
Nonlinear Dyn (2017) 88:2947–2956
DOI 10.1007/s11071-017-3423-3

ORIGINAL PAPER

Internal resonance vibration induced by nonlinearity of
primary suspension system in high-speed vehicle system

Yu Biao Liu · Yun Lin Xing · S. S. Law ·
Ying Ying Zhang

Received: 25 June 2016 / Accepted: 14 February 2017 / Published online: 17 March 2017
© Springer Science+Business Media Dordrecht 2017

Abstract This paper studies the phenomenonof inter-
nal resonance in high-speed vehicle system under high
frequency periodic excitations. A numerical model
of the vehicle system, taking into consideration the
dynamic effects of the primary suspension system
and the flexibility of the car-body, is established for
the study. An approximate approach incorporating the
incremental harmonic balance method with frequency
response function is adopted to solve the dynamic
responses of the vehicle system in frequency domain.
Numerical results show that internal resonance vibra-
tion in the vehicle system may occur with certain com-
binations of design parameters of the vehicle system.
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The vibration of the car-body and the primary sus-
pension system are significantly amplified with energy
transmitted between the natural modes of the car-body
and the primary suspension system. Parametric studies
on the internal resonance are further explored. Results
show that the nonlinearity of the primary suspension
spring and the modal damping ratio of the vehicle sys-
templay very important roles to the occurrence of inter-
nal resonance.
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1 Introduction

The ultimate goals of modern vehicle engineering are
to improve the riding comfort, to minimize the wear
of the vehicle components, and most importantly, to
ensure a safe operation. The vibration of a vehicle sys-
tem is closely related to the above performance and
safety issues and it has drawn considerable attention
in the research and development of railway vehicle.
On-line measurements of CRH trains in China [21,22]
showed that there exist three discrete wavelengths in
the wheel-track irregularity spectrum corresponding to
the track slab length (6.5m), half of the track slab
length (3.25m) and the circumference of the wheelset
(2.7m). The wheel-track excitation frequency corre-
sponding to these wavelengths increases with the run-
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ning speed, and they are, respectively, 17.1, 34.2 and
41.1Hz at a running speed of 400km/h. With the oper-
ation of modern lightweight vehicle, the fundamental
natural frequency of the primary suspension spring and
the higher-order natural frequencies of the vehicle sys-
tem would be lower and close to these excitation fre-
quencies. One of these excitation frequencies would be
close to the fundamental natural frequency of the pri-
mary suspension with variation of the running speed of
vehicle. The vibration of the wheelsets may be ampli-
fied and transmitted to the bogies and car-body through
the primary suspension. If these happen, the high fre-
quency dynamic responses of the vehicle system could
thenbe enlarged significantly [6,15].On the other hand,
the classical models of railway vehicle dynamics usu-
ally treat the primary suspension as a static springwith-
out consideration of its dynamic effect. According to
Lee’s [1,10] and Liu’s [11,12] research on the primary
suspension springs,when the excitation frequencies are
higher than 40Hz, the dynamic effect of the primary
suspension should not be ignored. So the static assump-
tion to the primary suspension spring is feasible with
vehicles running at low speed, but is not appropriate
when vehicles are running at high speed.

The steady-state response of a high-speed vehicle
system with nonlinear primary suspension is studied
in frequency domain in this paper, and the incremental
harmonic balance method (IHB) is adopted for the fre-
quency response analysis. The IHBmethod, developed
by Lau and Cheung [8], is used to obtain the steady-
state solution of the nonlinear system under harmonic
excitations. Pierre and Dowell [14] generalized this
method to analyze the harmonic responses of dry fric-
tion damped systems. Their results showed that the IHB
method can yield very accurate steady-state resultswith
some advantages over the time domain methods. Che-
ung et al. [5] derived the formulation of IHB method
for a general systemof differential equationswith cubic
nonlinearity. An incremental arc-length method com-
binedwith a cubic extrapolation techniquewas adopted
to trace the response curve automatically. Sze et al. [19]
applied the IHB method to study the nonlinear vibra-
tion of axiallymoving beams. Chen et al. [4] studied the
nonlinear vibration of plane structures by introducing
finite element in the IHBmethod. Lu and Lin [13]mod-
ified IHB method so that periodic motions of rotating
disk can be determined as well as oscillatory periodic
motions in a unified formulation. Pun et al. [16,17]
analyzed the free and forced vibration behavior of an

L-shaped beam with a limit stop. Pun combined the
IHB method with the approximate receptance of the
flexible beam to examine the complex internal reso-
nance vibration. Pun’s analysis revealed the presence
ofmultiple internal resonance vibration involving inter-
actions among the first five modes and indicated that
this mode interaction may occur if the low- and high-
order harmonics were close to two modal frequencies
at the same time. He also pointed out that the damp-
ing could effectively attenuate the internal resonance
vibration. All studies mentioned above showed that the
IHB method had certain advantages in obtaining the
steady-state response of nonlinear system compared to
the time domain methods.

The model of the high-speed vehicle taking con-
sideration of the flexibility of the car-body and the
dynamic effect of the primary suspension is established
for the study. The influence of dynamic response of
the primary suspension on the vehicle system and the
internal resonance phenomenon are studied, and the
interaction between the mode of the primary suspen-
sion and the flexural mode of the vehicle system is the
main focuses of this paper. The conditions under which
the internal resonance in the vehicle system may occur
are also explored.

2 Vehicle system modeling

2.1 Modeling of the car-body

The car-body is modeled as a box-like girder supported
on the secondary suspensions discretized into finite ele-
ments. Only the flexible bending modes are considered
in the modeling. The modeling approach is similar to
themethod proposed by Zhou et al. [24]. The equations
of motion of the system can be written in generally
form as

Mcẍ + Ccẋ + Kcx

= {0, . . . , P1, . . . , 0, . . . , P2, . . . , 0}T (1)

where ẍ, ẋ and x are the acceleration, velocity and dis-
placement vectors and Mc, Cc and Kc represent the
mass, damping and stiffness matrices, respectively. P1
is the force from the secondary suspension on the front
bogie and P2 is the force on the rear bogie.
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Fig. 1 The dynamic model
of the primary suspension

2.2 Primary suspension spring modeling

The primary suspension spring is modeled as dispersed
rigid blocks connectedwith a series of springs as shown
in Fig. 1 [11,12]. Letms and Kpz denote the total mass
and the linear stiffness and N denote the number of
dispersed rigid blockswhich is taken as 50 in this study.
The mass of the dispersed rigid blocks and stiffness of
the dispersed springs attached are msn = ms/N and
Kpzn = (N + 1)Kpz .

It is noted that the primary suspension spring stiff-
ness usually exhibits hardening characteristic [7,23]. In
this study, two nonlinear spring elements with a cubic
nonlinear stiffness are used to simulate this property.
Let Kp3 denote the coefficient of the cubic nonlin-
ear hardening component. The constitutive relationship
between the force F and displacement x of the suspen-
sion spring can be expressed as

F = Kpzx + 1

8
Kp3x

3. (2)

A dimensionless parameter is defined as

β = 1

8

Kp3x20
Kpz

. (3)

where the symbol x0 represents the static displacement
of the primary suspension spring in the static equi-

librium position. Parameter β represents the extent of
nonlinear hardening. Since damping within the spring
system is small, no damping is assumed. The dimen-
sionless constitutive relationship can be expressed as

f

(
x

x0

)
=

(
x

x0

)
+ β

(
x

x0

)3

(4)

It is noted from Eq. 4 that the internal forces of the
primary suspension springs have both linear and non-
linear stiffness components. Putting the nonlinear part
on the right-hand-side, the equations of motion for the
dynamic model of the primary suspension springs can
be written as:

Ms ẍs + Ksxs = −fnsw − fnsb (5)

fnsw = [ fsw, 0, . . . ,− fsw, 0, 0, . . . , 0]T (6)

fnsb = [0, 0, . . . , 0, fsb, 0, . . . ,− fsb]T (7)

Ms =

⎡
⎢⎢⎢⎢⎢⎣

0
msn

. . .

msn

0

⎤
⎥⎥⎥⎥⎥⎦

Ks =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Kpzn −Kpzn

−Kpzn 2Kpzn −Kpzn

−Kpzn 2Kpzn
. . .

. . .
. . .

. . .

. . . 2Kpzn −Kpzn

−Kpzn K pzn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where fsw = Kp3(zw − xs n2 )
3 and fsb = Kp3

(xs n2 − zb)3 represent the nonlinear parts of the internal
forces of the primary suspension springs, and zw , zb and
xs n2 denote the vertical displacements of the wheelset,
the bogie and the mid-nodes of the primary suspension
spring respectively. It can be seen fromEqs. 6 and 7 that
the formof vectors fnsw and fnsb are identical except the
internal force terms fsw and fsb which are in different
position. The dispersed dampers in the vehicle system
can also be treated in the sameway by putting the inter-
nal forces vectors on the right-hand-side. The nonlinear
spring elements and the dispersed dampers are referred
to as the dispersed elements, and fl (l = 1, 2, . . . Ne)

represents all the internal force vectors of the dispersed
elements, and Ne denotes the total number of the dis-
persed elements.
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Fig. 2 Side view of the vehicle model

Suppose the lth dispersed element connects to two
degrees-of-freedoms (DOFs), those are the li th DOF
and the l j th DOF, then fl can bewritten in the following
general form as:

fl = {0 · · · fli · · · fl j · · · 0}T (8)

where fl = fli (xl , ẋl) = − fl j (xl , ẋl)depends only
on the relative displacement xl and relative velocity ẋl
between two DOFs of the dispersed element.

2.3 The equations of motion of the vehicle system

The vehicle model, shown in Fig. 2, consists of a
car-body, two bogies and four wheelsets joined by
means of the primary and secondary suspensions.
The wheelsets and bogies are considered as rigid
bodies. Only vertical DOFs of vehicle are consid-
ered in this model. Each wheelset has vertical DOF,
and each bogie has vertical and pitch DOFs. Mod-
eling of the car-body and the primary suspension
are described in Sects. 2.1 and 2.2. The secondary
suspension is modeled as a linear spring plus a
damper.

Combining the equations ofmotion of thewheelsets,
the bogies, the car-body, the primary suspension and
the secondary suspension and putting all the internal
force vectors of the dispersed elements on the right-
hand-side, the equations of motion of the overall vehi-
cle system can be written as

Mẍ + Cẋ + Kx = −
Ne∑
l=1

fl +
4∑

k=1

pwk (9)

where ẍ, ẋ and x are the acceleration, velocity and dis-
placement vectors, respectively, and M, C and K rep-
resent the mass and viscous damping matrices and the
linear part of the stiffness matrix of the vehicle system
respectively. pwk (k = 1, 2, 3, 4) denotes the wheel-
track excitation force acted on the kth wheelset.

2.4 The assumption of viscous damping

It is noted that the left side of Eq. 9 represents a lin-
ear system. Its natural frequencies ω1, ω2, ..., ωh and
modal vectors Φ1,Φ2, . . . ,Φh can be obtained by
solving the generalized eigenvalue problem [20] as(
Mω2 − K

)
Φ = 0 (10)

where h is the number of modes required in the fre-
quency range. The modal vectors can be normalized
with respect to the mass matrix to yield the orthogonal
conditions:

ΦTMΦ = I ΦTKΦ = Ω2 (11)

Φ = [Φ1,Φ2, . . . ,Φh]
Ω2 = diag(ω2

1, ω
2
2, . . . , ω

2
h) (12)

I = Identity matrix (13)

Since viscous damping exists in the vehicle system, an
assumption on the viscous damping matrix is needed
to solve Eq. 9. The viscous damping matrix C in Eq. 9
is written as

ΦTCΦ = diag(2ξ1ω1, 2ξ2ω2, . . . , 2ξhωh) (14)

where ξ j ( j = 1, 2, ..., h) denotes the modal damping
coefficients.

3 Modified IHB method

3.1 Combining harmonic balance method with FRF

The IHBmethod is a combination of the harmonic bal-
ancemethod (Ritz andGalerkin averagingmethod) and
the incremental method (Newton–Raphson procedure)
[5]. The first step in the IHB method is the harmonic
balance. If the excitation force pwk is assumed to be
periodic, it can be expanded into Fourier series as:

pwk {τ } =
NH∑
n=0

Pkne
inτ k = 1, 2, . . . , 4 (15)
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where τ = ωt and i is the imaginary unit. Likewise,
the solutions of Eq. 9 and the internal force vectors of
the dispersed element fl can also be expanded as:

xm(τ ) =
NH∑
n=0

Xmne
inτ m = 1, 2, . . . , Nm (16)

fl(τ ) =
NH∑
n=0

Flne
inτ l = 1, 2, . . . , Ne (17)

where Nm denotes the total number of DOFs in the
overall vehicle system and NH is the number of har-
monic terms whose appropriate value depends on the
desired accuracy. Substitute Eqs. 15 to 17 into Eq. 9
and the following equations can be obtained [16,17]
(m = 1, 2, . . . , Nm):

Xmn = −
Ne∑
l=1

(
Hmli (nω) − Hml j (nω)

)
Fln

+
4∑

k=1

(Hmk (nω))Pkn (18)

where Hmk(nω) is the frequency response function
(FRF) between the mth DOF and the kth DOF cor-
responding to the linear part of Eq. 9. The explicit for-
mulas for Hmk(nω) are given byEq. 19, and they can be
evaluated using the solutions of the eigenvalue problem
obtained in Sect. 2.4.

Hmk(nω) =
h∑
j=1

ΦmjΦkj

−n2ω2 + 2inξ jωω j + ω2
j

(19)

Equation 19 can be partitioned with unknowns related
to the dispersed elements in one set of equation as

X1 = H11(ω)F(X1) + H(ω)P

and the other unknowns in the second set of equations
as

X2 = H21(ω)F(X1) + H(ω)P .

The first partition related to the dispersed elements
are independent (uncoupled) after combining the IHB
method with the FRF. Therefore, only the unknowns
related to the dispersed elements are needed to be
solved with a much reduced computational cost. Select
the DOFs connected to the dispersed elements and
reform Eq. 18 as (m = 1, 2, . . . , Nt ):

Xmn = −
Ne∑
l

(Hml1 (nω) − Hml2 (nω))Fln

+
Np∑
k

(Hmk (nω))Pkn (20)

where Nt � Nm represents the total number of DOFs
related to the dispersed elements. Let

cm = {Xm1 Xm2 · · · XmNH}T
c = {cT1 cT2 · · · cTNt

}T (21)

rl = {Fl1 Fl2 · · · FlNH}T
r = {rT1 rT2 · · · rTNe

}T (22)

pk = {Pl1 Pl2 · · · PlNH}T
p = {pT1 pT2 · · · pTNp

}T (23)

where cm , rl , pk are the vectors of Fourier coefficients
of displacement corresponding to themthDOFs, the lth
dispersed element and the kth external force, respec-
tively. Equation 20 can be expressed in matrix form
as

c = −Yr + Zp (24)

Y =

⎡
⎢⎢⎢⎣
Y11 Y12 · · · Y1Ne

Y21 · · · · · · · · ·
...

...
. . .

...

YNt1 · · · · · · YNt Ne

⎤
⎥⎥⎥⎦

Z =

⎡
⎢⎢⎢⎣

Z11 Z12 · · · Z1Np

Z21 · · · · · · · · ·
...

...
. . .

...

ZNt1 · · · · · · ZNt Np

⎤
⎥⎥⎥⎦

Yml =

⎡
⎢⎢⎢⎢⎢⎣

Eml(0)
Eml(ω)

Eml(2ω)

. . .

Eml(NHω)

⎤
⎥⎥⎥⎥⎥⎦

Zmk =

⎡
⎢⎢⎢⎢⎢⎣

Hmk(0)
Hmk(ω)

Hmk(2ω)

. . .

Hmk(NHω)

⎤
⎥⎥⎥⎥⎥⎦

where Eml(nω) = Hmli (nω) − Hml j (nω).
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3.2 The incremental solution procedure

The second step to apply the IHB method is the
well-known Newton–Raphson procedure [5]. It will be
briefly explained here. Define the residual vector as

ε = −c − Yr + Zp (25)

The residual vector will be null when in equilibrium,
and Eq. 25 may be written as:

ε = 0 (26)

The new solutions c, ω are obtained by adding the
increments �c,�ω to the current solutions c0, ω0 to
have

c = c0 + �c ω = ω0 + �ω (27)

The residual vector can be written as
ε0 = − c0 − Y(ω0)r(c0, ω0) + Z(ω0)p.

Expanding Yr and Zp in incremental form and
neglecting the higher-order terms, the following for-
mula can be obtained

Yr = Y(ω0)

[
r(ω0, c0) + ∂r

∂ω

∣∣∣∣
ω0

�ω + ∂r
∂c

∣∣∣∣
c0

�c

]

+ r(ω0, c0)
∂Y
∂ω

∣∣∣∣
ω0

�ω (28)

Zp = Z(ω0)p + ∂Z
∂ω

∣∣∣∣
ω0

p�ω (29)

Substitute Eqs. 27 to 29 into Eq. 25, the incremental
form of the residual vector can be written as:

ε = ε0 −
[
Y(ω0)

∂r
∂c

∣∣∣∣
c0

+ I

]
�c

+
[
−Y(ω0)

∂r
∂ω

∣∣∣∣
ω0

− r(ω0, c0)
∂Y
∂ω

∣∣∣∣
ω0

+ ∂Z
∂ω

∣∣∣∣
ω0

p

]
�ω (30)

where rl , ∂r
∂c and ∂r

∂ω
can be written into explicit forms

for the cubic nonlinear hardening springs and the dis-
persed dampers [5,16,17]. Note that ε0 have vanished
for a correct solution. Then the solutions of Eq. 24 can
be obtained from the following iterative steps:

−
[
Y(ωi )

∂r
∂c

∣∣∣∣
ci

+ I

]
�ci+1

= εi +
[
Y(ωi )

∂r
∂ω

∣∣∣∣
ωi

+ r(ωi , ci )
∂Y
∂ω

∣∣∣∣
ωi

+ ∂Z
∂ω

∣∣∣∣
ωi

p

]
�ωi+1 (31)

ci+1 = ci + �ci+1 (32)

ωi+1 = ωi + �ωi+1 (33)

One should note that the number of unknowns in Eq. 31
is larger than the number of equations for the presence
ofω. So either one of c andω should be fixed to perform
the above iterations. A converged solution is obtained
when ε0 reaches a prescribed small error. Then using
the current converged solution as an initial condition
and prescribing either one of �c and �ω to a small
value, the iterative process will begin for the next solu-
tion. The steady-state solution of the nonlinear system
can then be obtained for different frequency points.

4 Simulations

Parameters in the following vehiclemodeling are based
on the CRH3 trains in China. According to the mode
selection criteria introduced by Carlbom [2,3], 53
vibration modes of the vehicle system are selected.
Since the natural frequency of the primary suspension
springs is close to the third bendingmodal frequency in
this vehicle system, the interaction between those two
modes and the responses of the vehicle system in the
vicinity of natural frequency of the third bending mode
are of most concern in this study. All the frequencies
are normalized by the third bending modal frequency.
Table 1 lists the dimensionless natural frequencies of
the first five bending modes of the vehicle system.

The periodic wheel-track excitations of the vehicle
system are applied vertically on the wheelsets as

Pwk = P cos(ωt) k = 1, 2, 3, 4 (34)

Table 1 The natural frequencies of first five bending mode of
the carbody

set i 1 2 3 4 5

ωci/ωc3 0.33 0.66 1 1.41 1.98
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Fig. 3 Vertical amplitude response of the car-body centroid (β =
0, ξ0 = 0.001)

and the following dimensionless quantities are defined
as

α = P

W
, ωs = ω̄

ωc3
,� = ω

ωc3
,

γc = zc/x0, γb = zb/x0.

where the axle load is denoted by W . The excita-
tion frequency and the fundamental natural frequency
of the primary suspension spring are denoted by ω

and ω̄ respectively. Symbol γc = zc/x0 and γb =
zb/x0 represent the amplitude of responses of the cen-
troid of the car-body and the bogie in the vertical
direction. All of modal damping ratios are assumed
identical and equal to ξ0. According to experimen-
tal and simulated results [9,18], the amplitude of the
contact forces oscillate between 1/60 and 1/10 of
the axle load. So the dimensionless excitation ampli-
tude α remains unchanged and equals to 1/30 in this
study.

4.1 The influence of dynamic response of the primary
suspension

The primary suspension springs are assumed to be lin-
ear in this sectionwithβ = 0.With changing ω̄, the ver-
tical responses of the car-body centroid and the bogie
are shown in Figs. 3 and 4, respectively. ωs = ∞ in
these figures corresponds to the case where the gen-
eral static model is adopted for the primary suspen-
sion springs with the dynamic effects ignored. Figure 3
shows that the dynamic response of the primary sus-
pension spring has no effect when the excitation fre-
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Fig. 4 Vertical amplitude response of the bogie (β = 0, ξ0 =
0.001)

quency is away from the fundamental natural frequency
of the primary suspension springs. For the static model,
the response curve has only one peak corresponding to
the frequency ωc3. Since the car-body rests on the sec-
ondary suspension located exactly at the node of the
second bending mode, there is no peak in the vicin-
ity of the second bending mode of the vehicle sys-
tem. The response curve for the dynamic model has
two peaks with one corresponding to the frequency
ωc3 and the other one corresponds to ω̄. The peak
response amplitude of the car-body centroid depends
on ωs . When ω̄ is very close to ωc3, the peak amplitude
increases and reaches the maximum value at ωs = 1.
When ωs is in the vicinity of 1.0, say ωs = 1.004,
the peak amplitude is 15 times larger than that from
the static model. It may be concluded that if the nat-
ural frequency of the primary suspension springs gets
closer to a higher modal frequency of the vehicle sys-
tem, the dynamic response of the primary suspension
springs has significant effect on the response of the car-
body.

Figure 4 shows the amplitude of responses of the
bogies. For the case with the static model, the response
curve is descending with increasing � indicating that
the high frequency excitation cannot be transmitted
from the wheelsets to the bogies. However, the ampli-
tude of responses from the dynamic model is much
larger in the vicinity of ω̄. It may be concluded that the
vibration of the bogie is amplified when the excitation
frequency is in the vicinity of the natural frequency of
the suspension spring and the vibration is transmitted
to the bogies.
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Fig. 5 Vertical amplitude response of the car-body centroid
(ωs = 0.98, ξ0 = 0.001)
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Fig. 6 Vertical amplitude response of the car-body centroid (par-
tial enlarged ωs = 0.98, ξ0 = 0.001)

4.2 The influence of nonlinearity of the primary
suspension springs

To study the case when the natural frequency of the
third order bending natural frequency is close to the
natural frequency of the primary suspension springs,
the parameter ωs is set equal to 0.98. The response of
the vehicle system is stimulated with linear and non-
linear primary suspension springs (β = 0 and β = 5).
Figure 5 shows the comparison of the vertical response
of the car-body centroid in the two cases. Figure 6 is
partial enlarged in the vicinity of the peak value. The
linear case (β = 0) with solid line has only one branch
going along the route a → f → g. The nonlinear case
(β = 5 ) with dotted line has two branches. One goes
along the route a → b → c and the other goes along
the route c → d → e → f → g. It can be seen
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Fig. 7 Vertical amplitude response of the car-body centroid
(ωs = 0.98, ξ0 = 0.001)
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Fig. 8 Vertical amplitude response of the bogies (ωs = 0.98,
ξ0 = 0.001)

that the response are identical when the excitation fre-
quency is away from the frequency ω̄. But the results
are totally different in the vicinity of the frequency ω̄.
This is because the excitation frequency, the natural
frequency of the flexural mode of the vehicle system
and the inherent frequency of the suspension system are
in close proximity. Due to nonlinearity of the suspen-
sion springs, the vibration energy transmits between the
third natural bending mode of the vehicle system and
the first natural mode of the primary suspension sys-
tem. In this case, the vehicle systemwould generate the
internal resonance and the response in the vicinity of
the frequency ω̄ is called internal resonance response.

Figures 7 and 8 compare the vertical responses of
the car-body centroid and the bogies with different
parameter β. The curve would bend to right more obvi-
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Fig. 10 Vertical amplitude response of the bogies (ωs = 0.98,
β = 5)

ouslywith biggerβ and the internal resonance response
occurs over a wider frequency range. It may be con-
cluded that the nonlinearity of the primary suspension
spring is a key factor for the occurrence of internal res-
onance.

4.3 The influence of the modal damp ratio

To study the effect of the modal damping ratio on the
internal resonance vibration, the parameter ξ0 is varied
from 0.001 to 0.003. The amplitude responses of the
car-body centroid and the bogies are shown in Figs. 9
and 10 respectively.

The results show that the internal resonance will
become weaker with an increase of ξ0. The internal
resonance almost disappears when ξ0 = 0.003. There-

fore, the damping ratio of vehicle system is also a key
parameter for the occurrence of internal resonance.

5 Conclusions

The equations of motion of a high-speed vehicle sys-
tem including the dynamic effects of the primary sus-
pension and the flexibility of the car-body have been
derived in this paper. The steady-state responses of the
high-speed vehicle system under periodic excitations
are solved with an approximate harmonic approach
incorporating the IHB method with FRF in the fre-
quency domain. Since the algorithm only solves the
equations of the unknowns related to the dispersed
internal elements, it offers an effective means to ana-
lyze the dynamic behavior of a vehicle system with
local nonlinearity.

If thewheel-rail excitation frequencies comeclose to
the fundamental natural frequency of the primary sus-
pension with increasing running speed, it is found that
the dynamic response of the primary suspension spring
has a great influence on the responses of the high-speed
vehicle whether the primary suspension spring is lin-
ear or nonlinear. When the natural frequency of the pri-
mary suspension springs gets closer to one of the higher
modal frequencies of the vehicle system, the internal
resonance which involves the fundamental mode of the
primary suspension spring and the higher modes of
the vehicle system would have occurred. And then the
responses of the high-speed vehicle systemwould have
been amplified. This is especially true for the nonlinear
case. It may be concluded that the nonlinearity of the
primary suspension spring and the damping ratios of
the vehicle system both play very important roles for
the occurrence of internal resonance. A stronger non-
linear hardening of the primary suspension springs or
a smaller modal damping ratio would lead to internal
resonance more easily over a wider range of frequency.
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