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The lamina cribrosa is the primary site of optic nerve injury during glaucoma, and its deformations
induced by elevated intraocular pressure are associated directly with the optic nerve injury and visual
field defect. However, the deformations in a living body have been poorly understood yet so far. It is
because that integral observation and precise measurement of the deformations in vivo are now almost
impossible in the clinical diagnosis and treatment of glaucoma. In the present study, a new mechanical
model of the lamina cribrosa is presented by using Reissner’s thin plate theory. This model accurately dis-
plays the stress and deformation states in the lamina cribrosa under elevated intraocular pressure, in
which the shear deformation is not presented by the previous models, however, is demonstrated to play
a key role in the optic nerve injury. Further, the deformations of the structures, involving the optic nerve
channels and the laminar sheets in the lamina cribrosa, are first investigated in detail. For example, the
dislocation of the laminar sheets reaches 18.6 lm under the intraocular pressure of 40 mmHg, which is
large enough to damage the optic nerve axons. The results here confirm some previously proposed clin-
ical speculations on the deformations of the pore shape in the lamina cribrosa under elevated intraocular
pressure during glaucoma. Finally, some essentially clinical questions existed during glaucoma, such as
the pathological mechanism of the open-angle glaucoma with normal intraocular pressure, are discussed.
The present study is beneficial to deeply understanding the optic nerve injury during glaucoma.

Statement of Significance

The lamina cribrosa is the primary site of the optic nerve injury induced by elevated intraocular pressure
during glaucoma. Under high intraocular pressure, the optic nerve channel near to the periphery of the
lamina cribrosa (Channel A) is deformed to become into a tortuous elliptical horn from a straight cylinder,
while the optic nerve channel near to the center of the lamina cribrosa (Channel B) is deformed to become
into a straight horn from a straight cylinder. These deformations cause both the axoplasm flow obstacle in
the axon fibers and the blocked blood flow in the capillaries which pass through the channels, and trigger
the visual field defect during glaucoma.

� 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Glaucoma is the most common cause of irreversible blindness
and its pathological mechanism is ascribed substantially to the
irreversible deformation of the lamina cribrosa (LC) induced by ele-
vated intraocular pressure (IOP) [1,2]. It is this deformation that
results in the damage of the optic nerves passing through the LC
and then triggers the visual field defects [3]. Therefore, the defor-
mation states of the LC play a key role in the course of glaucoma
developing. However, the deformation processes and states of
the LC in a living body have been poorly understood yet so far. It
is because that integral observation and precise measurement of
the deformations in vivo are now almost impossible in the clinical
diagnosis and treatment of glaucoma [4]. So, building an appropri-
ate mechanical model of the LC still remains the most efficient way
to understand the stress and deformation states of the LC in a living
body.

In the previous studies on the mechanical model of the LC, Chi
et al. [5] employed a membrane model to investigate the deforma-
tion of the LC under elevated IOP. However, because of the reason
that the membrane model neglected the thickness and flexural
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resistance of the LC, the results given by the model caused the
overestimation on the deformation of the LC.

Considering the thickness and flexural resistance of the LC,
Dongqi and Zeqin [6] used Kirchhoff’s thin plate theory to first
study the deformation of the LC induced by elevated IOP. Because
the classical Kirchhoff’s thin plate theory inherently includes the
postulation that the normal line of the middle plane of plate before
the deformation of the plate still remains the normal line of the
middle plane after the deformation, i.e. the thin plate theory intrin-
sically ignores the shear deformation of the plate [7], Dongqi and
Zeqin’s model is only suitable for roughly obtaining the deforma-
tion of the LC with both large radius and small thickness. In fact,
in terms of the average dimensions of the LC given by Sigal et al.
[8], the deformation given by Dongqi and Zeqin’s model was usu-
ally much less than the experimental results measured by Levy
and Crapps [9]. Even more remarkable is the fact that the model
stemming from Kirchhoff’s thin plate theory could not, in principle,
be employed to study the dislocation between the laminar sheets
in the LC, which is proved to play a key role in determining the
damage of the optic nerve bundles in the LC.

Edwards and Good [10] used the large deflection plate bending
theory to model the deformation of the LC. In terms of the LC with
small dimensions, their results are in roughly agreement with the
existing experimental results [9]. However, for the LC with average
or large dimensions [8], the results given by Edwards and Good’s
model have considerable errors relative to the experimental data
[9]. According to the measurements given by Sigal et al. [8], on
the one hand, the thickness of the LC ranges from 0.24 to
0.36 mm, and its average thickness is h = 0.3 mm. On the other
hand, Levy and Crapps [9] experimentally obtained the deflection
of the LC under IOP = 60 mmHg to be roughly w = 0.03 mm. There-
fore, w/h = 0.1, i.e. the deflection of the LC under high IOP is still
less than the thickness of the LC. Based on the theory of plates
[7], modeling the deflection of the LC should apply the theory of
the plates generating small deflection rather than large deflection.
Moreover, the boundary of the model was assumed as a clamped
edge without in-plane scleral pretension, which implied that the
scleral tension induced by elevated IOP does not affect the stress
and deformation in the LC [11].

In addition, there have been many studies using finite element
method to calculate the deformation of the LC up to now [11–14].
However, because of the reason that the optic nerve channels and
laminar sheets in the LC have both small dimensions and tangle-
some structures, employing finite element method hardly obtains
the accurate deformation of the structures.

In particular, in order to understand the boundary effects of the
mechanical model of the LC, Newson and El-Sheikh [11] detailedly
investigated the mechanical models of the LC with six types of
boundary conditions by using Kirchhoff’s thin circular plate and
membrane theories. Their results indicated that a small deflection
model of the plate with a clamped edge and considered in-plane
pretension due to scleral expansion was the most appropriate to
determining the deformation of the LC.

In this paper, based on Reissner’s thin plate theory [7], which
gives up Kirchhoff’s postulation that a normal line of the middle
plane of a plate is still a normal line of the middle plane of the plate
after deformation, a new mechanical model of the LC is presented
and is proved to be in good agreement with the existing experi-
mental data. Employing this model, we firstly obtain the radial,
tangential and shear deformations of the LC, and analyze the char-
acteristics of the deformations. In particular, the shear deforma-
tion, which is not given by the existing models [5,6,11], is
obtained and proved to play a key role in the deformation of the
LC and the optic nerve injury in the LC. Secondly, the deformations
of the structures including the optic nerve channels and laminar
sheets in the LC are first investigated in detail. The results theoret-
ically confirm the speculations of Quigley et al. [15] on the defor-
mations on the pores and laminar sheets in the LC induced by
elevated IOP in the course of glaucoma developing. Finally, we
use the present model to discuss some essential clinical questions
existed during glaucoma, involving the pathological mechanism of
the open-angle glaucoma with normal intraocular pressure, the
intrinsic connection between the ratio of optic cup to disc and
the deformations, the damages of the optic nerve bundles induced
by the deformations.

2. Statistical methods

The experimental data are presented as mean ± standard devia-
tion. The error bars correspond to the standard deviation. The sta-
tistical data were analyzed using the one-way and two-way
analyses of variance and examined by paired t-test where
p < 0.05 was considered statistically significant. In order to evalu-
ate the goodness of fit of analytically calculated results from
different models to the existing experimental data, two statistics:
R-square and root mean square error (RMSE) are determined.
Statistical analysis was performed using Microsoft Excel software.

3. Mechanical model

According to the existing experimental results on the geometri-
cal and mechanical characteristics of the LC [8,9], on the one hand,
the thickness of the LC ranges from 0.24 to 0.36 mm, and its aver-
age thickness is h = 0.3 mm, while the radius of the LC ranges from
0.76 to 1.14 mm, and its average value is a = 0.95 mm. On average,
h/(2a) = 0.16 and h/Rs = 0.025, which implies that the LC should be
deemed as a thin plate [7], where Rs = 12 mm is the average radius
of the eyeball. On the other hand, when IOP is experimentally
increased to 60 mmHg, the deflection of the LC is measured to be
roughlyw = 0.03 mm. So,w/h = 0.1, i.e. the LC should be considered
to be a small deflection plate [7].

So, we reasonably model the LC as a thin elastic flat Reissner’s
plate undergoing small deflection subjected to a uniformly dis-
tributed lateral load, q = IOP � ICP, and a clamped edge with the
in-plane pretension, N, as shown in Fig. 1, where ICP is intracranial
pressure, which is also the retrolaminar pressure or the optic nerve
tissue pressure in previous literatures [6,10,11]. The internal forces
of Reissner’s plate in polar coordinates are expressed by [7],

Mr ¼ �D
dur

dr
þ m

ur

r

� �
; Mh ¼ �D

ur

r
þ m

dur

dr

� �
ð1Þ

and

Qr ¼ C
dw
dr

�ur

� �
ð2Þ

where Mr and Mh are the radial and tangential moments, respec-
tively; Qr is the shearing force; w is the deflection of the middle
plane of the LC, and ur is the rotation angle of the normal line of
the middle plane of the plate; D = Eh3/[12(1 � m2)] and C = 5Gh/6
are separately the flexural rigidity and the transverse shear stiff-
ness; E, G and m are Young’s modulus, the shear modulus and Pois-
son’s ratio of the LC, respectively.

The equilibrium equations of the LC are written by [7]

Mr �Mh

r
þ dMr

dr
� Qr ¼ 0 ð3Þ

and

Qr ¼ �Nr
dw
dr

� 1
2
qr ð4Þ

where Nr is the radial tensile force on the cross section of the LC.



Fig. 1. (a) Two dimensional schematic showing the geometry of a cross section of the LC and the external loads exerting on the LC. The boundary of the LC is described as a
clamped edge with the in-plane pretension. (b) Three dimensional schematic showing the shape of the LC and the directions of basic coordinates. (c) Three dimensional
schematic showing the internal forces exerting on an element in the LC.
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From Eqs. (1)–(4), we obtain the equation of the rotation angle,

r2
d2ur

dr2
þ r

dur

dr
� k2

a2
r2 þ 1

 !
ur ¼

qr3

2D 1þ Nr
C

� � ð5Þ

where

k2 ¼ Nra2

D 1þ Nr
C

� � ð6Þ

In Eqs. (5) and (6), generally speaking, Nr varies with the coor-
dinates, r. However, based on the theory of plates [7], when (dw/
dr)2 � 1, Nr has little change under a constant lateral load, q. In
fact, it is roughly of the order of 10�3 in the present model. In par-
ticular, here the LC is approximated to be an isotropic elastic circu-
lar plate under the combined action of a symmetrical lateral load q
and a uniform peripheral scleral tension N, as shown in Fig. 1. The
value of the in-plane pretension N arises from the scleral expan-
sion, and N = IOP�Rs/2 [6,11]. Obviously, on the periphery connect-
ing the LC and the sclera, Nr = N. Therefore, in the present model,
we only consider Nr to be a constant and equal to N, i.e.

Nr ¼ N ¼ IOP � RS

2
ð7Þ

Thus, Eq. (5) becomes a Bessel equation, and its solution is writ-
ten by

ur ¼ C1I1
k
a
r

� �
� qr
2N

ð8Þ



a)

b)

Fig. 2. Calculation graphs (a) showing the deflections of the LC caused by different
IOP, which displays that the deflections of LC given by Reissner’s thin plate model is
greater than that given by Kirchhoff’s model; and (b) showing the deflections of the
center of the LC with IOP variation, which derive from the different mechanical
models and experiment.

Table 1
R-square and root mean squared errors (RMSE) of different models with respect to the
experiments of Levy and Crapps [9].

Statistics / Model Present Dongqi and
Zeqin [6]

Edwards and
Good [10]

R-square 0.939855 0.683257 0.627365
RMSE (lm) 2.407904 5.525758 5.993496
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Substituting Eq. (8) into Eqs. (2) and (4) yields the deflection of
the LC,

w ¼ 1
1þ N

C

C1
a
k
I0

k
a
r

� �
� qr2

4N
� qr2

4C
þ C2

� �
ð9Þ

where I0 and I1 are the modified Bessel functions; C1 and C2 are inte-
gral constants.

The boundary conditions of the LC are efficiently proved both
theoretically [11] and experimentally [16,17] to be a clamped edge
with the in-plane pretension N, as showed in Fig. 1. Using the
clamped boundary conditions, i.e. ur = 0 and w = 0 at r = a, we
obtain the integral constants,

C1 ¼ qa
2NI1ðkÞ ð10Þ

C2 ¼ � qa2

2NkI1ðkÞ I0ðkÞ þ
qa2

4N
þ qa2

4C
ð11Þ

Thus, the rotation angle of the normal line of the middle plane is
written by

ur ¼
qa

2NI1ðkÞ I1
k
a
r

� �
� qr
2N
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and the deflection of the LC is expressed by

w ¼ q
1þ N

C
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4N
þ a2 � r2
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Eq. (13) displays the deflection that the LC is considered as a
Reissner’s plate. The values of the deflection are associated inti-
mately with the transverse shear stiffness of the plate, C. When
the transverse stiffness approaches to infinity, i.e. C ! 1, Eq.
(13) implied that any transverse shear deformation does not occur
in the LC, and at the same time, Eq. (13) naturally degenerates into
the result of Kirchhoff’s plate [6,7,11]. The results given by the pre-
sent model are obviously larger than the previous results given by
Kirchhoff’s plate method [6,11], and the differences between the
two results increase nonlinearly with elevated IOP, as shown in
Fig. 2a. In the computations here, we use a new relation between
IOP and ICP [18], ICP = 10 erf(0.088 IOP), which is proved to over-
come the induced mathematical singularity in applying the exist-
ing relation between IOP and ICP [6,10,11] to compute the
mechanical properties of the LC and to be more precise than the

existing relation, where erfðnÞ ¼ ð2= ffiffiffiffi
p

p Þ R n
0 e

�g2dg is Gauss error
function. In addition, we employ the main mechanical and geomet-
rical parameters of the LC [8] to be E = 0.3MP, m = 0.49, a = 950 lm
and h = 300 lm in the computations of this study.

The deflection given by Eq. (13) is compared with the existing
experimental data [9] and models [6,10], as shown in Fig. 2b. We
calculated two statistics: R-square and RMSE to evaluate the good-
ness of fit of different models, as shown in Table 1. From this Table,
R-square is closer to 1 and RMSE is closer to 0 in our present model.
Therefore, the present model is obviously in better agreement with
the experimental results than the previous models.

4. Results

4.1. Deformation analysis

Based on Eq. (13), the radial normal strain is written by [7]

er ¼ �z
qk

2NI1ðkÞ I0
k
a
r

� �
� a
kr

I1
k
a
r
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� q
2N

� �
ð14Þ

On the one hand, this radial normal strain linearly varies on a
cross section of the LC (r = const.): it is equal to zero on the middle
plane of the LC (z = 0), and it reaches its tensile and compressive
maximum values on the cross section at the anterior and posterior
surfaces of the LC (z = ± h/2), as shown in Fig. 3a. On the other hand,
the strain is the symmetry with respect to r – coordinate axis. The
anterior part of the central region of the LC (r < 600 lm, z < 0) is
subject to a compressive strain, while the posterior part of the cen-
tral regions (r < 600 lm, z > 0) is subject to a tensile strain. On the
contrary, the anterior part of the limbic region of the LC
(r > 600 lm, z < 0) is subject to a tensile strain, while the posterior
part of the limbic regions (r > 600 lm, z > 0) is subject to a com-
pressive strain, as shown in Fig. 3b. Here, the limbic region of the
LC is defined as the region of r > 600 lm. This indicates that there
is a transition point between the central and limbic regions of the
LC, at which the radial deformation of the LC does not occur, i.e.



a) b)

c) d)

Fig. 3. Calculation graphs (a) showing the strains of the radial, tangential and shear on a cross section in the LC (r = 800 lm) under IOP = 20 mmHg; (b) showing the strains of
the radial and tangential on the anterior and posterior surfaces of the LC (z = ± h/2) under IOP = 20 mmHg; (c) showing an only transition point corresponding to the radial
strains in the LC (r � 600 lm) under different IOP, at which all the radial strain of the LC is zero; and (d) showing the shear strains on the center of a cross section in the LC
(r = 800 lm, z = 0) under different IOPs.
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er = 0 at r � 600 lm. Further, we prove that the position of the tran-
sition point is only relative to the radius and thickness of the LC,
and is scarcely relevant to the changes of IOP, as shown in Fig. 3c.
The meaning of the point will be discussed in following section. In
addition, we readily compute that the maximum values of the ten-
sile and compressive strains in whole the LC occur at the anterior
and posterior edges of the LC (r = a, z = ± h/2), respectively, as
shown in Fig. 3b.

The tangential normal strain of the LC is written by

eh ¼ �z
qa

2rNI1ðkÞ I1
k
a
r

� �
� q
2N

� �
ð15Þ

This tangential normal strain also linearly varies on a cross sec-
tion of the LC (r = const.). It is also equal to zero on the middle
plane of the LC (z = 0) and reaches the tensile and compressive
maximum values on the cross section at the anterior and posterior
surfaces of the LC (z = ± h/2), as shown in Fig. 3a. In the direction of
r – coordinate axis, the strain monotonously decreases from the
center to the edge of the LC. The whole anterior surface of the LC
is subject to a compressive strain, while the whole posterior sur-
face is subject to a tensile strain, i.e. at the center of the plate
(r = 0) the strain has the maximum and at the rim of the LC
(r = a) the strain is equal to zero, as shown in Fig. 3b. Obviously,
the maximum values of the tensile and compressive strains in
whole the LC occur at the anterior and posterior centers of the LC
(r = 0, z = ± h/2), respectively. Note that at the center of the LC
(r = 0) the values of the tangential and radial normal strains are
the same.

The shear strain on an arbitrary cross section of the LC is written
by

crz ¼ � 3qa

Gh3 1þ N
C

� � h2

4
� z2

 !
I1 k

a r
� �
I1ðkÞ ð16Þ

Obviously, this strain displays a parabolic distribution with
respect to z on a cross section of the LC (r = const.). At the posterior
and anterior surfaces of the plate (z = ± h/2), its values are all equal
to zero, while its maximum occurs on the middle plane of the plate
(z = 0), as shown in Fig. 3a. In addition, the shear strain monoto-
nously decreases from the center to the rim of the LC. At the center
of the plate (r = 0) the strain is equal to zero, while at the rim of the
plate (r = a) the strain reaches the maximum, as shown in Fig. 3d.
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4.2. Deformations of pores and laminar sheets

We further investigate the deformations of the pores and lami-
nar sheets in the LC. The LC is a collagen-based meshwork struc-
ture [19], which approximately consists of 10 successive sheets
[2]. The thickness of the LC ranges from 0.24 to 0.36 mm, the aver-
age thickness is h � 0.3 mm [3,8]. So, the average thickness of a
lamina sheet is about 30 lm. The radius of the LC ranges from
0.76 to 1.14 mm, and the average radius is a � 0.95 mm. In the
LC there roughly exist 200–400 channels (or pores), through which
the nerve fiber bundles pass entering into the brain. The diameters
of the channels range from 10 to greater than 100 lm, and the
average diameter is roughly l0 = 50 lm [20].

Here two optic nerve channels near separately to the center and
rim of the LC are chosen to study their deformations induced by
elevated IOP. The centers of the two channels are located at
r = 900 (Channel A) and 100 lm (Channel B) in the LC, respectively.
And they are assumed to be straight and to have the circular cross
section with the same diameter (l0 = 50 lm) before deformation, as
shown in Fig. 4a. On the one hand, when the deflection of the LC
occurs under IOP = 40 mmHg, based on Eqs. (14) and (15), the
entrance pore of Channel A on the anterior surface of the LC is in
the tensile deformation region of the LC, while the exit pore of
the channel on the posterior surface of the LC is in the compressive
deformation region of the LC, as shown in Fig. 3b. We readily
obtain that at the entrance and exit pores of Channel A, the radial
and tangential strains of the pore center are separately er � ±0.03
and eh � ±0.002. So, the diameter changes of the entrance and exit
pores are calculated to be roughly l0er � ±1.5 lm and
l0eh � ±0.10 lm, respectively. This is an indication that both the
circular pores located on the anterior and posterior surfaces of
the LC change into ellipses, as shown in Fig. 4b, which is in very
agreement with the speculations given by Quigley et al. [15] on
the deformations of the pore shape in the LC under elevated IOP.
In detail, on the anterior surface of the LC after the deformation,
the major axis of the entrance ellipse pore is l0 + l0er � 51.5 lm
Fig. 4. Schematics (a) and (b) showing the states of the optic nerve channels
and the minor axis of the pore is l0 + l0eh � 50.10 lm, while on
the posterior surface, the major axis of the exit ellipse pore
is l0 � l0eh � 49.90 lm and the minor axis of the pore is
l0 � l0er � 48.5 lm. Note that after the deformation, the direction
of the major axis of the entrance ellipse pore is in r – coordinate
axis, while the direction of the major axis of the exit ellipse pore
is in h – coordinate axis, which are vertical to one another, as
shown in Fig. 4b.

On the other hand, based on Eq. (16), the shear strain does not
make the deformation of both the entrance and exit pores on the
anterior and posterior surfaces of the LC, however, it results in
the deformation of the interior of Channel A and the dislocation
of the laminar sheets in the LC. We compute the shear strain at
the central location of Channel A to be roughly crz (r = 900 lm,
z = 0) � 0.062, which is the maximum value of the shear strain of
the channel under IOP = 40 mmHg. So, the maximum displacement
occurs at the center of Channel A in the direction of r – coordinate
axis, the value of which is crzh � 18.6 lm. And in the direction
of z – coordinate axis, the displacement induced by the shear
strain decreases in parabolic route from the middle plate to the
surfaces of the LC, as shown in Fig. 4b. Therefore, the resultant of
the three strains makes Channel A become into a tortuous
horn from an initially straight cylinder, which is also in agreement
with the speculations of Quigley et al. [15] on the deformations of
the pores and the laminar sheets in the LC induced by elevated
IOP.

The deformation of Channel B differs from that of Channel A.
Because the position of Channel B is near to the center of the LC,
the deformation caused by the shear strain is negligible according
to Eq. (16). So, we only investigate the contributions of the radial
and tangential normal strains to the deformation of Channel B.
Based on Eqs. (14) and (15), the entrance pore of Channel B on
the anterior surface of the LC is in the compressive deformation
region of the LC, while the exit pore of the tunnel on the posterior
surface of the LC is in the tensile deformation region of the plate, as
shown in Fig. 3b. Using Eqs. (14) and (15), we readily calculate that
and laminar sheets in the LC before and after deformation, respectively.



Fig. 5. Calculation graph showing the deflections of the LC caused by the same
pressure difference (q = IOP � ICP) and different pressures.
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at the exit and entrance of the channel, the radial and tangential
strains at the two pore centers are the same and roughly equal
to er � eh � ±0.01. Therefore, both the shapes of the exit and
entrance pores are not changed by the two strains and still remain
circular. However, the diameter of the exit pore on the posterior
surface of the LC increases to l0 + l0er = 50.5 lm, while the diameter
of the entrance pore on the anterior surface of the LC decreases to
l0 � l0er = 49.5 lm. The shape of Channel B becomes into a straight
horn from an initially straight cylinder, as shown in Fig. 4b, which
is also in agreement with the speculations of Quigley et al. [15] on
the deformations of the pores and the laminar sheets in the LC
induced by elevated IOP.

Further, comparing the deformations of the Channels A and B,
we find that the pores near to the rim of the LC produce larger
deformation than the pores near to the center of the LC under ele-
vated IOP. This result means that the optic nerve bundles passing
through the pores near to the rim are more easily damaged than
the bundles passing through the pores near to the center of the
LC, which is in agreement with the experiments [2,20,21]. Obvi-
ously, with the increase of IOP, the deformations of both the optic
nerve channels and laminar sheets in the LC induced by the strains
will increase nonlinearly according to Eqs. (14)–(16).
5. Discussion

The present model is based on Reissner’s rather than Kirchhoff’s
thin plate theory, i.e. all results given by the model radically
include the contributions of the transverse shear effects in the LC
under elevated IOP. So, the model must be more accurately to pro-
vide the real mechanical states of the LC than the existing models
based on Kirchhoff’s thin plate theory. For example, the present
model can obtain the shear deformation in the LC, Eq. (16), which
is proved to play an important role in investigating the deforma-
tion of the channels and laminar sheets in the LC. However, in
the existing models of the LC [5,6,11], there is no transverse shear
deformation according to Kirchhoff’s postulation of thin plate the-
ory [7].

The deformations of the LC, Eqs. (14)–(16), are theoretically
controlled by the two forces vertical to one another, q = IOP � ICP
and N = (IOP�Rs)/2, as shown in Fig. 1. The increased lateral load,
q, tends to compress the LC deflection towards posterior, while
the increased scleral tension, N, pulls the LC expansion towards
rim and simultaneously impedes the deflection of the LC. However,
when IOP � 20 mmHg, ICP is confirmed to be roughly a constant,
ICP = 10 mmHg [2,6,10,11]. Therefore, in fact, IOP becomes into
only force that causes the deformation of the LC under high IOP.
It is proved that IOP plays a key role in the course of glaucoma
developing. In particular, employing the present model, we find
that under the condition that the pressure difference, q, remains
unchanged, the deflection produced by decreasing ICP is greater
than the deflection produced by increasing IOP in the LC, as shown
in Fig. 5. This is probably an explanation for the open-angle glau-
coma with normal IOP [22].

Based on Eq. (13), the deflection of the LC increases with the
decrease of the thickness under the same IOP: the less the thick-
ness, the larger its deflection, while the deflection increase with
the increase of the radius: the larger the radius, the larger the
deflection. Correspondingly, the deformation of the LC is in keeping
with the changes of the deflection with respect to the thickness
and radius according to Eqs. (14)–(16). The experimental results
of previously studies indicated that the black subjects, on average,
have a larger LC radius than white subjects [5,23]. It implies that
the deflection of the LC in blacks will be greater at any given level
of IOP according to the above analysis. The results here may partly
explain racial differences in glaucoma incidence, which shows that
the blacks are more susceptible than the whites to the damages of
the LC during glaucoma [5].

The ratio of the diameter of optic cup to that of optic disc, C/D, is
one of the principle physiological characteristics in the diagnosis of
glaucoma and now clinically becomes into a warning structural
parameter in judging glaucoma to occur. C/D of the normal human
eye ranges from 0.3 to 0.6. Once C/D is greater than a critical value,
about 0.6, the glaucoma will usually be confirmed in clinical prac-
tice [24]. In the view of eye structures, the diameter of optic disc is
equal roughly to that of the LC, i.e. 2a � D. And the diameter of
optic cup, in clinical practice, is the width of a depression mea-
sured near to the optic nerve head, which is associated necessarily
with the deformation of the LC. Based on the analysis of Eq. (14)
above, there is a transition point of the radial deformation of the
LC, rt � 600 lm, at which the radial deformation is equal to zero,
er = 0. And it is proved that the position of the transition point is
only relative to the geometry of the LC and is scarcely relevant to
the changes of IOP. In the view of mathematics, the transition point
stands for a deflection point of the Eq. (13), i.e. d2w/dr2 = 0, at
which the deformation of the LC has the largest gradient in the
radial direction. Therefore, the transition point is as very similarly
significant as the position of the optic cup in the clinic. In particu-
lar, rt/a � 600/950 � 0.63 is in agreement with the critical value of
C/D, which might inherently display the meaning of the critical
valve of C/D.

As the primary site of retinal ganglion cell axon injury during
glaucoma [2,25,26], the LC stands for the intervening link between
elevated IOP and the optic nerve injury. Therefore, the present
model, serving as a formalistic expression of the optic nerve injury
during glaucoma, makes a probability to deeply understand this
disease. As analyzed above, on the one hand, the elevated IOP
results in the area expansion of the entrance pores of the optic
nerve channels near to the rim of the LC. This induces the increase
of the inflow volumes in both the optic nerve bundles and blood
capillaries that pass through the channels. However, the IOP also
results in the area contraction of the exit pores of the channels.
This necessarily makes the squeezing each other of the optic nerve
bundles and blood capillaries, and causes the decrease of the out-
flow volumes in both the optic nerve bundles and blood capillaries.
On the other hand, the elevated IOP simultaneously causes the
deflections of the channels, as shown in Fig. 4b. The maximum
value of the deflection reaches 18.6 lm, which is as the same order
of magnitude as the thickness of a laminar sheet. The dislocation is
much greater than the diameters of the optic nerve axon fibers and
blood capillaries, which range from 0.65 to 1.10 lm [27]. In view of
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fluid mechanics, it is enough to cause the axoplasm flow obstacle
in the axon fibers and the blocked blood flow in the capillaries
[28,29]. In addition, the deformation of the channels near to the
rim of the LC is much greater than that near to the center of
the LC according to the present model. Therefore, the damage of
the optic nerves near to the rim occurs necessarily earlier and
heavier than that near to the center, which is in agreement with
the existing clinical tests [30].

According to the theory of plates [7], we can use Eq. (13) to
obtain readily the stress states of the LC, including the stresses of
the perimeter zones of the optic nerve channels and the interfaces
between arbitrary two laminar sheets in the LC. This must be very
beneficial to further understanding the deformation of the LC and
the damage of the optic nerve in the LC.

As a limitation of our model, the LC is assumed to undergo elas-
tic deformation when it is subjected to external loads. In practice,
the mechanical properties of biological materials depend strongly
on the interactions of their individual components. It has been
experimentally indicated that the LC is likely to be viscoelastic
[31,32]. Albon et al. [32] showed that the stiffness of the LC
increases with the level of applied pressure by volume and strain
measurements. To further study the stress and deformation states
of the LC induced by elevated IOP, the viscoelastic properties of the
LC can be taken into consideration and the establishment of vis-
coelastic constitutive relation for the LC under elevated IOP will
be of crucial importance.

Generally speaking, the elevated IOP is considered the primary
factor responsible for the glaucomatous optic neuropathy involv-
ing the death of retinal ganglion cells and the loss of their axons,
and the control of IOP remains the mainstay of treatment for glau-
coma. However, it should be important to note that there are many
other pathophysiological mechanisms involved in the develop-
ment of retinal ganglion cell death and glaucomatous optic neu-
ropathy. Recent studies have revealed that the vascular
dysregulation also plays a critical role in these progresses. Addi-
tionally, the apoptotic cell death in glaucoma has been attributed
to various molecular mechanisms including glutamate excitotoxic-
ity, increased nitric oxide synthase-2 expression, tumor necrosis
factor-alpha upregulation, increased matrix metalloproteinase
expression and oxidative stress. It is the complex interplay of these
multiple factors that leads to the apoptosis of retinal ganglion cell
and glaucomatous optic neuropathy [25,33].
6. Conclusions

Based on Reissner’s thin plate theory, a mechanical model of the
LC is presented and is proved to be in good agreement with
the existing experiments. Employing this model, we firstly obtain
the radial, tangential and shear deformations of the LC, and then
analyze the characteristics of the deformations. Secondly, the
deformations of the optic nerve channels and laminar sheets in
the LC are investigated in detail, which theoretically confirms the
speculations of Quigley et al. Finally, we use this model to mainly
discuss a possible pathological mechanism of the open-angle glau-
coma with normal IOP, the relations between the ratio of optic cup
to disc in the clinical practice and the deformation of the LC, and
the damages of the optic nerve bundles induced by the deforma-
tion of the LC. The present study is beneficial to understanding
deeply the pathological mechanism of glaucoma, in particular,
the damage of the optic nerves in the LC.
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