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A B S T R A C T

A direct relationship between the yield strength and the atomic ratio of solvent (Zr) atoms in the Zr-Cu-Al-Ni
metallic glasses system is firstly uncovered. It is found that either shear modulus or yield strength decreases
almost nearly with the increase in atomic ratio of Zr. The origin of this relationship is ascribed to the preferential
straining of the weakest configurations, which consist of the solvent-solvent bonds and the free volume
concentrated in them. It is suggested that a higher atomic ratio of Zr corresponds to a larger amount of weakest
configurations, which will facilitate the activation and the accumulation of the shear transformations and finally
results in the lower yield strength. This finding may provide an effective strategy for designing high-strength
metallic glasses by modifying the chemical composition.

1. Introduction

The structural picture of metallic glasses becomes clearer and
clearer with durative efforts [1–5]. The solute-centered clusters and
their efficient packing construct the short- and/or medium-range order.
The long-range disorder can be achieved by linking these ordered
clusters through excessive solvent atoms. Therefore, it is accepted that
these structures on different length scales will determine the physical
properties from relaxation (fast or slow) to deformation (elastic or
plastic) [6–9]. For instance, Ma et al. [8] found that metallic glasses
inherit shear/Young's modulus from their solvent atoms. This surprising
finding substantiates the idea that the bonds of solvents could
determine the shear modulus on the long-range scale [7,8]. Moreover,
these loosely packed solvent-solvent junctions usually lead to additional
scattering of transverse phonons in the THz region, which is quite
common for various glasses [10,11]. Very recently, Ding et al. [12]
introduced the concept of “flexibility volume”, a volume-scaled vibra-
tional mean square displacement of THz phonons, which can predict
the shear modulus of metallic glasses quantitatively. This further
confirms that solvent-solvent junctions can directly dominate the shear
modulus of the metallic glasses. Meanwhile, it is well known that the
shear modulus controls the energy barrier for relaxation and shear flow,
as indicated in both the shoving model of Dyre [13] and the cooperative
shear model of Johnson and Samwer [14]. Specifically, the yield
strength in shear mode shows a linear relationship to the shear modulus

with respect to the atomic ratio of solvent atoms for a variety of
metallic glasses [15,16]. It is therefore expected that the solvent-solvent
junctions will determine the plastic yielding of metallic glasses beyond
the elastic range. However, this needs further experimental evidence.

In the present work, a series of metallic glasses with identical
chemical constituents of Zr-Cu-Al-Ni but different atomic ratio were
selected as the model system. It is clearly demonstrated that the yield
strength (under compression) as well as shear modulus of these glasses
strongly depend on the contents of their solvent (Zr) atoms. Based on
structural observations on parts of these materials, the dependence of
shear modulus and yield strength on the atomic ratio of Zr can be
understood from the weak links that locate in the solvent-rich config-
urations with relatively high excessive free volume.

2. Experiments

Ingots with the compositions of Zr70Cu13.5Al8Ni8.5 (Zr70),
Zr64.13Cu15.75Al10Ni10.12 (Zr64), Zr55Cu30Al10Ni5 (Zr55) and
Zr50.7Cu28Al12.3Ni9 (Zr50) were prepared by arc-melting high purity
Zr, Cu, Al and Ni in a argon atmosphere. Ti-getter was used to further
reduce the oxygen partial pressure in the melting chamber. Cylindrical
rods with a dimension of Ф3 × 30 mm were prepared via the copper-
mold suction-casting method under the same condition. The glassy state
of all rods was verified by both X-ray diffraction and high resolution
transmission electron microscopy (HRTEM, JEOL JEM-2100F). The
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thermal properties of these specimens were characterized by differen-
tial scanning calorimetry (DSC). The DSC tests were conducted in a TA
Q2000 thermal-analysis instrument with a heating rate of 0.33 K/s in a
flow of argon. The base line for each DSC measurement was obtained by
a second run under identical conditions. With the purpose of ensuring
the reliability of the experimental data, at least three specimens for
each of the metallic glass have been tested on the same instrument
under identical conditions. Meanwhile, qualitative distribution of free
volume in each specimen was investigated using the weak-phase object
HRTEM imaging method. The specimens for both the DSC measure-
ments and the HRTEM analyses were cut from the same position of the
as-cast rods and then prepared in standard mechanical grinding to the
same thickness. Furthermore, the grinded cross-sectional HRTEM speci-
mens were milled by low-energy ion beam thinner under the same
conditions.

3. Results

Table 1 presents the shear moduli (G), yield strengths (σy), glass
transition temperatures (Tg) and molar volumes (Vm) of a series of Zr-
Cu-Al-Ni metallic glasses with different solvent-Zr content (CZr, at.%)
[15–28]. Here, all of the yield strengths are summarized from litera-
tures, which were carried out under uniaxial compressions at quasi-
static strain rates. Under such conditions, the yield strength is an
inherent material property and should be almost constant for a given
metallic glass [29,30]. The shear moduli in both the literatures and
present work were measured by ultrasonic method, which has an
accuracy better than 5% [31–33]. The maximum error value of 5% is
adopted in the current work. The glass transition temperatures are also
summarized from literatures, which were measured by DSC. The
random errors of the measured Tg is usually less than 5 K [34–36].
Here, an experimental error of 5 K for the glass transition temperature
is taken. The values of molar volumes are calculated according to the
rule of mixtures [37]. As pointed out previously [15,16,38], both shear
modulus G and yield strength σy showed an approximately linear
dependence on the value of Tg/Vm. For the current studied materials,
these relationships are quite similar as presented in Fig. 1a. Such
correlations imply a similarity between plastic yielding and glass
transition in metallic glasses [16,22]. Furthermore, the variations of
shear modulus as well as yield strength with the solvent-Zr content are
plotted in Fig. 1b. It is interesting to find that either shear modulus or
yield strength has a nearly linear reduction with increasing the atomic
ratio of Zr in these Zr-Cu-Al-Ni metallic glasses. In addition, the shear
moduli of these glasses are less than that of pure Zr, indicating a
deviation from modulus' inheritance [8,39,40]. Moreover, the deviation
becomes larger with increasing the atomic ratio of Zr.

The DSC curves of the Zr70, Zr64, Zr55 and Zr50 glasses are shown in
Fig. 2. All curves show the distinct feature of a glass transition (marked
by the arrows) before crystallization. The glass transition temperatures

of the four metallic glasses were measured to be about 627 K, 651 K,
690 K and 719 K, respectively. This indicates that the decrease of Zr
content leads to an increase of Tg. Importantly, the exothermic signals
before the glass transition display an apparent difference among these
samples, which is presented in the inset of Fig. 2. It is well known that
the exothermic enthalpy (ΔH) prior to glass transition can be directly
related to the excessive free volume (vf) by an empirical relationship of
ΔH= β′vf [41,42] with a constant β′. The values of ΔH, shown in the
inset of Fig. 2, indicate that the free volume concentration decreases

Table 1
Summary of shear modulus (G), yield strength (σy), glass transition temperature (Tg) and
molar volume (Vm) of 11 kinds of Zr-Cu-Al-Ni metallic glasses.

Alloys. G ± 5% (GPa) σy (GPa) Tg ± 5 (K) Vm (cm3/
mol)

Zr72Cu13Al7.5Ni7.5 27 1.54 [17] 625 [17] 12.24
Zr70Cu13.5Al8Ni8.5 27.3 1.57 [18] 625 [18] 12.11
Zr65.5Cu22.4Al5.6Ni6.5 28.9 1.60 [20] 636 [19] 11.74
Zr65Cu15Al10Ni10 30 [15] 1.65 [21] 652 [21] 11.74
Zr64.13Cu15.75Al10Ni10.12 28.5 [22] 1.69 [22] 646 [22] 11.75
Zr62Cu15.4Al10Ni12.6 29 [16] 1.81 [16] 652 [16] 11.67
Zr61.88Cu18Al10Ni10.12 29.1 [23] 1.73 [23] 653 [23] 11.60
Zr57Cu27Al11Ni5 32.7 1.84 [24] 682 [24] 11.32
Zr55Cu30Al10Ni5 32.5 1.82 [25] 685 [25] 11.15
Zr53Cu18.7Al16.3Ni12 33.4 1.88 [26] 709 [28] 11.16
Zr50.7Cu28Al9Ni12.3 34.8 1.90 [27] 719 [28] 10.79

Fig. 1. The variation of shear modulus (G) and yield strength (σy) with (a) the parameter
combination (Tg/Vm) and (b) the atomic ratio of Zr (CZr, at.%).

Fig. 2. DSC curves of the four Zr-Cu-Al-Ni metallic glass samples. The inset shows the
different exothermic signals before the glass transition among these samples.
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monotonically with the decrease of Zr content.
Fig. 3a–d present the HRTEM images and the corresponding fast

Fourier transform diffraction halos (insets) of the four metallic glasses.
There are numbers of short-range-order clusters, which probably
correspond to the locally dense-packing configurations. In order to
obtain the structural information beyond short-range-order, weak-
phase object HRTEM imaging analysis were carried out on Fig. 3a–d.
This method is developed by Miller and Gibson [43] and later extended
by many other researchers [44,45]. The obtained Fourier-filtered,
annular threshold filtered and inverted images are presented in
Fig. 3e–h. During the HRTEM analysis, large flat regions were selected
under nearly the same brightness of the electron beam. Therefore, the
thickness of the specimens could be constant and small. In addition, the
objective aperture with diameter of 60 μm was used to cut off the
higher-frequency oscillating information. A defocus value of approxi-
mately - 200 nm was set to image free volume in the metallic glasses
and the images were acquired by a Gantan 830 slow-scan charge-
coupled device camera. Moreover, the marked area is identical during
the annular threshold filtered. Therefore, the weak phase object
approximation holds in the present cases and the image's intensity
comes mainly from the specimen density. More specifically, the bright
regions (bright yellow) correspond to the zones with more free volume
and the dark parts (dark blue) represent those with less free volume
[43–45]. Such nanoscale spatial heterogeneity revealed here is con-
sistent with those revealed by Liu et al. [46] and Yang et al. [47] with
the aid of dynamic force microscopy. It is clearly revealed that the
nanoscale heterogeneity highly depends on the Zr content. In particu-
lar, the decreasing Zr content gives rise to an increase of the dense
packing regions and a decrease of the free volume concentration, which
is in line with the DSC analysis presented in Fig. 2.

4. Discussion

It has been suggested that the fundamental building blocks in
metallic glasses are the solute-centered atomic clusters [48,49]. Some
of these clusters could form superclusters as they are tightly connected
by sharing atoms at vertices, edges or faces [50]. The long-range
disordered 3D space of metallic glasses is made up of fractal networks
by connecting the solute-centered clusters and the superclusters in the
form of face-centered cubic [48] or hexagonal close-packed [49].

Regions between the clusters are empty or occupied by lone atoms
that do not form clusters. The former is related to the free volume,
whereas the latter always corresponds to the excessive solvent atoms. In
this regard, there are two types of bonds in the metallic glasses. One is
the solvent-solute bonds in the clusters and the other is the solvent-
solvent bonds among the clusters. For the current Zr-Cu-Al-Ni metallic
glass, the mixing heats of ZreNi, ZreAl and ZreCu pairs are−49,−44
and −23 KJ/mol, respectively, which are the most negative values
among all atomic pairs [51] and even higher than that of ZreZr pair.
This indicates that the solvent-solvent bonds are softer than the solvent-
solute ones. In addition, the preferential concentrating of free volume
around the biggest Zr atoms [28,52] will further softening the solvent-
solvent junctions between the clusters. Moreover, it is found that the
bond exchange propensity of Zr atoms was larger than other constitu-
ents [53]. This implies that the shear resistance of the solvent-solvent
junctions will be lower than that of the solvent-solute bonds. Conse-
quently, the solvent-solvent bonds and the free volume concentrated
around them will constitute the weakest configurations in the present
glassy structure. In such a scenario, metallic glasses can be treated as
atomic level dual phase with different stiffness as schematized in Fig. 4,
where A, B and C denotes the excessive solvent atoms, the solute-
centered clusters and the superclusters, respectively. The stiff phase
represents the solute-centered clusters and the superclusters where the
atoms are tightly bonded, while the less stiff one corresponds to the
solvent-solvent bonds and free volume, namely the weakest configura-
tions in the glassy structure. Therefore, the global elastic modulus of the
metallic glass is the weighted average of elastic moduli of the two
constitute phase, according to the “rule of mixtures” [7,54,55].

In the present Zr-Cu-Al-Ni metallic glass with a higher Zr content
(Fig. 4a), there are many excessive solvent atoms (Zr), which randomly
distribute and loosely occupy the junctions among the densely packed
clusters. Furthermore, the larger amount of excessive solvent atoms will
induce more free volume concentrated in the junctions. Hence, there
are more weakest configurations in the glass structure. Correspond-
ingly, the amount of the weakest configurations will be less in the
metallic glass with a lower Zr content, as shown in Fig. 4b. Above
scenario agrees well with the experimental results of indirect DSC
measurement (Fig. 2) and qualitative HRTEM analysis (Fig. 3). Accord-
ingly, it can be concluded that there are more weakest configurations in
the metallic glass with a higher Zr content. In other words, the fraction

Fig. 3. Cross-sectional HRTEM images and the corresponding fast Fourier transform diffraction halos (insets) of (a) Zr70Cu13.5Al8Ni8.5, (b) Zr64.13Cu15.75Al10Ni10.12, (c) Zr55Cu30Al10Ni5
and (d) Zr50.7Cu28Al12.3Ni9. (e), (f), (g) and (h) are the Fourier-filtered, annular threshold filtered and inverted images of HRTEM micrographs in (a), (b), (c) and (d), respectively. The
bright yellow represents the regions with relatively more free volume, while dark blue indicates less free volume. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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of the less stiff phase will be larger, whereas that of the stiff phase will
be smaller. Therefore, the global elastic modulus of the metallic glass
becomes lower with increasing Zr content, which is verified by the
observed linear reduction of shear modulus with increasing atomic ratio
of Zr presented in Fig. 1b. It must be addressed that the shear moduli of
all the metallic glasses are lower than that of the solvent atoms.
Specifically, there is a larger deviation of the modulus' inheritances
[8,39,40] in the metallic glass with higher atom ratio of Zr. It indicates
that the shear resistance decreases when the Zr content increases,
which is due to the following two reasons: (i) more solvent atoms
concentrated in the junctions in turn decrease the shear resistance of
the junctions due to the preferential bond exchange of Zr atoms; (ii)
higher concentration of free volume further softens the solvent-solvent
bonds.

For metallic glasses, the shear transformations (STs), i.e. the
inelastic rearrangements of local atomic groups, is usually regarded
as the fundamental unit of plastic deformation [56–58]. It is proposed
that the total potential energy barrier for an ST in a glass is [14]: W=
(8/π2)GγC2ζΩ, where Ω is the characteristic volume of the ST that falls
in a narrow range for various metallic glasses. ζ is a correction factor
and γC is the critical shear strain that is nearly a constant in metallic
glasses. Consequently, the ST events can be preferentially activated at
the weakest configurations due to their low shear modulus. In a metallic
glass specimen experiencing a uniaxial stress lower than the yield
strength, the solute-centered clusters and the superclusters act as the
elastic backbone, while the scattered ST events activated at the weakest
configurations contribute to the inelastic part [59]. As long as the
isolated ST events do not percolate to a sizable length-scale, they can be
reversed with the aid of the back-stress from the backbone upon
unloading and the metallic glass behaves elastically on the macroscopic
scale [60,61]. As the external stress keeps increasing, there will be more
and more activated ST events, and meanwhile the associated atomic
rearrangements in the ST events can relax the local stress and reduce
the local energy concentration. In order to counterbalance this drop in
local stress, atoms in the surrounding region will be absorbed into the
ST events. When the external stress increases to a critical value, the
activated ST events will expand outwards and combine with each other.
It leads to the formation of one mature shear band. Then the elastic
backbone will be penetrated and give rise to irreversible macroscopic
yield of the metallic glass [62,63]. For the current model metallic glass
with a higher atomic ratio of Zr, there will be more potential ST sites
due to the larger amount of weakest configurations. The more weakest
configurations coupled with the higher free volume concentration
correspond to a larger amount of activated ST events and an easier
growth of them. Consequently, the critical stress for the formation of a
mature shear band will be less. This corresponds to the lower yield
strength of the metallic glass with a higher Zr content, as indicated by
the observation on the monotonous decrease of σy with increasing CZr in

Fig. 1b.
It is worthy to note that the direct dependence of the yield strength

on the Zr content in the Zr-Cu-Al-Ni metallic glasses is likely to be
extended to other Zr-based metallic glass systems which have the same
chemical constituents. As presented in Table S1 (Supplementary
material), many other Zr-based metallic glass systems also obey the
correlation that increasing the atomic ratio of solvent atom leads to a
decrease of shear modulus. As mentioned above, this also means a
decrease of yield strength with increasing Zr content. Additionally, as
listed in Table S2 (Supplementary material), parts of other metallic
glass systems with the identical chemical constituents and the same
solvent atom also follow the unique correlation observed above.
Nevertheless, we still believe that some metallic glasses systems will
not follow this correlation if they are not metallic bond dominated. This
is because metallic and metalloid bonds should play very different roles
on the strength of metallic glasses. The associated cases are deserved to
be studied in detailed. Furthermore, it is interesting to note that the
current correlation between the yield strength and the atomic ratio of
Zr is analogous to the dependence of the yield strength on the amount
of the flow units reported by other researchers [64–66]. In fact, both of
them can be attributed to the preferential straining of the localized
weakest configurations. This further rationalizes the uncovered rela-
tionship between yield strength and the content of Zr atoms in the Zr-
Cu-Al-Ni metallic glasses.

Moreover, our findings may provide a guideline for further
strengthening the present Zr-Cu-Ni-Al metallic glasses, where decreas-
ing solvent Zr or increasing solute Cu, Ni and Al can lead to higher yield
strength. Besides, this will not change their solvent-solute status and
harm the glass forming ability. Since the ZreNi bond has the most
negative mixing enthalpy among all bonds [51], Ni is probably more
effective to strengthen the present Zr-Cu-Ni-Al metallic glass system, as
compared to Cu and Al.

5. Conclusion

It is found that both shear modulus and yield strength in the Zr-Cu-
Al-Ni metallic glass system show a nearly linear decrease with increas-
ing the atomic ratio of Zr. This finding can be well explained by the
activation and the accumulation of STs that occur in the weakest
configurations. Our finding implies that the weakest configurations in
glasses determine not only shear modulus [8,12] but also yield strength.
Moreover, it may contribute to design metallic glasses with higher
strength by simply altering atomic ratio of the constituents.
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