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Abstract Hopf bifurcation is a commonphenomenon
during the metal cutting process, which results in poor
surface finish of the workpiece and inhomogeneous
grain structure in materials. Therefore, understand-
ing and controlling Hopf bifurcation in metal cutting
are necessary. In this work, the systematic low-speed
extrusion machining experiments were conducted to
suppress Hopf bifurcation phenomenon. It is found
that the suppression of Hopf bifurcation is achieved
with the increasing constraint extrusion degree. In
order to reveal the mechanism of the suppression of
Hopf bifurcation, a new nonlinear dynamic model for
extrusion machining is developed where the convec-
tion, the diffusion, the extrusion of constraint, the
thermal-softening deformation and the fracture-type
damage are included. The theoretical predictions are
in agreement with the experimental results; therefore,
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the present theoretical model is effective to character-
ize the suppression of Hopf bifurcation in metal cut-
ting. Based on the numerical calculation of the theo-
retical model, the mechanisms underlying in extrusion
machining are further revealed: Fracture-type defor-
mation is more important than the thermal-softening-
type deformation in low-speed extrusion machining;
however, the thermal-softening-type deformation is the
primary deformation mode for high-speed extrusion
machining.
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1 Introduction

Metal cutting, simplymachining, is a process of remov-
ing excess material from the workpiece in the form of
chips [1]. Chips undergoing severe plastic deformation
(SPD) during machining are composed of ultrafine-
grained structures. Machining has been demonstrated
to be a low-cost method for producingmaterials of high
strength [2–4]. The serrated chips are more prone to
appear during machining difficult-to-cut materials. For
manufacturing, the occurrence of serrated chips leads to
bad surface finish and increased tool wear [5]. For pro-
ducing ultrafine-grained materials, the serrated chips
result in inhomogeneous grain structure in materials
[6]. Therefore, the serrated chips should be avoided.
Extensive research has been devoted to understand-
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ing the mechanisms of serrated chip formation and the
methods controlling serrated chips.

For the mechanism of serrated chips, there are two
Hopf bifurcations occurring during the formation of
serrated chips: the shear band type deformation where
shear deformation within primary shear zone (PZS)
is unstable and shear bands emerge in serrated chips,
and the fracture-type deformation where microcracks
form within PSZ and materials finally fracture in ser-
rated chips. In terms of shear band type deformation,
Recht [7] carried out a pioneering study on the transi-
tion from continuous to serrated chip formation with
increasing cutting speed. In his opinion, the catas-
trophic thermoplastic shear bands will occur if the ther-
mal softening inmaterials overcomes the strain harden-
ing effects. Considering the simple heat-transfer anal-
ysis in metal cutting, Semiatin and Rao [8] proposed
an analytical model to give the quantitative prediction
of the critical speed for the serrated chip formation.
Molinari and Dudzinski [9] considered a viscoplas-
tic material model in machining and discussed the
influence of material parameters on the heterogene-
ity of the plastic flow. Burns and Davies [10,11] put
forward a lumped-parameter model for chip segmen-
tation in high-speed machining to explain the adia-
batic shear localization-induced segmented chip as a
supercritical Hopf bifurcation. Considering the effect
of strain gradient in shear bands, Huang and Aifan-
tis [12], Huang et al. [13] presented a method for
thermo-viscoplastic instability to describe the serrated
chip flow. Molinari et al. [14] investigated the role
of cutting conditions on chip serration by combin-
ing finite element calculations and analytical model-
ing.

As for the oscillations of tool, another Hopf bifur-
cation appears, where a time-delayed system due to
regenerative effect becomes unstable and leads to the
occurrence of machine-tool chatter. Hanna and Tobias
[15] presented the first mathematical model of nonlin-
ear machine-tool chatter. Shi and Tobias [16] extended
the work of Hanna and Tobias to analyze the pro-
cess whereby the cutting tool leaves the surface of
materials. Based on the model of Hanna and Tobias,
Nayfeh et al. [17] used the method of multiple scales
to research the behavior of the Hopf bifurcations in
metal cutting. Pratt and Nayfeh [18] proposed a two-
degrees-of-freedom system with time delay to exam-
ine the subcritical instabilities in boring bars. Kalmár-
Nagy et al. [19] put forward a nonlinear second-

order ordinary differential equation with time delay
to model a machine tool with regenerative effects.
Recently, Nayfeh and Nayfeh [20] used a systematic
approach to investigate the local and global dynam-
ics of cutting tool on a lathe. Ren et al. [21] pre-
sented fuzzy acoustic emission identification in high-
precision hard turning process.Moradi et al. [22] inves-
tigated the occurrence of various types of bifurca-
tion in milling process with tool-wear and process
damping effects. Litak et al. [23] examined the regen-
erative cutting process by using a single-degree-of-
freedom nonsmooth model with a friction component
and a time delay term. Elias and Namboothiri [24]
put forward a cross-recurrence plot methodology to
recognize the transition from regular cutting to the
chatter cutting. Molnár et al. [25] presented a state-
dependent distributed-delay model of orthogonal cut-
ting to describe the dynamics of the tool-workpiece
system. Otto and Radons [5] analyzed the influence of
tangential and torsional vibrations on the stability lobes
in metal cutting.

The aforementioned works focus on machining
in manufacture where high-speed machining (HSM)
is needed. It is demonstrated that serrated chips in
HSM are treated as a Hopf bifurcation due to shear
banding deformation [10,26,27]. Based on the results
from the literature [4,28], temperature in machining
increases with the increasing cutting speed and recrys-
tallization happens when the cutting speed exceeds
a certain value. Because recrystallization affects the
grain refinement and resulting hardness in HSM [4],
ultrafine-grained materials are produced during low-
speed machining (LSM) [29]. For LSM, fracture
typically results in the formation of serrated chips
[30]. Serrated chips are harmful for both manufac-
turing and production of ultrafine-grained materi-
als; therefore, serrated chips need to be suppressed
during machining. For the suppression of serrated
chips in HSM, Cai and Dai [31] put forward a
thermal-softening-based dynamic large strain extru-
sion machining model to explain the suppression of
shear banding type serrated chips. However, the sup-
pression of serrated chips in LSM is vacant and the
mechanism on how fracture affects the Hopf bifur-
cation in LSM is unclear. In this paper, a low-speed
extrusion machining device is used to research the sup-
pression of serrated chips in LSM. To elucidate the
effect of fracture and shear banding on Hopf bifur-
cation, a theoretical model for machining is estab-
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lished where convection, diffusion, extrusion of con-
straint, thermal-softening deformation and fracture-
type damage are included. The analytical results are in
agreement with the available experimental results, and
the underlying physics during machining are clearly
revealed by the numerical calculations of the presented
model.

2 Experimental procedure

The sample materials used in the experiments are mag-
nesium alloy AZ31B and aluminum alloy 7075-T6
with chemical composition specified in Table1. The
annealing temperatures of AZ31B and 7075-T6 are
345 and 413 ◦C, respectively. The mechanical proper-
ties of AZ31B and 7075-T6 are listed in Table 2. The

microstructures of three section planes in the sample
of AZ31B before machining are shown in Fig. 1.

Figure 1 shows the process of low-speed extru-
sion machining which is conducted on material test-
ing machine. The workpiece with a precut depth t0 is
moving toward the tool at the cutting speed V0, and
the chip thickness tc is controlled by the constraint.
Figure 2 shows a schematic of extrusion machining,
in which the free machining (FM) is marked by the
lines OBC. The chip thickness in FM is labeled as t∗c .
Here, an orthogonal machining process is taken into
consideration,where thewedge-shaped toolwith a rake
angle α is static, and the workpiece with a cutting layer
depth t0 is moving toward the tool. Finally, because
of the extrusion from constraint, the workpiece mate-
rials in the cutting layer flow out along the rake face
of the tool in the form of a chip with a thickness tc.

Table 1 Chemical compositions of magnesium alloy AZ31B and aluminum alloy 7075-T6

AZ31B

Elements Mg Al Zn Mn Si Cu Ca Others

Wt (%) 97 2.5–3.5 0.6–1.4 0.2 0.1 0.05 0.04 ≤0.01

7075-T6

Elements Al Zn Mg Cu Cr Fe Si Others

Wt (%) 89.3 5.6 2.5 1.6 0.23 ≤0.5 ≤0.4 ≤0.7

Table 2 Mechanical
properties for magnesium
alloy AZ31B and aluminum
alloy 7075-T6

Properties and parameters Notation AZ31B 7075-T6

Density ρ (kgm−3) 1770 2810

Elastic modulus E(GPa) 45 70

Thermal conductivity k(wm−1 K−1) 96 130

Specific heat capacity c(J kg−1 K−1) 1000 960

Taylor–Quinney coefficient β 0.9 0.9

Contact length L2 (µm) ∼5 ∼5

Shear yield stress τy (MPa) 90 290

Strain rate dependency coefficient C 0.2 0.34

Thermal softening exponent m 1 1

Reference strain rate ˙̄γ0 (s−1)
√
3 × 10−5

√
3 × 10−5

Ambient temperature Ta (K) 300 300

Melting temperature Tm (K) 878 908

Damage diffusion length l̃ (µm) 10 50

Diffusion coefficient of the crystal defect η̃ (m2/s) 1 × 10−9 1 × 10−9

Fracture toughness KC (MPa
√
m) 17.16 45

Poisson’s ratio ν 0.35 0.33
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Fig. 1 Schematic of low-speed extrusion machining process and the microstructures of three section planes of workpiece before
machining

The chip is formed by a process of shear which is
approximately confined to a zone called primary shear
zone (PSZ) OA. The inclined angle ϕ of PSZ is named
as shear angle. According to the geometrical relation-
ship [32], the shear angle ϕ is achieved by tan ϕ =
t0 cosα/(tc − t0 sin α). Based on the definition of con-
straint extrusion factor (CEF) χ = (t∗c − tc)/t∗c (χ ∈
[0, 1]) [31], the different constraint extrusion effects
can be obtained by changing the position of constraint
in the experiments. In order to explore the relationship
between different CEFs and Hopf bifurcation, differ-
ent cutting conditions for extrusion machining AZ31B
and 7075-T6 are listed in Table3 by adjusting the posi-
tion of constraint. After cutting, chips were collected
and embedded into clean resin. The lateral process
was mechanically polished, and then the polished sur-

faces were etched in the different etching solutions
to reveal the deformed microstructures of AZ31B and
7075-T6 (e.g., a 5g picric acid +10ml water +10ml
acetic acid+100ml ethanol solution lasting for 10 s for
AZ31B and a 2%HF+ 4%HNO3 + 94%H2O solution
lasting for 5 s for 7075-T6). These etched specimens
were observed with the optical microscope (Olympus
BX51M) to examine the morphologies of chips.

3 Experimental observations

Figure3 shows the experimental measurements of cut-
ting forces for different CEFs in extrusion machining
AZ31Bunder the cutting conditions ofTable3.Accord-
ing to Fig. 3, the cutting force fluctuates periodically
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Fig. 2 Schematic of extrusion machining, in which the free
machining (FM) is marked by the lines OBC

during FM AZ31B where CEF=0. In spite of the cut-
ting force fluctuation for smaller CEF (CEF=0.28),
the amplitude of fluctuation and cycle time are smaller
than those of FM. The effect of extrusion from con-
straint increases with the increasing CEF. When CEF
reaches or exceeds a critical value, i.e., CEF=0.44, the
cutting force cannot fluctuate periodically in extrusion
machining AZ31B. The value of cutting force is larger
with the increasing CEF during extrusion machining.

In order to reveal the relationship between cutting
force fluctuation and themorphology of chips, the chips
of AZ31B were etched and observed. The microstruc-
tures of chips for different CEFs are shown in Fig. 4.
For the case of FM in Fig. 4a, chips tend to segments
because of fracture-type deformation within PSZ. As
CEF is increased (see in Fig. 4b), chips are still frac-
ture type segments, but the size of segment is smaller
than that of FM. As shown in Fig. 4c, d, the morpholo-
gies of chips change from fracture-type segments to

Fig. 3 Experimental measurements of cutting forces for differ-
ent CEFs in low-speed extrusion machining AZ31B

continuous chip when CEF is further increased. Con-
necting Figs. 3 with 4, it is found that the deformation
mode in extrusion machining determines whether the
cutting force fluctuates or not. If the shear deforma-
tion in extrusion machining is fracture-type localiza-
tion (Fig. 4a, b), the cutting force fluctuates periodi-
cally as shown in Fig. 3. The CEF in Fig. 4b is larger
than CEF in Fig. 4a, so the extrusion level of Fig. 4b
is larger than that of Fig. 4a. Compared with Fig. 4a,
the suppression of fracture-type localized deformation
is more severe in Fig. 4b, which leads to the ampli-
tude of fluctuation and cycle time in Fig. 3 smaller
with increasing CEF. When CEF reaches or exceeds
a critical value, i.e., CEF=0.44, the shear deformation
is homogeneous (Fig. 4c, d). The catastrophic fracture
disappears in chips of Fig. 4c, d; therefore, the cutting
force cannot fluctuate periodically in Fig. 3.

The experiments for aluminum alloy 7075-T6 listed
in Table 3 were conducted to explore universality of
the suppression of fracture-type serrated chips during

Table 3 Cutting conditions
in extrusion machining
magnesium alloy AZ31B
and aluminum alloy
7075-T6

Cutting parameters Notation AZ31B 7075-T6

Rake angle α 10◦ 10◦

Clearance angle α2 5◦ 5◦

Precut chip thickness t0 (µm) 200 200

Cutting width w (mm) 5 5

Cutting speed V0 (µm/s) 10 10

Controlled chip thickness tc (µm) 250, 180, 140, 120 610, 550, 360, 280

Constraint extrusion factor χ 0, 0.28, 0.44, 0.52 0, 0.10, 0.41, 0.54
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Fig. 4 The microstructures
of chips for different CEFs
in low-speed extrusion
machining AZ31B: a
CEF=0 (FM); b
CEF=0.28; c CEF=0.44;
d CEF=0.52

Fig. 5 Experimental measurements of cutting forces for differ-
ent CEFs in low-speed extrusion machining 7075-T6

machining other materials. The measurements of cut-
ting forces and the microstructures of chips for dif-
ferent CEFs during extrusion machining 7075-T6 are
illustrated in Figs. 5 and 6, respectively. As seen in
Figs. 5 and 6, the cutting forces fluctuate periodically
and the chips are fracture-type segments if the CEF
is smaller than a certain value; however, the cutting
forces do not fluctuate periodically and the chips are
continuous sheet when the CEF reaches or exceeds a
critical value. Comparing the experimental results in
extrusion machining AZ31B with those in extrusion
machining 7075-T6, we find that the tendencies of cut-

ting forces and chipmorphologies with increasing CEF
are the same, but the critical CEF distinguishing frac-
ture type serrated chip from continuous chip depends
on the machining materials.

4 Fracture-based model for extrusion machining

4.1 The governing equations

As seen in Figs. 4 and 6, the fracture leads to the seg-
mented chips during extrusion machining AZ31B and
7075-T6 at the cutting speed of 10µm/s. The existing
theoretical model is based on shear band type defor-
mation which is the typical phenomenon in high-speed
machining [10,11,31]. The shear band-based models
cannot explain the chip formation in extrusion machin-
ing AZ31B and 7075-T6 at a relatively low cutting
speed. Here, based on the experimental observation of
extrusion machining AZ31B and 7075-T6, a fracture-
based model for extrusion machining is proposed to
characterize the process of extrusion machining.

Figure7 shows the local stress state around PSZ.
Because of the relative motion of the tool-workpiece
system, we assume that the workpiece is static and
the tool is moving toward the workpiece at a speed
of V0. The deformation of the workpiece ahead of the
tool concentrates within PSZ. The width h of PSZ is
assumed to t0/10 [1,33]. The tool and constraint exert
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Fig. 6 The microstructures
of chips for different CEFs
in low-speed extrusion
machining 7075-T6: a
CEF=0 (FM); b
CEF=0.10; c CEF=0.41;
d CEF=0.54

Fig. 7 Schematic of the extrusion machining model in which
the tool is moving toward the workpiece relatively

forces on the workpiece, which cause the precut layer
of depth t0 to move out of the rake face in the form of a
chipwith a thickness tc. Based on thework ofBurns and
Davies [10], the deformation process in PSZ is treated
as a local compression. Thus, the evolution equation for
tool compressive stress σT and constraint compression
stress σCT is given by:

d(σT − σCT )

dt
= E sin ϕ

t0
(V0 cosϕ − V ) , (1)

where E is the elastic modulus of the workpiece mate-
rial,V0 cosϕ is the velocity component of the tool along
PSZ and V is the speed of plastic flow in PSZ. The local
compressive stress σT and σCT lead to a shear stress
τ to build up in PSZ. Ignoring small inertial terms and
because of the momentum balance, it is required that

σT L1w = σCT L2w + τwt0
sin ϕ

, (2)

where L1 and L2 are the contact length of the local
compressive stress σT and σCT , respectively, and w

is the width of workpiece. In order to highlight the
essential physical argument, we simplify the geometry
by assuming that L1 = L2. Combining Eq. (1) with
Eq. (2), the following form is obtained:

dτ

dt
= EL1 sin2 ϕ

t20
(V0 cosϕ − V ) . (3)

The shear stress causes the materials in PSZ to
deform elastically at the initial stage of extrusion
machining; therefore, the speed of plastic flow V = 0.
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If the shear stress τ exceeds the yield stress τy of mate-
rials, plastic flowwill happen and there will be a plastic
shear strain rate γ̇ in PSZ:

γ̇ = V

h
. (4)

Based on the experimental results in Fig. 4, the plas-
tic work is partly converted into fracture energy, so the
heat balance equation is shown as the following form:

ρc
dT

dt
= βτ γ̇ + ρcV0 sin ϕ

Ta − T

h
+ 4k

Ta − T

h2
, (5)

where β is Taylor–Quinney coefficient, T is the tem-
perature in PSZ, Ta is ambient temperature, and ρ, c, k
are density, specific heat capacity, thermal conductivity
of theworkpiecematerial, respectively. It is found from
Eq. (5) that there are three different physical processes
altering the temperature in PSZ: heat generation due to
plastic working (the first term in the right side of the
equation), convection and diffusion of heat (the second
and third terms, respectively).

If all of the plasticwork is dissipated as heat, Taylor–
Quinney coefficient β = 1 [10,34–36]. However, the
plastic work is not entirely converted into heat in fact
[37–39]. The β percent of plastic work is dissipated as
heat and the rest of plastic work is dissipated in other
way. Here, based on the observation of microstructures
in Fig. 4, it is assumed that (1 − β) percent of plastic
work is dissipated as fracture. From energy considera-
tion, Dolinski and Rittel [40], Dolinski et al. [41] intro-
duced a damage parameter D(D ∈ [0, 1]) to model
the damage evolution. For D = 0, there is no damage
in materials; and the materials completely damage if
D = 1. In order to examine the effect of fracture on
the chip formation in extrusion machining, not only the
Hillerborg’s fracture energy G f [42] but also the con-
vection and diffusion are assumed to have an influence
on the damage parameter D. The balance about D in
PSZ is given by:

dD

dt
= (1 − β)(1 − D)

√
3τV

G f
− V0 sin ϕ

D

h

− 4χ̃D
D

h2
. (6)

Here, χ̃D is the diffusion coefficient of damage evolu-
tion and diffusion is approximated by a second-order
difference over the primary shear zone. χ̃D is equal to
l̃2(V0 sin ϕ)2/η̃ where l̃ is the damage diffusion length

scale on the order of a grain radius and η̃ is the diffu-
sion coefficient of the crystal defect. Hillerborg’s frac-
ture energyG f is determined byG f = K 2

C (1 − ν2)/E
where KC is the fracture toughness and ν is Poisson’s
ratio [43]. Equation (6) states that the rate of damage
variation in PSZ is governed by partial heat production
of plastic working (the first term in the right side of
the equation), convection and diffusion of damage (the
second and third terms, respectively).

The degradation of material is inevitable if there is
damage of fracture in material. Thus, based on the
thermo-viscoplastic material model, a new material
constitutive equation containing the effect of fracture
is required:

τ = f (γ, γ̇ , T, D) , (7)

where γ, γ̇ , T and D are shear strain, shear strain rate,
temperature and damage parameter in PSZ, respec-
tively.

Based on the derivation above, the governing system
of extrusion machining is determined by the following
ordinary differential equations (ODE):
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dτ

dt = EL1 sin2 ϕ

t20
(V0 cosϕ − V )

tan ϕ = t0 cosα
t∗c (1−χ)−t0 sin α

γ̇ = dγ

dt = V
h

ρc dTdt = βτ γ̇ + ρcV0 sin ϕ Ta−T
h + 4k Ta−T

h2

dD
dt = (1 − β)(1 − D)

√
3τV
G f

− V0 sin ϕ
h D − 4l̃2(V0 sin ϕ)2

η̃h2
D

τ = f (γ, γ̇ , T, D)

.

(8)

In Eq. (8), the constant parameters are E, L1, ϕ, V0,
t0, α, t∗c , χ, h, ρ, c, β, Ta, k,G f , l̃ and η̃. The dynamic
variables of Eq. (8) are τ, V, γ̇ , T, D and γ . Specifi-
cally, the cutting speed V0 and CEF χ are chosen as
bifurcation parameters to analyze the occurrence of
Hopf bifurcation during extrusion machining.

The initial condition (IC) governing the one-dimen-
sional extrusion machining is given as the following
form:

IC :
⎧
⎨

⎩

τ(0) = 0
T (0) = Ta
D(0) = 0

. (9)

If the specific form of constitutive relation Eq. (7) is
given,we can solve simultaneously the coupled govern-
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Fig. 8 Considering the fracture-type damage, the relationship between the shear stress and time during low-speed extrusion machining
AZ31B for different CEFs: a CEF=0 (FM); b CEF=0.28; c CEF=0.44; d CEF=0.52

ing Eqs. (8)–(9) of shear stress, shear strain, shear strain
rate, temperature and damage parameter in course of
extrusion machining.

5 Comparison of model and experimental
measurements

The workpiece material is assumed to be thermo-
viscoplastic. Considering the effect of damage evolu-
tion on material behavior, the modified Johnson–Cook
(J–C) law is chosen to be the constitutive law of the
workpiece material:

τ = 1√
3
τy

[

1 + C ln

(
γ̇

˙̄γ0

)]

[

1 −
(

T − Ta
Tm − Ta

)m]

(1 − D). (10)

Here, the strain hardening is ignored and τy is the
shear yield strength of material. The parameters such
as C, γ̇0,m, Ta are listed in Table2. [1 + C ln( γ̇

˙̄γ0 )],
[1 − ( T−Ta

Tm−Ta
)m] and (1 − D) represent the effect of

strain rate hardening, thermal softening and dam-
age softening, respectively. Substituting Eq. (10) into
Eqs. (8)–(9), the time evolutions of the shear stress τ ,
temperature T and damage parameter D are obtained
by solving the system of ordinary differential Eqs. (8)–
(9). Figures8, 9 and 10 show the relationship between
shear stress, temperature, damage parameter and time
during extrusion machining AZ31B for different
CEFs.

As seen in Figs. 8, 9 and 10, the periodic oscilla-
tions of shear stress, temperature and damage param-
eter disappear gradually with the increasing CEF. The
amplitude of fluctuation and cycle time decrease with
the increasing CEF, and there is no periodic oscilla-
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Fig. 9 Considering the fracture-type damage, the relationship between the temperature rise and time during low-speed extrusion
machining AZ31B for different CEFs: a CEF=0 (FM); b CEF=0.28; c CEF=0.44; d CEF=0.52

tion if CEF exceeds a certain value. The temperature
rise in low-speed extrusion machining is <3K, so the
effect of thermal softening is of no importance. The
damage parameter is smaller for larger CEF, which
means that the constraint restrains the fracture-type
damage during extrusion machining process with large
CEF.

By contrast, the workpiece material is only assumed
to be thermo-viscoplastic in the model where the effect
of damage evolution on material behavior is not taken
into consideration. The constitutive law of the work-
piece material is the following form:

τ = 1√
3
τy

[

1 + C ln

(
γ̇

˙̄γ0

)] [

1 −
(

T − Ta
Tm − Ta

)m]

.

(11)

Equation (6) is also ignored because the damage evo-
lution is not considered in the model. Substitut-
ing Eq. (11) into Eqs. (3)–(5) and (9), the relation-

ships between shear stress, temperature and time
for different CEFs are illustrated in Figs. 11, 12.
It is found that the temperature rise is <1K and
the thermal softening do not lead to the instability
of low-speed extrusion machining. The shear stress
and temperature do not fluctuate periodically for all
CEFs during low-speed extrusion machining AZ31B
if the effect of fracture-type damage is not taken into
consideration.

In order to distinguish whether the fracture-type
damage is taken into consideration or not, the results
of two theoretical models are compared with the mea-
surements of extrusion machining experiments. Based
on Merchant circle [44,45], the relationship between
cutting force Fc and shear stress τ is obtained where
the thrust force is ignored for simplicity:

τ t0w

sin ϕ
= Fc cosϕ. (12)
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Fig. 10 Considering the fracture-type damage, the relationship between the damage parameter and time during low-speed extrusion
machining AZ31B for different CEFs: a CEF=0 (FM); b CEF=0.28; c CEF=0.44; d CEF=0.52

Then, the predicted cutting forces are obtained by sub-
stituting the calculative shear stress τ into Eq. (12).

Figure13 shows the comparison of cutting forces
between different models and experimental measure-
ments for different CEFs during extrusion machining
AZ31B. In terms of cutting force, the theoretical model
of damage is identical with the cutting force of experi-
mental measurements; however, the theoretical model
without damage cannot reveal the periodic oscillations
of cutting force. The cutting forces predicted by the
model of damage fluctuate periodically for small CEF
(see Fig. 13a, b), which is the same as the experimen-
tal measurements. If the CEF exceeds a certain value
(see in Fig. 13c, d), there is no periodic oscillation of
cutting force in both the model of damage and experi-
mental results. Compared with cutting forces predicted
by themodel of damage, the cutting forces of themodel
without damage are much larger than the experimental
measurements for all the CEFs (see in Fig. 13); more-

over, themodel without damage cannot explain the cut-
ting force fluctuation of experiments in essence (see
in Fig. 13a, b). According to the analysis above, the
model without damage predicts the upper limit of the
cutting force. Compared with the model without dam-
age, the theoretical model of damage is more reason-
able to explain the phenomenon in extrusionmachining
experiments.

In order to confirm that the model with fracture-type
damage is universal, the cutting forces predicted by
the present model are compared with the experimental
measurements during extrusion machining 7075-T6.
The shear stress τ in PSZ during extrusion machin-
ing 7075-T6 is calculated by substituting the mechani-
cal parameters in Table2 and machining parameters in
Table3 into Eqs. (3)–(11). Then, the predicted cutting
forces during extrusion machining 7075-T6 are shown
in Fig. 14 by substituting the calculative shear stress τ

into Eq. (12). Compared with the model without dam-
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Fig. 11 Ignoring the fracture-type damage, the relationship between the shear stress and time during low-speed extrusion machining
AZ31B for different CEFs: a CEF=0 (FM); b CEF=0.28; c CEF=0.44; d CEF=0.52

age, the theoretical model of damage is more reason-
able to predict the cutting force in extrusion machin-
ing 7075-T6. Therefore, the present model of damage
is independent on the machining materials and can be
widely used to elucidate themechanism of deformation
in extrusion machining.

6 Discussion of the fracture-based model

6.1 Effect of cutting speed on Hopf bifurcation in FM

Equations (8)–(9) constitute the governing equations of
extrusion machining. For free machining (FM), there
is no extrusion effect of constraint to change the shear
angle ϕ. The effects of thermal softening and fracture-
type damage on the process of machining are analyzed
by varying the cutting speed V0 in freemachining. Sub-

stituting thematerial parameters andmachining param-
eters into the governing equations of FM model, the
variations of shear stress τ , temperature T and dam-
age parameter D in FM at a wide range of cutting
speeds are shown in Fig. 15. For high-speed machin-
ing in Fig. 15a1, the shear stress fluctuates periodically
which is the same as the trend of cutting forces in the
available experimental measurements [46–48]. More-
over, more and more researchers have confirmed that
the periodical oscillation is the result of shear band
type localized deformation in high-speed machining
[26,27,49]. The local temperature rise is about 400K,
but the increment of damage parameter is <0.015 in
high-speed FM (Fig. 15a2, a3). Compared with frac-
ture type deformation, shear band type deformation is
more dominating in high-speed machining. The cal-
culated temperature and damage parameter from the
present theoretical model demonstrate that shear band
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Fig. 12 Ignoring the fracture-type damage, the relationship between the temperature rise and time during low-speed extrusionmachining
AZ31B for different CEFs: a CEF=0 (FM); b CEF=0.28; c CEF=0.44; d CEF=0.52

type deformation leads to the formation of serrated
chips in high-speed FM. For low-speed machining in
Fig. 15b, c, the shear stress does not fluctuate peri-
odically, the maximal temperature rise is <2K, and
the maximal increment of damage parameter is <0.03.
Neither shear band type deformation nor fracture-type
deformation happens in the chip formation during low-
speed machining where the cutting speed V0 is close
to the range of the cutting speeds in Fig. 15b, c. The
deformation in chips predicted by the presented model
is homogeneous in low-speed FM, which is identical
with the available experimental observations [29,50–
52]. If the cutting speed is further slowed down (e.g.,
V0 = 10−5 m/s), the calculated results in Fig. 15d1
show that the cutting force should fluctuate periodically
in FM, which is certified by the experimental measure-
ments in Fig. 3. As illustrated in Fig. 15d2, d3, themax-
imal increment of damage parameter is about 0.8, but

the maximal temperature rise is <3K. The presented
theoretical model reveals that fracture-type deforma-
tion is the primary deformation mode during relatively
low-speed FM, which is in accordance with low-speed
machining experiments in Fig. 4.

Ignoring the fracture-type damage in FM, Burns and
Davies [10] first put forward the thermal-softening-
basedmodel to reveal themechanismof chip segmenta-
tion in high-speed FM. The model of Burns and Davies
is successful to explain the transition from shear band
type localized deformation to homogeneous deforma-
tion with the decreasing cutting speed in FM. How-
ever, if the cutting speed is below a certain value
(e.g., 10−5 m/s), the calculated results of the thermal-
softening-based model show the shear stress τ do not
fluctuate periodically in FM (Fig. 11). Therefore, the
thermal-softening-based model of Burns and Davies
is invalid to explain the periodic oscillation of cut-
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Fig. 13 Comparison of cutting forces between the different models and experimental measurements for different CEFs during extrusion
machining AZ31B: a CEF=0 (FM); b CEF=0.28; c CEF=0.44; d CEF=0.52

ting forces and segmented chips in low-speed FM.
Not only the thermal-softening deformation but also
fracture-type deformation is taken into consideration
in the present model. When the cutting speed changes
from high speed to low speed, the presented model is
valid to reveal the transition from shear band type local-
ized deformation to homogeneous deformation (see in
Fig. 15a–c). Especially for low-speed FM, compared
with the thermal-softening-based model of Burns and
Davies in Fig. 11a, the fracture-basedmodel in Fig. 15d
is more successful to explain the experimental phe-
nomenon in Figs. 3 and 4. For a relatively high cut-
ting speed as shown in Fig. 15a3–c3, the increment
of damage parameter is <0.03, so the present model
shows fracture-type deformation is negligible. There-
fore, it is reasonable for Burns and Davies to ignore
the effect of fracture-type deformation for a relatively
high cutting speed. The present theoretical model not
only degrades into the model of Burns and Davies for

relatively high-speed FM, but also explains the exper-
imental phenomenon of low-speed FM.

6.2 Effect of CEF on Hopf bifurcation

According to the discussion above, fracture-type defor-
mation is less important than the thermal-softening-
type deformation for high-speed extrusion machining.
Therefore, the thermal-softening-based model is suf-
ficient to characterize the formation of chips in high-
speed extrusion machining. Detail discussions on the
transition from shear band type localized deforma-
tion to homogeneous deformation in high-speed extru-
sion machining have been made in the literature [31].
As for low-speed extrusion machining, the thermal-
softening-based model without fracture-type damage
is useless to characterize the periodic oscillation of cut-
ting forces (see in Fig. 13a, b). There is another defor-
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Fig. 14 Comparison of cutting forces between the different models and experimental measurements for different CEFs during extrusion
machining 7075-T6: a CEF=0 (FM); b CEF=0.10; c CEF=0.41; d CEF=0.54

mation mechanism controlling the formation of chips
in low-speed extrusion machining. Based on the exper-
imental observations in Fig. 4, a fracture-based model
which combines the thermal-softening-type deforma-
tion with fracture type deformation is proposed here to
explain experimental phenomenon in Fig. 4. The tra-
jectories of shear stress τ , temperature T and dam-
age parameter D in low-speed extrusion machining are
illustrated in Fig. 16 by using the calculated results in
Figs. 8, 9 and 10. The theoretical calculations, together
with the experimental observations, provide us with an
insight into the physical picture of chip formation dur-
ing low-speed extrusion machining. During extrusion
machining process, shear stress in materials entering
PSZ initially increases quickly. The source of fracture
damage exceeds its convection and diffusion with con-
tinuous increase in shear stress, which finally leads to
drastic creation of fracture in chips. As shown in the
experimental observations of Fig. 4, for small CEF in

Fig. 4a, b, the initiation and propagation of fracture will
decrease the shear stress in PSZ due to energy dissi-
pation (see in Fig. 8a, b). The decreased shear stress
slows down the fracture source, whereas the material
moving out of PSZ and new material moving into PSZ
speeds up the fracture disappearance in PSZ (Fig. 10a,
b).At the same time, the heat production also ceases and
the heat dissipation cools the PSZ. Unlike high-speed
extrusion machining, the maximal temperature rise is
<3K (Fig. 9a, b), so the equilibrium of the heat produc-
tion and dissipation is less important in the chip forma-
tion of low-speed extrusion machining. Soon, enough
new material without fracture damage passes through
the PSZ to increase the shear stress again. As a conse-
quence, the fracture type damage and temperature build
up again; therefore, the machining cycle repeats itself
all the time. As we have shown previously in Figs. 8a,
b, 9 and 10a, b, this provides automatic feedback in
shear stress τ , temperature T and damage parameter
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Fig. 15 Variations of shear stress, temperature rise and damage parameter in FM AZ31B at a wide range of cutting speeds: a1–a3
V0 = 10m/s; b1–b3 V0 = 10−1 m/s; c1–c3 V0 = 10−2 m/s; d1–d3 V0 = 10−5 m/s

D which leads to stable limit cycles in the phase space
of Fig. 16a, b. Compared with Fig. 16a, larger CEF in
Fig. 16b leads to smaller limit cycles in the phase space.
When CEF exceeds a certain value, e.g., CEF ≥ 0.44
in the present experiments, the constraint is able to sup-
press the evolution of fracture in PSZ and enables the
balance of the fracture-type damage convection, diffu-
sion and source. As a result, steady-state shear stress τ ,
temperature T and damage parameter D are achieved in
Figs. 8c, d, 9 and 10c, d. Then, a homogeneous plastic
flow occurs in PSZ, finally resulting in the continuous
chip formation in Fig. 4c, d. With the help of the con-
straint, the static equilibrium of the fracture-type dam-
age convection, diffusion and source indicates a limit
point in the phase space (Fig. 16c, d). Compared with
Fig. 16c, the larger CEF in Fig. 16d makes it faster to
reach the limit point in the phase space.

Fig. 16 Trajectories of shear stress τ , temperature rise T − Ta
and damage parameter D in low-speed extrusion machining
AZ31B for different CEFs: a CEF=0 (FM); b CEF=0.28;
c CEF=0.44; d CEF=0.52
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6.3 Criterion for Hopf bifurcation

Based on Eq. (8), the ordinary differential Eqs. (13)–
(16) are obtained by means of the dynamic parameters
τ, V, T and D. Linear stability analysis of the govern-
ing system is carried out to reveal the effect of param-
eters (V0, CEF) on Hopf bifurcation. According to the
method of linear stability analysis [53–57], detailed
processes of linear stability analysis are given out.

dτ

dt
= EL1 sin2 ϕ

t20
(V0 cosϕ − V ) , (13)

dT

dt
= βτV

ρch
+ V0 sin ϕ

Ta − T

h
+ 4k

ρc

Ta − T

h2
, (14)

dD

dt
= (1 − β)(1 − D)

√
3τV

G f
− V0 sin ϕ

D

h

− 4χ̃D
D

h2
, (15)

τ = g(V, T, D). (16)

In order to simplify the governing Eqs. (13)–(16),
the following dimensionless variables are introduced
here:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

τ̂ = τ
τy

, T̂ = T−Ta
Tm−Ta

, t̂ = EV0t
τy t0

,

V̂ = V
V0

, ξ = τy
ρc(Tm−Ta)

F = τy t0
Eh , H = V0h

χ̃D
, M = L1

t0
,

N =
√
3(1−β)τ 2y t0

EG f
, Pe = ρcV0h

k

. (17)

Then, the non-dimensional governing system is the fol-
lowing form:

dτ̂

dt̂
= M sin2 ϕ

(
cosϕ − V̂

)
, (18)

dT̂

dt̂
= βξF τ̂ V̂ − F sin ϕT̂ − 4FT̂

Pe
, (19)

dD

dt̂
= (1 − D)N τ̂ V̂ − F sin ϕD − 4FD

H
, (20)

τ̂ = U
(
V̂ , T̂ , D

)
. (21)

For later use, let us introduce the following notations:

R = ∂U

∂ V̂
> 0 (strain rate hardening coefficient),

(22)

P = −∂U

∂ T̂
> 0 (thermal softening coefficient),

(23)

O = −∂U

∂D
> 0 (damage softening coefficient).

(24)

The governing equations have a steady state in the
case of

dτ̂

dt̂
= dT̂

dt̂
= dD

dt̂
= 0. (25)

The corresponding steady-state solutions are indicated
as τ ∗, T ∗, D∗ and V ∗. There are two equilibriumpoints
in the ODEmodel: One is a saddle node and the other is
focus. Based on the physical background (0 ≤ T ∗ ≤ 1
and 0 ≤ D∗ ≤ 1), the saddle node in the ODE model
is not taken into consideration in the following discus-
sion. Carrying out linear stability analysis of Eqs. (18)–
(21), that is
⎛

⎜
⎜
⎝

τ̂

T̂
D
V̂

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

τ ∗
T ∗
D∗
V ∗

⎞

⎟
⎟
⎠ +

⎛

⎜
⎜
⎝

δτ̂

δT̂
δD
δV̂

⎞

⎟
⎟
⎠ exp(λt). (26)

Substituting Eq. (26) into Eqs. (18)–(21) and retain-
ing the linear terms, the linearization governing system
is given by:

J ·

⎛

⎜
⎜
⎝

δτ̂

δT̂
δD
δV̂

⎞

⎟
⎟
⎠ = 0, (27)

where

J =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

λ 0 0 M sin2 ϕ

βξFV ∗ −λ − F sin ϕ − 4F
Pe 0 βξFτ ∗

N (1 − D∗)V ∗ 0 −λ − Nτ ∗V ∗ − F sin ϕ − 4F
H N (1 − D∗)τ ∗

1 P∗ O∗ −R∗

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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P∗, R∗ and O∗ are defined by:
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

P∗ = − ∂U
∂ T̂

∣
∣
∣
∣
(V ∗,τ∗,T ∗,D∗)

R∗ = ∂U
∂ V̂

∣
∣
∣
∣
(V ∗,τ∗,T ∗,D∗)

O∗ = − ∂U
∂D

∣
∣
∣
∣
(V ∗,τ∗,T ∗,D∗)

. (28)

To have a non-trivial solution, the determinant of
matrix J must be equal to zero. This leads to a third-
order eigenvalue equation:

a1λ
3 + a2λ

2 + a3λ + a4 = 0, (29)

where the polynomial coefficients are
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 = R∗

a2 = 4FR∗
H + 4FR∗

Pe + 2FR∗ sin ϕ + M sin2 ϕ

+NR∗V ∗τ ∗ − NO∗(1 − D∗)τ ∗ − Fβξ P∗τ ∗

a3 = 16F2R∗
HPe + 4F2R∗ sin ϕ

H + 4F2R∗ sin ϕ
Pe

+ 4FM sin2 ϕ
H + 4FM sin2 ϕ

Pe + F2R∗ sin2 ϕ

+2FM sin3 ϕ + MNO∗ sin2 ϕ(1 − D∗)V ∗

+FMP∗ sin2 ϕβξV ∗ + 4FNR∗V ∗τ∗
Pe

+FNR∗ sin ϕV ∗τ ∗ + MN sin2 ϕV ∗τ ∗

− 4FNO∗(1−D∗)τ∗
Pe − FNO∗ sin ϕ(1 − D∗)τ ∗

− 4F2P∗βξτ∗
H − F2P∗ sin ϕβξτ ∗

−FNP∗βξV ∗(τ ∗)2

a4 = 16F2M sin2 ϕ
HPe + 4F2M sin3 ϕ

H + 4F2M sin3 ϕ
Pe

+F2M sin4 ϕ + 4FMNO∗ sin2 ϕ(1−D∗)V ∗
Pe

+FMNO∗ sin3 ϕ(1 − D∗)V ∗

+ 4F2MP∗ sin2 ϕβξV ∗
H + F2MP∗ sin3 ϕβξV ∗

+ 4FMN sin2 ϕV ∗τ∗
Pe + FMN sin3 ϕV ∗τ ∗

+FMNP∗ sin2 ϕβξ(V ∗)2τ ∗

.

(30)

The stability is determined by the real part of eigen-
value λ: If an eigenvalue λ exists with its real part
Re(λ) > 0, the solution is unstable; otherwise, it is
stable. Based on Routh–Hurwitz criterion [58], the sta-
ble conditions are given by
⎧
⎨

⎩

a2 > 0
a3 > 0
a2a3 > a1a4

. (31)

Fig. 17 Relationship between the maximum of Re(λ) and cut-
ting speed for a given CEF

Fig. 18 Relationship between the maximum of Re(λ) and CEF
for a given cutting speed

Based onEq. (29), the relationship between themax-
imum of Re(λ) and cutting speed is calculated (see in
Fig. 17). For a given CEF during machining AZ31B
(e.g., CEF=0), there are two critical cutting speeds
(0.01 and 0.2m/s). If the cutting speed is lower than
0.01m/s, the real part of eigenvalue is greater than zero
and then Hopf bifurcation gives rise to chip segmen-
tation. If the cutting speed is higher than 0.2m/s, the
real part of eigenvalue is also greater than zero and
then Hopf bifurcation gives rise to chip segmentation.
When the cutting speed is between 0.01 and 0.2m/s, the
eigenvalue λ cannot exist with its real part Re(λ) > 0;
therefore, there is no Hopf bifurcation.

The relationship between the maximum of Re(λ)

and CEF is shown in Fig. 18 by numerical solutions
of Eq. (29). For a given cutting speed during machin-
ing AZ31B (e.g., 10µm/s), the maximum of Re(λ)
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Fig. 19 Variation of the maximum of Re(λ) with cutting speed
and CEF. (Color figure online)

Fig. 20 Phase diagram of Hopf bifurcation in the parameter
plane (V0, CEF). (Color figure online)

decreases with the increasing CEF.When CEF exceeds
a certain value (e.g., CEF=0.29), the eigenvalue λ can-
not exist with its real part Re(λ) > 0; otherwise, Hopf
bifurcation gives rise to chip segmentation. The cal-
culated results are in agreement with the experimental
observations (see in Fig. 4).

Based on Eq. (29), the occurrence of Hopf bifurca-
tion is analyzed by choosing either the cutting speed
or the CEF as bifurcation parameters. The variation of
the maximum of Re(λ) with cutting speed and CEF
is illustrated in Fig. 19 by substituting the machining

parameters of AZ31B into Eq. (29). The curved surface
is divided into two parts by a red curve. The parame-
ters (V0, CEF) located on the upper part of the curved
surface would lead to the occurrence of Hopf bifur-
cation; otherwise, there is no Hopf bifurcation during
the formation of chips. Furthermore, Eq. (31) gives out
the loci of Hopf bifurcation by choosing either the cut-
ting speed or the CEF as bifurcation parameters. As
shown in Fig. 20, the phase diagram of Hopf bifurca-
tion is indicated in the parameter plane (V0, CEF). If
the parameters (V0, CEF) locate in the green region, the
deformation in chips is stable; otherwise, Hopf bifur-
cation happens during the formation of chips (e.g., the
red region in Fig. 20).

7 Concluding remarks

In summary, using low-speed extrusion machining
technique, the systematic extrusion machining experi-
ments of magnesium alloy AZ31B and aluminum alloy
7075-T6 were conducted for different constraint extru-
sion factors (CEFs) at the cutting speed of 10−5 m/s.
The microscopic observations of chips reveal that the
chip is segmented during free machining (FM) at
the relatively low cutting speed, which is different
from the existing viewpoint that the chip transforms
from serrated to continuous with the decreasing cut-
ting speed. The comparison of microstructures for dif-
ferent CEFs shows the transition from fracture-type
segmented deformation to homogeneous sheet defor-
mation with the increasing CEF in low-speed extru-
sion machining. The existing thermal-softening-based
model is invalid to explain the achieved experimen-
tal results. Based on the low-speed extrusion machin-
ing experimental observations, we present a nonlinear
dynamic model for extrusion machining, taking into
account fracture-type deformation, thermal-softening-
type deformation, effects of extrusion constraint, mate-
rial convection and momentum diffusion. Compared
with the existing thermal-softening-based model, the
presented theoretical model is more rational to explain
the experimental results; therefore, the presented theo-
retical model is effective to characterize the process of
chip formation in extrusion machining.

According to the numerical calculations of the pre-
sented model, we reveal the mechanism underlying in
the chips during low-speed extrusion machining. For
small CEF, the symmetry breaking of the fracture-
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type damage convection, diffusion and source governs
the segmented chips in low-speed extrusion machin-
ing, which can be understood as the manifestation
of a self-sustained stable limit-cycle bifurcation phe-
nomenon. As for large CEF, with the help of the sup-
pression of fracture from the constraint, the balance
of the fracture type damage convection, diffusion and
source results in the homogeneous chips correspond-
ing to a limit point at mathematics. During low-speed
extrusion machining, we should focus on fracture-type
deformation and thermal-softening-typedeformation is
less important; however, thermal-softening-type defor-
mation is the primary deformation mode and fracture-
type deformation is negligible for high-speed machin-
ing.
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