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ABSTRACT 
A dynamic model for the ice-induced vibration (IIV) 

of structures is developed in the present study. Ice properties 
have been taken into account, such as the discrete failure, the 
dependence of the crushing strength on the ice velocity and the 
randomness of the ice failure. The most important prediction of 
the model is to capture the resonant frequency lock-in, which is 
analogue to that in the vortex-induced vibration (VIV). Based 
on the model, the mechanism of resonant IIV is discussed. It is 
found that the dependence of the ice crushing strength on the 
ice velocity plays an important role in the resonant frequency 
lock-in of IIV. In addition, an intermittent stochastic resonant 
vibration is simulated from the model. These predictions are 
supported by the laboratory and field observations reported. 
The present model is more productive than the previous models 
of IIV. 
Keywords: ice-structure interaction, dynamic modeling, 
frequency lock-in, resonance, stochastic vibration 

 
INTRODUCTION 

Ice-induced vibration of structures (IIV) is an 
important issue pertaining to the safety of the structures in ice 
regions, such as offshore drilling platforms, lighthouses, bridge 
piers, etc. IIV is harmful to the structural health, which results 
in the fatigue damage of the structures. More severely, 
intensive resonant IIV may produce a substantial structural 
acceleration that exceeds the physical acceptable level for the 
staff working over them. Therefore, IIV has attracted broad 
attentions from both industrial and academic communities, 
since the 60’s of the last century, and much effort has been 
made to understand the ice-structure interaction process in 
order to determine the dynamic ice force and structural 
response. The most important is the mechanism of resonant 
IIV. Research of IIV is beneficial to the design as well as the 
operation of the structures. 

IIV is a complex dynamic process. The complexity 
stems from the material and structural failure process of ice, on 
ded From: http://proceedings.asmedigitalcollection.asme.org/pdfaccess.ashx?url=
one hand, and the nonlinear dynamic coupling of the 
movements of ice and structure, on the other hand. For a 
review of current research findings on the ice failure 
mechanism affecting ice-structure interaction from the sense of 
ice mechanics, see Dempsey’s (2000) paper. For the case of a 
vertical slender structure indenting into a moving ice cover, as 
shown in Fig.1 (a), there have been several analytical IIV 
models proposed so far. They may be classified into two 
categories. For the first one, the ice failure is treated as a series 
of discrete or intermittent events, as proposed by Matlock et al. 
(1971). This kind of model is applicable to the case of low ice 
velocity, where the simultaneous ice crushing occurs near the 
contact area. Matlock’s model is simple and rudimental as it 
does not take into account some important ice properties. When 
using Matlock’s model, Karr et al. (1992) and Trosech et al. 
(1992) found that multiple limiting cycles existed and the 
structural response was dependent on initial conditions. This 
indicates that IIV is a complex nonlinear dynamic process. 
Sodhi (1994) extended Matlock’s model by introducing an 
extrusion phase and a possible separation phase, in addition to 
the loading phase. We call it Matlock-Sodhi model hereafter. 
The second kind of IIV models treat ice failure as a continuous 
crushing process, as those proposed by Blenkarn (1970) and 
Määttänen (1978). Based on them, the structure vibrates under 
self-exciting as a result of dynamic instability due to the 
negative velocity dependence of the ice crushing strength that 
appears in the ice velocity region of the ductile-brittle 
transition. The continuous crushing process may simulate a 
non-simultaneous ice crushing at the contact region in the case 
of high ice velocity; whereas, the ductile-brittle transition is 
produced when the ice velocity is low at which the 
simultaneous ice crushing dominates the ice failure process. 
Indeed, at a high ice velocity, the crushing strength of ice tends 
to be stable at a relatively low magnitude and the structure 
vibrates generally in a fashion of high frequency and low 
amplitude (Peyton, 1968). Therefore, research of IIV at low ice 
velocity is more meaningful, as addressed in this paper.    
1 Copyright © 2006 by ASME 
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The aim of the present work is to develop a discrete 
failure type of dynamic model for IIV by modifying the 
Matlock-Sodhi model to incorporate more properties of ice 
crushing, such as the velocity effect and stochastic 
characteristics of ice crushing.  Particular attention is paid on 
the mechanism of resonant vibration which threatens the 
structural safety most remarkably. Our strategy is to consider 
the main characteristics of ice failure crushing, rather than its 
detailed process. Therefore, the complexity of the model could 
remain at a treatable level while the salient feature of IIV can 
be captured. In this paper, we summarize the dynamic property 
of ice crushing and then describe a new dynamic model. It 
follows with a presentation and discussion of the deterministic 
and stochastic structural responses predicted from the present 
model and some conclusive remarks. 
 

 
sketch of process 

(a) 

 
idealization of process 

(b) 
                                       

Figure 1. Dynamic model for ice-structure interaction. 
 
 

DYNAMIC PROPERTY OF ICE CRUSHING  
It is well known that the ice crushing strength (or 

force), fσ  (or fF ), is dependent on the strain or stress rate in 
the manner as shown schematically in Fig. 2. This 
experimental finding was obtained from both the laboratory 
and field tests on either uniaxial compression or indentation 
samples, referred to Peyton (1968), Neill (1976), Sodhi (1998, 
2001) and Sodhi et al. (1998), among others. The dependence 
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curve can be divided into three regions according to ice 
crushing modes, i.e., ductile, brittle and intermittent ductile-
brittle transition ones, respectively. In the ductile mode, ice 
crushes by micro-cracking and macro-splitting through the 
propagation of cleavage cracks in a fashion of simultaneous 
failure. While in the brittle mode, non-simultaneous crushing 
occurs through micro-cracking, shearing, extrusion and flaking, 
with high-pressure zones formed on the contact surface.  

The strain rate is often defined by or , 
where is the ice velocity relative to the structure,  the 
thickness of the ice cover and  the diameter of the 
structure. Thus, for the prescribed ice cover and structure, the 
dependence of the ice crushing strength on the strain rate is 
equivalent to that on the relative velocity. Following Iliescu 
and Schulson (1999), the relationship of ice crushing strength 
versus strain rate may be expressed by two separate power laws 
according to when the strain rate, 

/rv h /rv D

rv h
D

ε , is below or above the 
transitional strain rate, /t tv hε = , corresponding to the 
maximum strength, maxfσ , as indicated in Fig.2, where is the 
transitional relative ice velocity. Therefore, the ice crushing 
strength curve may be expressed, in a dimensionless form, as 
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0α > , 0β <  being indexes and fdσ & fbσ  the minimum 
ice crushing strengths in the ductile and brittle regions, 
respectively, as defined in Fig. 2.  
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.
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Figure 2. Characteristic plot of ice crushing strength 
versus strain rate. 
  
 
DYNAMIC MODEL OF ICE-STRUCTURE 
INTERACTION 

Like Matlock’s model, only the fundamental modal 
response of the structure is considered in the present model, as 
the first order approximation. Then the structure can be 
simulated as an oscillator consisting of a mass, M , a viscous 
dashpot with damping coefficient, , and a linearly elastic C

Ductile Transition Brittle 

fdσ

fbσ

maxfσ

.
ε
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spring of stiffness, K , as shown in Fig. 1 (b). Included is also 
the ice cover model consisting of a series of ice teeth to 
simulate the discrete failure mode in the ductile and transition 
regions. In the figure, the position and velocity of the mass is 
denoted by x  and x , respectively, with the corresponding 
initial values being 0x and 0x ; is the velocity of the ice 
cover and the distance between adjacent teeth, , represents 
the length of the failure zone associated with each failure event 
and is assumed to be constant.  

v
p

The deflection of the tooth, ( )tδ , is 

0( ) ( ) ( 1)t x vt x t p nδ = + − − −               (2) 
where is the time and the number of the tooth in contact. 
After the ice cover and structure come into contact, ice 
force,

t n

F , is built up until it reaches the failure force, fF . This 
process is called loading phase during which the contact 
between the mass and ice cover is assumed to be linearly 
elastic with an effective contact stiffness, . The ice 
force,

k
,F is then related to δ through eF k Fδ= + in this 

loading phase, where eF is the residual force remained during 
the previous crushing event. Although it may be more realistic 
to take a nonlinear relationship between F  and δ , 
considering the micro-damaging during the loading phase, the 
above linearization through introducing the effective contact 
stiffness keeps the qualitative characteristic of the structural 
response unchanged since the nonlinearity results mainly from 
the intermittent ice failure events. After the ice failure occurs, 
the mass penetrates through the crushed ice and extrudes it 
until the next tooth comes into contact. This is an extrusion 
phase during which the ice force is assumed to be constant and 
identical to eF . At this phase, δ represents only the relative 
displacement between ice and structure. During both the 
loading and extrusion phases, the separation of the mass and 
the ice cover may occur if the velocity of the mass is greater 
than the ice velocity. Therefore, F vanishes in this separation 
phase. 

 Based on the above analysis, the governing equation 
of motion for the mass is given as 

[ ]
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in which  

maxfF
K

∆ =    and   n
K
M

ω =             (5) 

are the maximum displacement of the mass corresponding to 
the static application of the maximum failure ice force, , 
and the natural angular frequency of the structure, respectively. 
Then Eq. (3) can be non-dimensionalised as  

maxfF

[ ]
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where 
2 n

C
M

ξ
ω

=  is the damping ratio, 
2

2
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dτ

= and 

dxx
dτ

= .    

From the definition of fδ and Eqs. (4-5), we get 

( )f e
f

F F
k

δ
−

=                       (7) 

with
max

f
f

f

F
F

F
= . Following Korzhavin’s (1962) formula for 

ice force, the ice failure force is related to the ice failure 
strength by 

f fF Im hDκ σ=                      (8) 
where I , andm κ are indentation, geometry and contact 
coefficients, respectively. Hence, it is obtained readily that 

f fF σ= and then  

( )
( / )

/ f r t e
f r t

v v F
v v

k

σ
δ

⎡ ⎤−⎣= ⎦

c

p

            (9) 

from Eqs. (7) and (1), in which . Recently, Tong et al. 
(2001) have observed, from the laboratory test on the 
indentation of a rigid structure into an ice cover, that the ice 
failure frequency increased linearly with the ice velocity 
until . Since it covers the typical ductile 
and transition regions and the ice failure frequency is given by 

rv v x= −

1/ 5.4 10 / sev h −= ×

/Icef v=  for rigid structures, it means that  can be 
considered to be independent of the ice velocity in the low-
velocity region, as concerned with in the present model.  

p

Equation (6) is a highly nonlinear dynamic equation, 
owing to the discrete failure events and the dependence of the 
ice failure force on the relative ice velocity. However, it is 
piece-wise linear and, hence, a closed form solution can be 
derived for the individual phase. They are: 
(a) Loading phase 

2
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2 2 2
0 0

2 2
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             (10) 
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where 0l lτ τ τ= − , 2 2
l qk 2ω ξ= − , 2 1qk k= + ,

1r
kk

k
=

+
; 

0lτ , 0lx and 0lx are the initial values of the time, position and 
velocity, respectively, at the phase; 
(b) Extrusion phase 

   

( )0 0 0
1cos ( )sine

e e e e e e e e e
e

ex e x F x x Fξτ ω τ ξ ω τ
ω

− ⎧ ⎫
⎡= − + + −⎨ ⎬⎣

⎩ ⎭
+F⎤⎦    

(11) 
where 2 21eω ξ= − , 0e eτ τ τ= − ; 0eτ , 0ex and 0ex are the initial 
values of the time, position and velocity, respectively, at the 
phase;  
(c) Separation phase 

( )0 0 0
1cos sins

s e s s s e s
e

x e x x xξτ ω τ ξ ω τ
ω

− ⎡ ⎤
= + +⎢ ⎥

⎣ ⎦
   (12)   

where 0s sτ τ τ= − ; 0sτ , 0sx and 0sx are the initial values of the 
time, position and velocity, respectively, at the phase.  

The complete solution to Eq. (6) is an alternative 
combination of Eqs. (10-12), with the initial time, position and 
velocity of each phase determined by the contact, ice failure 
and separation conditions, respectively, as indicated in Eq. (6).  
Since they depend on the instantaneous relative motion 
between structure and ice, as prescribed by Eqs. (9) and (1), the 
numerical computation is needed to obtain the dynamic 
structural response and the associated ice force time histories.  

  
STEADY RESPONSE AND ICE FORCE  

For the limitation of the paper length, we highlight the 
influence of the ice velocity on the structural vibration 
characteristics. The structure and ice properties used in the 
computation are: 

0.1 0.04 0.7 0.5

0.5 -2 10 0.2
fd fb

e t

k

p F v

ξ σ σ

α β

= = = =

= = = =

      

       1=
 

which lead to maxfp δ= since maxfp pkδ= from Eqs. (4-5).  
Figure 3 shows the dimensionless amplitude of the 

steady structural vibration, max minx x− , versus the dimensionless 
ice velocity, , predicted from the present model and the 
Matlock-Sodhi model, respectively. The former reduces to the 
latter when 

/ tv v

fF fσ= is set constant. In the calculations, the 

constant fF for the Matlock-Sodhi model is given by Eq. (1) 
by setting equal to , as an average. It is noted that the 
velocity effect is so appreciable that the two models predict 
either nearly the same or much different amplitude of the 
structural vibration, depending on the range of the ice velocity. 
If we confine ourselves to the maximum peak in the curve 
corresponding to the Matlock-Sodhi model, as plotted by the 
dashed line, it can be seen that at an ice velocity of falling 
into the ascending portion of the peak or into the portion above 
about 2.8, the two models are almost indistinguishable. The 
difference of the predictions is remarkable otherwise, for 

being over 2.2 to 2.75, which is just the descending 
porting of the peak. The maximum difference achieves as high 
as one order of magnitude over that velocity range.   

rv v

/ tv v

/ tv v
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Figure 3. Dependence of the amplitude of the structural 
vibration on the ice velocity. 

 
To further clarify the underlying mechanism leading 

to the above difference, comparison is made of their profiles of 
the steady structural response and ice force time histories, as 
indicated in Figs. 4 and 5 at =2.2 and 2.6, respectively. 
They are the limiting cycles, as the attractors in the phase plot. 
At 

tv v

=2.2, the velocity corresponding to the top of the 
peak, the limiting cycles for the two predictions are the same 
both in amplitude and in phase, i.e., there exists one deflection 
cycle and one ice failure event per period, as shown in Fig. 4. 
However, at =2.6, which corresponds to the maximum 
difference between the two predictions, there are nine 
deflection cycles and ten ice failure events per period in the 
present prediction, instead of one deflection cycle and one ice 
failure event per period in the prediction based on the Matlock-
Sodhi model, as shown in Figs. 5 (a) and (b). Fig. 5 (a) shows 
that the peak vibration amplitude occurs when the ice force and 
the structural response are in-phase. During the amplitude of 
vibration increases gradually, ice failure events occur when the 
structure and ice move in the same direction with the structure 
gaining momentum from the ice. In contrast, as the amplitude 
of vibration decreases gradually, ice failure events occur when 
the structure and ice move in an opposing direction with the ice 
gaining momentum from the structure. This is the typical 
feature of the resonant vibration, as observed by Engelbrektson 
(1982) in the Gulf of Bothnia. Further computation has shown 
that this feature is dominant when is between over 2.2 to 
2.75.  

/ tv v

/ tv v
/

/ tv v

/ tv v
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Fig. 4 Response and ice force time history plots, 
predicted from the present or Matlock-Sodhi model. The 
two models give the same prediction. 
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Figure 5. Response and ice force time history plots, 
predicted from the present model, (a), and Matlock-
Sodhi model, (b).  ,/ 2.6 and 0 0x = . tv v = 0 0.5x = −
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RESONANT FREQUENCY LOCK-IN  
The resonance feature may be further demonstrated by 

the spectrum analysis. Fig. 6 shows the predominant frequency 
of the ice force in the amplitude spectrum as a function of the 
ice velocity, based on Fourier analysis. The corresponding 
predominant frequency of the response is nearly the same. It 
turns out that in the concerned region of , over 2.2 to 2.75, 
the frequency of the ice force is locked to the natural frequency 

of the structure

/ tv v

2
n

nf
ω
π

= , as the solid line shown, leading to an 

intensive vibration. Included also in Fig. 6 is the related result 
based on the Matlock-Sodhi model, as the dashed lines shown. 
Observing that for over 2.0 to 2.2 or above 2.75, the 
predominant frequencies predicted from the two models are 
almost the same, in consistence with the corresponding 
responses shown in Fig. 3. However, at =2.2, a new 
attractor of resonance begins to appear due to the bifurcation of 
nonlinear dynamics and the original attractor becomes unstable 
until =2.6, as indicated by the dashed line. Therefore, 
there exists a transition region between =2.6 and 2.75 in 
which there are two attractors and the structural response of the 
structure is attracted by either of them, depending on the initial 
conditions,

/ tv v

/ tv v

/ tv v
/ tv v

0x and x . It is found that at =2.6, for instance, 
when 

/ tv v

0x =0 & x =0 is set, the corresponding attractor is just 
the same as Fig. 5 (b) for the prediction from the Matlock-
Sodhi model. After =2.75 is reached, the attractor of 
resonance becomes unstable and only the Matlock-Sodhi type 
of attractor remains.  Määttänen (1983) has observed the 
resonant frequency lock-in at a wide velocity rang. It is 
interesting to note that the resonant frequency lock-in in IIV is 
quite similar to that in vortex-induced vibration (VIV), referred 
to the experimental result of VIV (Feng, 1968). This means 
that there is a dynamic analogy between IIV and VIV, although 
their natures are completely different. This is possibly because 
both the ice failure and the vortex-shedding are intermittent 
processes.  

/ tv v

We may now give an explanation on the mechanism of 
resonant IIV, based on the above dynamic analysis. The ice-
structure interaction plays dual roles in IIV, promoting and 
restraining the vibration of structures, as illustrate above. 
However, the relative domination of the two roles is uneven for 
compliant structures, even if the velocity effects on the ice 
failure force is not involved. Due to the movement of the 
structure, the relative ice velocity is smaller when the structure 
and ice move in the same direction than in the opposing 
direction. Thus, the buffering action takes effect in the former 
case to lengthen the duration of ice-structure interaction before 
ice failure occurs and so the transmission of momentum or 
energy from ice to the structure is more than the inverse 
transmission in the latter case. This unevenness causes a net 
gain of energy for the structure which is balanced by the 
damping dissipation and the potential and dynamic energies of 
the vibration in the steady vibration state. The velocity effect 
on the ice failure force further signifies the unevenness since 
not only the loading phase lengthens but also the ice force 
during the interaction increases when the ice and structure 
moves in the same direction, as illustrated by the ice force time 
history plot in Fig. 5 (a). Consequently, the rate of the net 
5 Copyright © 2006 by ASME 
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energy gain increases so that the system stays in the dynamic 
equilibrium with the higher amplitude. The resonant frequency 
lock-in maximized the net gain rate of energy. In addition, it is 
noted that a higher rate of net energy gain is produced when the 
ice velocity falls into such a range that the relative ice velocity 
remains in the descending portion of the ductile-brittle 
transition region, irrespective of the movement direction of the 
structure. This is because the alternation of the ice failure force 
is most remarkable in this range. Therefore, it explains why the 
ice velocity range of the frequency lock-in in Fig. 6 shifts to 
the right in a distance from the ductile-brittle transition region. 
 

2.0 2.2 2.4 2.6 2.8 3.0
0.8

0.9

1.0

1.1

1.2

1.3

1.4
 present
 Matlock-Sodhi

f Ic
e/f

n

v/vt  
Figure 6. Lock-in of the ice force frequency to the natural 
frequency of the structure in the ice velocity region of 
resonant vibration. 

 
STOCHASTIC EFFECT OF ICE FAILURE ON IIV 

Randomness is the intrinsic characteristic of the fracture 
and failure of brittle materials, particularly in dynamic cases. 
Therefore, we need to further incorporate the randomness of 
ice failure properties into the present model. In the following 
numerical computation, 10% of the randomness with uniform 
probabilistic distribution imposed on fF  and p is considered.  

Figure 7 shows the stochastic response of the structure at 
ice velocities of =2.5. The detailed response and ice force 
time history plots for the two phases in Fig. 7 are shown in 
Figs. 8 (a) and (b). Comparing them with Figs. 5 it is noted that 
a stochastic resonance appears in an intermittent way that the 
system migrates between the resonant attractor and the 
Matlock-Sodhi type of attractor and oscillates stochastically 
near them. Meanwhile, our computation shows that at 

=2.4, only the stochastic resonant vibration appears. The 
intermittent resonant vibration predicted here is quite alike to 
the field observation by Engelbrektson (1983). It was reported 
that during the most of the day, the acceleration was bellow 
0.07g (gravity acceleration), while it was as high as 0.7g when 
the resonant vibration occurred. 

/ tv v

/ tv v

CONCLUSIVE REMARKS 
In the present study, a dynamic model for IIV has 

been developed. Some ice properties have been taken into 
account, such as the discrete failure, the dependence of the 
crushing strength on the ice velocity and the randomness of the 
ice failure. The model captures resonant frequency lock-in, 
which is the most important feature of IIV. The predicted 
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results reasonably explain the mechanism of resonance. In 
addition, the present model predicts the intermittent resonant 
vibration. These theoretical results are supported by the 
laboratory and field observations reported. 
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Figure 7. Stochastic structural responses. / 2.tv v 5=  
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Figure 8. Detailed ice force and response time history 
plots corresponding to the two phases in Fig. 7. 
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