentrated springs (i.e. r +s = 6), 
matrix C is a 6 × 6 matrix. Newton-Raphson method is used to solve the characteristic equation 
of |C| = 0 to find the eigenfrequencies [18]. The first 6 lowest eigenfrequencies by FSTM are 
given in table 1 in comparison with those of Wu and Luo obtained by FEM and ANCM [10]. 
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Table 1. Comparison of the eigenfrequencies (with the unit of Hertz) computed by FEM, ANCM and 
FSTM, respectively. 

 
Methods/Eigenfrequency  

1ω  2ω  3ω  4ω  5ω  6ω  
FEM (ref. [10]) 28.83 39.775 47.158 82.898 105.352 NA 

ANCM (ref. [10]) 28.632 39.392 48.084 81.836 104.038 NA 
FSTM (this paper) 27.564 39.767 50.057 84.813 95.414 103.164 

 
The first four lowest eigenfrequencies obtained by FSTM agree well with those obtained by 
both FEM and ANCM. However, 5ω  differs significantly. But it is worth noticing that 6ω of 
FSTM is very close to 5ω  of FEM and ANCM ( 6ω values are not available in [10]). When 
Newton-Raphson method is applied to solve the eigenvalue problem of |C| = 0, the upper and 
lower bounds of each eigenfrequency must be carefully chosen before starting the computation 
[18]. Otherwise, Newton-Raphson method may miss the eigenfrequency but find another one. 
 

4. CONCLUDING REMARKS 

A generalized FSTM on the eignfrequency computation is presented and compared with other 
methods. For the eigenfrequency computation of a rectangular plate with four edges simply 
supported and 6 concentrated masses and springs, Wu and Luo’s FEM is to solve an 175 × 175 
matrix eigenvalue problem (175 is the element number )and ANCM is to solve a 30 × 30 matrix 
eigenvalue problem (30 is the mode number) [10]. In FSTM, 30 modes are also used to generate 
the elements of a 6×6 matrix of C. FSTM here essentially is to solve an eigenvalue problem of 
a 6×6 matrix determinant. When the plate does not have large number of concentrated masses 
and springs, FSTM is a much faster method to compute the eigenfrequencies. There is 
relatively small difference in the first four eigenfrequencies computed by FSTM, FEM and 
ANCM. 
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