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1 Introduction

Essentially non-oscillatory (ENO) schemes were first introduced by Harten,
Engquist, Osher, and Chakravarthy [1] in the form of cell averages. Later, Shu
and Osher [2] [3] developed ENO schemes applying the adaptive stencil idea to
the numerical fluxes and using TVD Runge-Kutta type time discretizations.

Flux-version ENO schemes of Shu and Osher [3] are uniformly high order
accurate right up to the shock wave, simpler to program and very robust to
use. The stencil is designed to adapt in the vicinity of discontinuities to yield
a one-sided interpolation if that becomes necessary. This gives an essentially
non-oscillatory shock transition while maintaining an uniformly high order
accuracy. However, there is also a drawback. ENO schemes have the inherent
mechanism to compare discontinuities to chose the ”smoothest” stencil, but
they lack the mechanism to detect the discontinuities. In other words, when
they approach two discontinuities at both sides, ENO schemes do not know
there are two discontinuities and will choose the weaker discontinuity. This
is the main reason why oscillation sometimes occurs and amplifies for ENO
schemes with accuracy higher than three-order.

In this paper, we introduce a discontinuity diagnosis mechanism into the
flux-version ENO schemes of Shu and Osher [3] and propose the discontinuity
diagnosis essentially non-oscillatory (DDENO) schemes. The essence of this
discontinuity diagnosis mechanism is to find out the discontinuities according
to the information coming form neighboring stencils. DDENO schemes can
detect the discontinuities at both sides automatically and cease to choose the
weaker discontinuity. Thus essentially non-oscillatory property is achieved by
this diagnosis mechanism around discontinuities and higher order accuracy is
obtained by the upstream central schemes at the smooth regions.
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2 Derivation of DDENO schemes

In this section, we use the flux-version ENO schemes as the basis to formulate
DDENO schemes. We choose the one-dimensional scalar conservation laws as
an example:

L(u) = ut. (1)

Let us discretize the space into uniform intervals of size ∆x. Let j be an in-
teger, and let xj = j∆x denote cell centers and xj+1/2 denote cell boundaries.
Then we take the conservative schemes

L(u)j = − 1
∆x

(f̂j+1/2 − f̂j−1/2), (2)

where f̂j+1/2 is a higher-order numerical flux at the xj+1/2 cell boundary.
We can actually assume f(u)x ≥ 0 for all u in the range of our interest. For

a general flux, we can split it into two parts either globally or locally. Here we
will only describe how f̂+

j+1/2 is computed on the basis of DDENO schemes.
For simplicity, we will drop the ”+” sign in the superscript. The formulas for
the negative part of the split flux (with respect to xj+1/2 ) are similar and
will not be shown.

As we well known, the three-order ENO schemes work very well in almost
all physical computations. It chooses one ”smoothest” stencil from three can-
didate stencils and only uses the chosen stencil to approximate the numerical
flux f̂j+1/2 at the cell boundary of xj+1/2. Thus we use ENO-3 to construct
the DDENO schemes. In the following parts, we use the phrase of ”base sten-
cil” to represent the ”smoothest stencil of ENO-3” for the sake of simplicity.

(1) Compute the divided difference table of f(u) up to rth desirable order.
(2) Construct the base stencil for each node. Choose the smoothest 3-point

stencil for each node as the base stencil by comaparing the divided differences
like ENO-3 schemes. Let us denote the base stencil at node j by S(j):

S(j) = (kjmin, k
j
min + 1, kjmax), (3)

where kjmin and kjmax are the left and right nodes of S(j). The base stencil is
chosen for each node, not for each cell boundary.

(3) Start ENO-3 schemes to approximate the numerical flux f̂j+1/2 at
the cell boundary of xj+1/2. Let us denote the ENO-3 stencil at xj+1/2 by
S(j + 1/2):

S(j + 1/2) = (kmin, kmin + 1, kmax). (4)

The discontinuity diagnosis mechanism is introduced into ENO-3 schemes
here. Firstly, DDENO schemes analyzes the information coming from the left
neighboring base stencil of node kmin. It compares the present stencil S(j +
1/2) with the base stencil S(kmin) of node kmin. Secondly, it analyzes the
information coming from the base stencil S(kmax) of the right adjacent node
kmax.
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(i) If

S(kmin) = S(j + 1/2) = (kmin, kmin + 1, kmax), (5)

it means that there is a discontinuity between the nodes kmin − 1 and kmin.
Otherwise, it means that the left region of the present stencil S(j + 1/2) is
smooth and the present stencil of ENO-3 can extend at least one point to the
left.

(ii) If

S(kmax) = S(j + 1/2) = (kmin, kmin + 1, kmax), (6)

it means that there is a discontinuity between the nodes kmax and kmax + 1.
Otherwise, it means that the right region of S(j + 1/2) is smooth and it can
add at least one point to the right.

(iii) If

S(kmin) = S(kmax) = S(j + 1/2) = (kmin, kmin + 1, kmax), (7)

it means that the present stencil S(j + 1/2) is surrounded by two discontinu-
ities at both sides and DDENO ceases to increase points and just uses ENO-3
to approximate the numerical flux at xj+1/2.

(iv) Otherwise, if

kmin(S(kmin)) < kmin and kmax(S(kmax)) > kmax, (8)

DDENO extend ENO-3 to ENO-5.
(4) Inductively, DDENO repeats step (3) to increase the ENO-3 to higher

order accuracy in smooth regions.
We remark that in the logical operation (iv), we use the logical opera-

tor ”and”. It is a very strong restriction and we do not need to know which
nodes are chosen by S(j+1/2). If we use the less strict logical operator ”or”,
we should care about the condition of the present stencil. In some severe
positions, the numerical flux is one-sidedly interpolated or extrapolated and
high-order ENO schemes will induce oscillation. Therefore, the logical opera-
tor ”or” should be carefully used. We do not suggest use higher order one-side
extrapolation to approximate the numerical fluxes near discontinuities.

3 Numerical results

We consider here the classical Riemann problems for one-dimensional Euler
system of gas dynamics for a polytropic gas. The time discretization was
performed by third-order TVD Runge-Kutta-type methods developed by Shu
and Osher [2]. All three examples were run with a CFL number of 0.6 and
γ = 1.4. To solve the ordinary differential equation

du

dt
= L(u), (9)
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where L(u) is a discretization of the spatial operator, each physical flux
was firstly split into there fluxes by Steger-Warming [5] flux vector splitting
method with three eigenvalues of u − a, u, and u + a, where a is the sound
velocity. Then Steger-Warming fluxes were further performed by the global
Lax-Friedrichs (LF) splitting.

EXAMPLE 1. This is the well known Sod’s problem [6]. The initial data
are (ρL, uL, PL) = (1, 0, 1), (ρR, uR, PR) = (0.125, 0, 0.1). We use ENO-3 as
the base stencil. We find that if equation (8) is satisfied, we can use ninth-order
ENO schemes directly and do not need to repeat step (3) and (4). Interpolation
of ninth-order accuracy is not necessary in physical simulations. We just want
to examine the discontinuity diagnosis mechanism. Therefore, the accuracy of
DDENO in this example is either three-order near discontinuities or ninth-
order at smooth regions. The numerical results are presented in Fig. 1. By
comparison, we can see that the shock wave and contact surface of DDENO
are steeper than that of ENO-3. Also notice that the corners of rarefaction
waves are better resolved.
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Fig. 1. DDENO-3-9 and ENO-3, Sod’s problem, 100 points, t=0.2 (solid lines are
DDENO-3-9 and dashed lines are ENO-3): (left) pressure; (right) density.

EXAMPLE 2. This is the Riemann problem proposed by Lax [7]. The
initial data are (ρL, uL, PL) = (0.445, 0.698, 3.528), (ρR, uR, PR) = (0.5, 0,
0.571). As Sod’s problem, we also use ENO-3 as the base stencil and ENO-9
at the smooth region. The results are shown in Fig. 2. Lax’s problem is a
tough test case for non-characteristic-based schemes of order at least three.
Oscillations can easily appear for such schemes [4]. From Fig. 2 we can see
that the density of DDENO is more steeper than that of eno-3.

EXAMPLE 3. Shu and Osher [3] presented a problem of a moving Mach
3 shock wave interacting with sine waves. This problem is a good model for
the kinds of interactions that occur in simulations of compressible turbulence.
The initial data are specified by
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Fig. 2. DDENO-3-9 and ENO-3, Lax’s problem, density, 100 points, t=0.13 (solid
line is DDENO-3-9 and dashed line is ENO-3).
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Fig. 3. DDENO-5-9 and ENO-5, Shu’s problem, density, 200 points, t=1.8 (solid
line is DDENO-5-9 and dashed line is ENO-5).

(ρ, u, P ) =
{

(3.857, 2.629, 10.333), x < 1.0
(1 + ε sin(5x), 0, 1), xε1.0 (10)

where ε = 0.2. The problem is run with 200 points in the interval [0, 10]. The
results are plotted in Fig. 3. We mention above that the logical operator ”or”
in logical equation (8) should be used carefully. This problem looks severe
but it is not difficult for ENO schemes to deal with because sine waves are
periodically continuous functions. In this example, we use ENO-5 as the base
stencil because the fluxes are one-side smooth. Then we use logical operator
”and” to extend ENO-5 to ENO-9 at more smooth regions. Thus fifth-order
one-sided interpolation or extrapolation is performed in this example. There-
fore, the accuracy of the results in this example is fifth-order or ninth-order.
From Fig. 3 we can see the expected improvements in resolution with higher
orders.
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4 Concluding remarks

In this paper, we introduce a discontinuity diagnosis mechanism into the flux-
version ENO schemes and propose discontinuity diagnosis essentially non-
oscillatory (DDENO) schemes. DDENO schemes use 3-point smoothest ENO
stencil as the base stencil and detect discontinuities by comparing the present
base stencil with neighboring base stencils. This mechanism prevents high-
order ENO schemes from choosing the weaker discontinuities when it encoun-
ters two or more than two discontinuities at both sides. DDENO schemes
are higher order accurate at smooth regions and three-order (the accuracy of
the ENO base stencil) at discontinuities. Numerical experiments demonstrate
that DDENO schemes work well in the examples and achieve higher order
accuracy at smooth regions.
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