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The proportionality between the subgrid-scale (SGS) drain rate of kinetic energy and the viscous
dissipation rate of the resolved motions is studied a priori by filtering a given fully resolved field and
evaluating a generic form of the hypothesized energy spectrum. The ratio of the SGS drain to the
resolved dissipation, on which a balance condition for the SGS dissipation across an arbitrary grid
scale is founded, is shown to be independent of the turbulence Reynolds number, and can be described
by a function in terms of the averaged mesh Reynolds number. Such a balance condition can serve as
a physical constraint in the SGS modeling to account for the scale effects of the model coefficient(s).
Scale-adaptive dynamic Smagorinsky-Lilly model and mixed nonlinear model are formulated for
large-eddy simulation of transitional and/or turbulent flows in such a way that the constraint is satisfied.
The newly proposed scale-adaptive dynamic SGS models are validated in simulations of homogeneous
isotropic turbulence and turbulent channel flow, and prove to be superior over traditional dynamic
SGS models. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4977089]

I. INTRODUCTION

The large-eddy simulation (LES) method has been widely
used for studying the physical mechanism of high Reynolds
number flows1,2 and has been playing an increasingly impor-
tant role in the simulation of engineering and environmen-
tal flows.3,4 In LES, we formally solve the coarse-grained
Navier-Stokes equations, in which the effects of subgrid-scale
(SGS) motions need to be modeled through an unclosed SGS
term. The SGS closure issues are of both fundamental and
practical importance and have been the subject of extensive
research.5–9 More details on the SGS modeling can be found in
some review articles10–13 and the references therein. In LES,
the large energy-containing eddies of turbulent motion can
be directly computed, but the effect of small-scale turbulent
motions (referred to as the unclosed SGS terms in the LES
governing equations) is formally modeled using the resolved
fields, taking into consideration that the small scales are more
homogeneous and universal, and less affected by the bound-
ary and initial conditions than the large ones. The most widely
used SGS models are eddy-viscosity models, among which
is the seminal Smagorinsky-Lilly (S-L) model proposed by
Smagorinsky14 and Lilly15,16 based on dimensional arguments
and the equilibrium assumption for small scales of turbulent
motion. In the S-L model, the deviatoric part of the SGS stress

a)Author to whom correspondence should be addressed. Electronic mail:
z.xiao@pku.edu.cn

tensor τij = ũiuj − ũiũj (namely, the anisotropic residual SGS
stress tensor) is parameterized in terms of the resolved velocity
field ũi in the following form:

τr
ij ≡ τij −

1
3
δijτkk = −2νS S̃ij. (1)

Here, the tilde denotes the grid filter with the filter width ∆̃,
S̃ij =

1
2 (∂ũi/∂xj+∂ũj/∂xi) is the resolved strain-rate tensor, and

νS =CSL∆̃
2 |S̃ | is the SGS eddy viscosity, with |S̃ | = (2S̃ijS̃ij)

1/2

being the magnitude of the resolved strain-rate tensor (or
the so-called strain scalar). Note that the model coefficient
CSL is the square of the original Smagorinsky constant CS .14

Lilly16 evaluated the S-L model for high-Reynolds-number
turbulence, assuming that ∆̃ falls in the inertial subrange,
in which the sub-grid drain εS = 〈νS |S̃ |2〉 is balanced by the
total dissipation ε and the Kolmogorov energy spectrum
E(κ) = CKε

2/3κ−5/3 (with κ being the wavenumber) is pre-
cisely achieved. Here, the angle brackets denote a volume
average. The model coefficient CSL can be directly determined
from this energy dissipation balance for a specified value of
CK .

Despite its limited success in LES of particular flows,
e.g., isotropic turbulence, it is argued that the S-L model does
not perform as well in the simulation of turbulent shear flows
unless the Smagorinsky constant CS is reduced by a proper fac-
tor.1,17 For wall-bounded turbulent flows (e.g., plane channel
flow), Moin and Kim18 suggested that the Van Driest damp-
ing function19 should be introduced in addition to the reduced
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CS in order to account for the attenuation of the small-scale
turbulence near the wall.

An evolutionary scenario for SGS modeling of wall-
bounded flows is the so-called dynamic model proposed by
Germano et al.20 In the dynamic SGS models, the model coef-
ficients, which can differ not only from flow to flow but within
a single flow geometry, are determined dynamically as the
numerical simulation progresses rather than given in an a pri-
ori or empirical fashion. Applying a test filter (denoted by an

overbar) at a second scale, ∆̃ = ζ ∆̃ (ζ ≥ 1), to the Navier-
Stokes equations yields the subtest-scale (STS) stress tensor
Tij = ũiuj − ũiũj, which is related to the SGS stress tensor τij

through the Germano identity6

Lij = Tij − τij, (2)

where Lij ≡ ũiũj − ũiũj is known as the resolved stress tensor
and can be calculated directly from the resolved velocity field.
Letting τij and T ij be parameterized by any given base SGS
models, and assuming scale invariance of the model coeffi-
cient(s), a dynamic procedure is now mostly to minimize the
mean square error introduced by the use of the SGS models in
the Germano identity over directions of statistical homogene-
ity20,21 or following fluid trajectories22 to give rise to dynamic
coefficient(s) rather than implemented for every individual
fluid particle23 in order to avoid large local variations in νT

and numerical instability.24 Applying the dynamic procedure
outlined above to the calculation of the model coefficient in the
S-L model (1) yields the dynamic Smagorinsky model (DSM)
with CSL given by

CSL =
〈MijLij〉

〈MijMij〉
, (3)

where Mij =−2∆̃2(ζ2 |S̃ |S̃ij−|S̃ |S̃ij) and the angle brackets rep-
resent an average over statistically homogeneous directions
or along pathlines. A particular strength of the dynamic con-
cept of the SGS modeling is that it can be easily incorporated
into the determination of coefficients of mixed models, such
as dynamic mixed similarity model (DMSM)25 and dynamic
mixed nonlinear (gradient) model (DMNM),26 which dis-
play much stronger correlation with the real stress than the
Smagorinsky-Lilly type models.12 More recently, Fauconnier
and Dick27 investigated the effects of the grid resolution on
LES of homogeneous and isotropic turbulence through analyt-
ical and numerical methods, and suggested that the optimum
grid resolution should satisfy the relation κeλ ≈ 0.27Re0.36

λ
(with κe, λ, and Reλ being the effective wavenumber cor-
responding to the grid scale, Taylor microscale, and Taylor
microscale Reynolds number).

On the one hand, the dynamic models (e.g., DSM) have
the benefit of being self-contained (i.e., no need for a pre-
scribed model parameter and near-wall correction) and have
been applied successfully to many flows.11,12 On the other
hand, the dynamic concept (as well as the constant-coefficient
S-L model) suffers from several deficiencies. One typical issue
is that the model time scale is simply specified as the mag-
nitude of the resolved strain-rate tensor. Another weakness
arises from the scale invariance assumption of the SGS drain

(εS = ε) and the model coefficient(s) (CSL(∆̃)=CSL(∆̃)), which

is applicable to the Kolmogorov regime in the inertial subrange
of high-Reynolds-number turbulence. However, the smallest
resolved scale (i.e., the mesh size) in LES does not necessar-
ily lie in the inertial range (e.g., near obstacle boundaries of
complex flows), or no clear inertial subrange is present (e.g.,
transitional flows and low-Reynolds number flows). The issue
of scale dependence in SGS modeling has attracted substan-
tial concerns.28 Voke29 generalized Lilly’s approach16 and put
forward a scale-dependent SGS model for LES at low mesh
Reynolds numbers (Re

∆̃
= ∆̃2 |S̃ |/ν, with ν being the kinematic

viscosity) on the basis of the hypothesized full-range energy
spectra of the form E(κ) = CKε

2/3κ−5/3f (κ). The SGS eddy
viscosity (νS) is constructed such that the standard S-L model
is recovered in the limit of high Re

∆̃
with an offset, and the SGS

effect vanishes in the completely resolved limit (i.e., Re
∆̃
→ 0).

These low-Reynolds-number models have been applied to
numerical studies of bypass transitional flow.30 Meneveau and
Lund31 proposed a “bi-dynamic” model by introducing two
test filters at two test scales. The model coefficient at the
grid scale is determined through linear extrapolation using
the coefficients obtained for the two test scales. Neverthe-
less, it was argued32 for statistically stationary forced isotropic
turbulence that the model coefficient calculated utilizing a
dynamic procedure (3) corresponds to the test scale rather
than the grid scale. Therefore, they suggested that a ratio of

the test-scale to grid-scale coefficient (%(∆̃)=CSL(∆̃)/CSL(∆̃))
be introduced when implementing the dynamic procedure
across the transition from LES to direct numerical simu-
lation (DNS). The dissipation-range ratio is given a priori
in the form %(∆̃)= 10−χ, with χ = 3.23(Re−0.92

∆̃

− Re−0.92
∆̃

),

while the model coefficient CSL(∆̃) is calculated dynamically
(with the corresponding model being referred to as scale-
dependent dynamic Smagorinsky model (SDDSM) in this
paper). With a power-law assumption for the model coefficient
(i.e., CSL(∆̃) ∼ ∆φ) and an introduction of a second test filter,
Porté-Agel, Meneveau, and Parlange4 generalized Meneveau
and Lund’s work and proposed an improved scale-dependent
dynamic Smagorinsky model (ISDDSM), which allows both
the ratio %(∆̃) and the coefficient CSL(∆̃) to be determined
dynamically. This approach was successfully applied to the
LES of a neutral atmospheric boundary layer, for which the
grid scale approaches the local integral scale of the flow near
the wall. The ISDDSM shows significant improvement in the
predictions of the velocity spectra and mean velocity pro-
files as compared with the standard Smagorinsky and dynamic
Smagorinsky models. Recognizing the limitations in the use of
ISDDSM to rather simple flow geometries (due to the require-
ment for average over homogeneous directions), Bou-Zeid,
Meneveau, and Parlange33 suggested that the model coefficient
be evaluated using the time-weighted average over pathlines
and put forward a scale-dependent Lagrangian dynamic model
for LES of practical flows in complex geometries.

The inclusion of a relationship between the test-scale and
grid-scale coefficients in the dynamic procedure, as suggested
by Meneveau and Lund32 and Porté-Agel, Meneveau, and
Parlange,4 is equivalent to solving a constrained variational
problem, and is consistent with the conclusion drawn by Mene-
veau34 that specific balance conditions (such as the momentum
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flux, and the energy flux) should be satisfied for SGS modeling
in order to simulate the SGS effect more accurately. Shi, Xiao,
and Chen,35 for example, formulated a dynamic mixed SGS
model under the constraint on energy fluxes across two scales.
An extension of such constraint concept was then carried out
to model the SGS stress for LES of helical turbulence.36,37

Chen et al.38 argued that the mean SGS stress tensor needs
to be constrained by external Reynolds stress in the near-wall
region towards SGS modeling for LES of wall-bounded flows.
Simulation results manifest that the improvement of the con-
strained large-eddy simulation (CLES) methods relative to
traditional LES methods is encouraging. In a recent survey
article, Meneveau39 restated the famous Germano identity in
a generalized fashion that the sum of resolved and modeled
SGS contributions to any quantity of physical interest should
be scale-independent. The “generalized Germano identity”
acts as a constraint on the model parameters to be determined
during simulation.

This paper intends to address a novel methodological
approach to the exploration of scale-adaptive SGS models for
LES of flows at various Reynolds numbers. In this method-
ology, functional forms of the ratio of the SGS to resolved
dissipations are obtained using DNS and hypothesized spec-
trum, respectively, and serve as the physical constraints to
optimize the model parameters in the dynamic procedure. The
rest of this paper is organized as follows. In Sec. II, a gen-
eralized constraint on the SGS dissipation is introduced on
the basis of the relationship between the SGS and resolved
dissipations. Furthermore, the scale-adaptive SGS models are
derived in Sec. III. Then, the proposed models are validated
and tested in simulations of homogeneous isotropic turbulence
and turbulent channel flow in Sec. IV. Finally, the summary
and concluding remarks are given in Sec. V.

II. A GENERALIZED CONSTRAINT
ON THE SGS DISSIPATION

In the original Smagorinsky-Lilly model, as mentioned
above, the SGS dissipation εS is simply assumed to equal the
total dissipation ε. In reality, however, the total dissipation ε
will not be known a priori, or might be difficult to identify a
posteriori. Therefore, it is hypothesized that the SGS dissipa-
tion can be uniquely determined based on the resolved viscous
dissipation (denoted by εR = 2ν〈̃SijS̃ij〉). Formally, a simple
proportionality between εS and εR is put forward in the form

εS = γ∆̃εR, (4)

where γ
∆̃

might differ from flow to flow, and should vary with

the cutoff scale (or the grid width in LES) ∆̃. If the assumption
(4) proves to be true, it can be used as an effective constraint
to control the SGS dissipation when modeling the SGS stress.

For homogeneous isotropic turbulence, it is easy to show
that the total dissipation rate ε in physical space can be related
to the energy spectrum tensor as follows:

ε = 〈2νSijSij〉 = 〈ν |S |
2〉 = −〈νui∇

2ui〉 = −ν lim
r→0

∂2

∂rjrj
Rii(r)

= −ν lim
r→0

κmax∑
κ=0

eiκ ·r(−κjκj)R̂ii(κ) =
κmax∑
κ=0

2νκ2E(κ). (5)

Here, Rii(r)= 〈ui(x)ui(x+ r)〉 and R̂ii(κ)= 〈û∗i (κ)ûi(κ)〉= 2E(κ)
are the two-point velocity correlation and its Fourier coeffi-
cients. Accordingly, the resolved dissipation rate εR can be
calculated in a similar way based on a sharp spectral cutoff
filter (with the cutoff wavenumber κc = π/∆̃), i.e.,

εR = 〈2νS̃ijS̃ij〉 = 〈ν |S̃ |
2〉 = −〈νũi∇

2ũi〉

= −ν lim
r→0

∂2

∂rjrj
R̃ii(r) = −ν lim

r→0

κc∑
κ=0

eiκ ·r(−κjκj)R̂ii(κ)

=

κc∑
κ=0

2νκ2E(κ). (6)

If one decomposes the total dissipation rate as

ε =

κmax∑
κ=0

2νκ2E(κ) =
κc∑
κ=0

2νκ2E(κ) +
κmax∑
κ=κc

2νκ2E(κ), (7)

the subgrid-scale dissipation is given by εS =
∑κmax
κ=κc 2νκ2E(κ).

More detailed derivations can be found in the reference book
by Pope.40 Such a full-spectrum analysis of turbulence yields
the following relation:

ε = εS + εR. (8)

Thus, the resolved dissipation is related to the total
dissipation via

εR

ε
= (1 + γ

∆̃
)−1. (9)

In order to ascertain the validity of the scale-dependence
of the dissipation ratio function γ

∆̃
, we consider the dimen-

sionless variable ∆̃/η, which can be rewritten as

∆̃

η
= π

κd

κc
= ∆̃

(
ν3

ε

)−1/4

= ∆̃*
,

ν3 · 2ν〈̃SijS̃ij〉

2ν〈̃SijS̃ij〉ε
+
-

−1/4

=
∆̃(2〈̃SijS̃ij〉)

1/4

ν1/2

(
ε

εR

)1/4

=
[
Re
∆̃

(1 + γ
∆̃

)1/2
]1/2

, (10)

with η = (ν3/ε)
1/4

being the Kolmogorov length scale,
κd = 1/η the dissipation wavenumber, and Re

∆̃
the mesh

Reynolds number as defined by Voke.29 Hence, it is inferred
that the ratio function γ

∆̃
can be uniquely expressed in terms

of ∆̃/η or Re
∆̃

as long as the mesh Reynolds number is

only a function of ∆̃/η. This argument is subject to further
verification.

A. Dissipation constraint based on a model spectrum

Kovasznay41 proposed an instructive energy spectrum in
the form

E(κ) = CKε
2/3κ−5/3


1 −

CK

2

(
κ

κd

)4/3

2

. (11)

Although the Kovasznay spectrum only provides the density
distribution of energy up to κ = (2/CK )3/4κd , it describes one
possible scenario for the energy dynamics in both inertial and
dissipative ranges of the wavenumber κ. Therefore, the use
of the Kovasznay spectrum as a model for the subsequent
derivation does not lose any generality.
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By using the Kovasznay spectrum, we can write the
resolved dissipation (at scale ∆̃) as

εR = 2ν
∫ κc

0
κ2E(κ)dκ = νκ4/3

d ε2/3



1−

1 −

CK

2

(
κc

κd

)4/3

3


.

(12)

Note that the Kovasznay spectrum vanishes at κ = (2/CK )3/4κd

and κd = 1/η = (ε/ν3)
1/4

. Therefore, εR as calculated in
Eq. (12) recovers the full dissipation ε if κc is set to
(2/CK )3/4κd (the maximum wavenumber for the Kovasz-
nay spectrum). An inspection of Eq. (10) shows that κc/κd

= π[Re
∆̃

(1 + γ
∆̃

)1/2]
−1/2

. Thus, substituting for kd and κc/κd

in (12) yields

εR

ε
= 1 −

[
1 −

CK

2
π4/3Re−2/3

∆̃

(
1 + γ

∆̃

)−1/3
]3

. (13)

Equating the right hand sides of (9) and (13) leads to

γ
∆̃
=

1
8



CK

2
π4/3Re−2/3

∆̃
+

*.
,

32 − C3
Kπ

4Re−2
∆̃

12CKπ4/3Re−2/3

∆̃

+/
-

1/2

3

− 1. (14)

This demonstrates the conjecture that the SGS dissipation
can be measured through the resolved dissipation modulated
by a ratio coefficient γ

∆̃
, which is a function of the mesh

Reynolds number Re
∆̃

, at least for the Kovasznay-type spectra.
An inspection of (14) and (10) suggests that the ratio function
γ
∆̃

can also be expressed in terms of the dimensionless filter

width ∆̃/η.
It shall be stressed that the above derivation is based on

a low-pass sharp cutoff filter. It is anticipated that other com-
monly used filter functions will give similar results. As an
example, we now use the Gaussian filter for noise reduction.
The resolved dissipation at scale ∆̃ is then given by

εR = 2ν
∫ κc

0
κ2Ĝ2E(κ)dκ = νκ4/3

d ε2/3
{ [

4861/3
Γ

(
5
3

)
− 122/3

Γ

(
2
3

,
π2

12

)]
CKπ

−4/3
(
κc

κd

)4/3

+

[
124/3

Γ

(
4
3

,
π2

12

)
− 43741/3

Γ

(
7
3

)]
C2

Kπ
−8/3

(
κc

κd

)8/3

+

[
36 −

(
36 + 3π2

)
exp

(
−
π2

12

)]
C3

Kπ
−4

(
κc

κd

)4}
, (15)

where Ĝ = Ĝ(κ, ∆̃) = exp(−κ2∆̃2/24) = exp[−π2(κ/κc)2/24]
is the Gaussian filter kernel in spectral space, Γ(ξ)
= ∫
∞

0 tξ−1e−tdt is the gamma function, and Γ(ξ, x)
= ∫
∞

x tξ−1e−tdt is the upper incomplete gamma function. It
must be mentioned that the resolved dissipation εR as calcu-
lated in Eq. (15) cannot recover the full dissipation ε when κc

is set to the maximum wavenumber (2/CK )3/4κd , but under-
estimates it by about 11%. Such discrepancy is ascribed to
the global damping property of the Gaussian filter. For a filter
width with κc < (2/CK )3/4κd , however, Eq. (15) essentially
yields the resolved dissipation based on a truncated Gaussian
filter. Note that the upper limit of the integral is κc instead of

the maximum wavenumber. It is shown by algebraic calcula-
tions that such simplification can result in an underprediction
of the resolved dissipation by up to 25% depending on the filter
width. Although Eq. (15) indeed underestimates the resolved
dissipation, it can be calibrated by a correction factor α in
order for it to be used in the scale-dependent SGS modeling.
The simplest form of the correction factor is a constant, e.g.,
α ≈ 0.89 · 0.80 = 0.71.

It is easy to show from Eqs. (15) and (10) that the ratio of
the modified εR to the total dissipation reads

εR

ε
=

1
α

[
5.1149CK Re−2/3

∆̃

(
1 + γ

∆̃

)−1/3

− 10.1770C2
K Re−4/3

∆̃

(
1 + γ

∆̃

)−2/3

+ 7.1750C3
K Re−2

∆̃

(
1 + γ

∆̃

)−1
]

. (16)

By equating the right hand sides of Eqs. (9) and (16), we
arrive at the solution for γ

∆̃
in the form

γ
∆̃
=

[
0.99CK Re−2/3

∆̃
+ 0.098

(
20.46αC−1

K Re2/3

∆̃

− 43.23C2
K Re−4/3

∆̃

)1/2
]3

− 1. (17)

Both Eqs. (14) and (17) can be problematic when the mesh
Reynolds number Re

∆̃
approaches zero, because small Re

∆̃
will

result in negative dissipation ratio γ
∆̃

. It is shown by algebraic
calculation that γ

∆̃
will approach zero when Re

∆̃
falls down to

about 7 and 19, respectively, in Eqs. (14) and (17). However,
such a drawback almost has no influence on the application of
these equations to the SGS modeling since the smallest mesh
Reynolds number in practical LES is usually larger than these
limiting values. When Re

∆̃
goes to infinity, however, γ

∆̃
calcu-

lated using both Eqs. (14) and (17) will also approach infinity,
indicating that the resolved dissipation rate is negligibly small
in such limit case.

It should be mentioned that the correction factor might
vary in terms of the filter width (∆̃) or the dissipation ratio (γ

∆̃
).

For example, one can think of α as a function of γ
∆̃

in the form
α = α1(1 + γ

∆̃
)1/3 +α2 with the coefficients α1 = −0.028 and

α2 = 0.92 determined by algebraic calculation using Eq. (15).
It ought to be further stressed that the above assumptions

have no specific physical reasons and the mathematical deriva-
tions are all under the conditions of statistical homogeneity and
stationarity. For inhomogeneous flows, e.g., turbulent chan-
nel flow, the formulations are still applicable to homogeneous
directions, i.e., the plane perpendicular to the wall-normal
direction. For flows with more complex geometries, it is sim-
ply assumed that the functional dependence of γ

∆̃
upon Re

∆̃

(i.e., Eqs. (14) and (17)) remains unchanged.

B. Dissipation constraint based on data fitting

The conjecture that the ratio of the SGS dissipation to the
resolved dissipation, γ

∆̃
, can be expressed as a function of the

dimensionless filter width ∆̃/η or the mesh Reynolds number
has proven to hold for the Kovasznay spectrum using both
the sharp cutoff filter and Gaussian filter. In this subsection,
we intend to evaluate the validity of the conjecture based on
the numerical data of three-dimensional (3D) incompressible



035101-5 Yu, Xiao, and Li Phys. Fluids 29, 035101 (2017)

homogeneous isotropic turbulence (HIT). For such purpose,
we have numerically solved the 3D incompressible Navier-
Stokes equations in the form

∂ui

∂t
+

∂

∂xj
(uiuj) = −

1
ρ

∂p
∂xi
+ ν

∂2ui

∂xj∂xj
+ fi, (18)

using a pseudospectral solver in a cubic box with a side length
L = 2π. Periodic boundary conditions are imposed in the
three directions. Here, ui is the velocity vector and p is the
pressure. The flow system is maintained statistically station-
ary through a large-scale forcing term f i, which is determined
dynamically in order to keep a constant energy input in the
first two wavenumber shells. The dealiasing error is removed
by using the Orszag’s 2/3 rule.42 The second-order Adams-
Bashforth scheme is employed to perform the physical time
marching. The constant energy injection rate in the first two
wavenumber shells is εin = 0.1. The initial condition is given by
a Gaussian random field with an energy spectrum of the form
E0(κ) = Aκ2U2

0 κ
−5
0 e−2κ2/κ2

0 , with κ0 = 4.5786 and U0 = 0.715.
A is chosen such that the initial kinetic energy is 3U2

0/2. More
details concerning the numerical method and parameterization
can be found in the article co-authored by Chen et al.43 The
grid resolution is 5123, and the kinematic viscosity (ν) varies
from 5×10−4 to 5×10−3. The initial large-eddy turnover time
is defined as τ0 = π/(κ0U0). The data analysis is conducted for
all the flow fields obtained after five initial large-eddy turnover
times when all the systems have reached a statistically steady
state. The resultant Taylor microscale Reynolds numbers (Reλ)
range from 75 to 235.

The SGS dissipation rate εS = −〈̃Sijτij〉 and resolved dis-
sipation rate εR = 〈ν |S̃ |2〉 are calculated with varying filter
width ∆̃ based on the HIT data at different Reynolds numbers.
Here, a Gaussian filter function is used to remove the small-
scale (<∆̃) fluctuations. Shown in Fig. 1(a) is the inverse of
the dissipation ratio, γ−1

∆̃
, in terms of the dimensionless filter

width ∆̃/η. It can be seen that all the curves (with symbols) for
different Reynolds numbers nearly collapse onto each other.
If we use curve-fitting method, we end up with

γ−1
∆̃
= a1(∆̃/η)

−3/2
+ b1(∆̃/η)

−7/3
, (19)

with a1 = b1 = 30.0 being the fitted coefficients. This implies
that the dissipation ratio can be uniquely expressed as a func-
tion of ∆̃/η at least for HIT with the large-scale forcing
employed in this paper. The variations of the dissipation ratio,
γ
∆̃

, with respect to the mesh Reynolds number are depicted in
Fig. 1(b) for DNS data of HIT over a range of Reynolds num-
bers. The different symbols show very good agreement with
each other over the entire range of mesh Reynolds numbers
under consideration. A curve fitting analysis suggests that the
dissipation ratio function be modeled as

γ
∆̃
= a2

[
ln (b2Re

∆̃
)
]27/4

, (20)

where a2 = 7 × 10−5, and b2 = 0.7. These numerical evi-
dence favourably support the conjecture for γ

∆̃
as made at

the beginning of this section.
The modeled dissipation constraints (14) and (17) are also

plotted in Fig. 1(b) as the dashed, dashed-dotted, and dashed-
double dotted lines, respectively, for comparison. It can be seen

FIG. 1. (a) The inverse of the dissipation ratio, γ−1
∆̃

versus ∆̃/η, and (b) the

dissipation ratioγ
∆̃

versus the mesh Reynolds number Re
∆̃

calculated a priori
based on the DNS’s of HIT at various Reynolds numbers (different symbols).
In panel (b), the dashed line is for Eq. (14), while the dashed-dotted and
dashed-double dotted lines are for Eq. (17) without and with corrections.

that the curve for Eq. (17) with α = 1 (before correction) devi-
ates strongly from the numerical data as discussed previously.
However, the curves for Eqs. (14) and (17) with α = 0.71 (after
correction) are consistent with the numerical results very well
when Re

∆̃
< 1000, but overestimate γ

∆̃
when Re

∆̃
> 1000

in comparison with the fitted curve, which is attributed to the
discrepancy between the Kovasznay spectrum and the simu-
lated spectra in the energy-containing range, which shall be
out of our interest in regard to the LES applications. It should
be mentioned here that the scale-dependent formulation for
the correction factor α as suggested at the end of Sec. II A
yields a similar result to that using a constant value (which is
not shown here in order not to pollute the data).

III. SCALE-ADAPTIVE SGS MODELS

The SGS dissipation constraint (4) based on the dissipa-
tion ratio functions (see Eqs. (14), (17), and (20)) obtained
in Sec. II can be easily incorporated in the SGS modeling
procedure to develop scale-adaptive SGS models for LES.

We first take the dynamic Smagorinsky model as an exam-
ple, for which the deviatoric SGS stress tensor is parameterized
as

τr
ij = −2CSL(∆̃)∆̃2 |S̃ |S̃ij. (21)
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Therefore, the resolved and SGS dissipation rates are given
by εR(∆̃) = 〈ν |S̃ |2〉 and εS(∆̃) = CSL(∆̃)∆̃2〈|S̃ |3〉, respectively.
Substituting εS(∆̃) and εR(∆̃) into (4) yields

CSL(∆̃)∆̃2〈|S̃ |3〉 = γ
∆̃
〈ν |S̃ |2〉. (22)

Comparing (22) with its counterpart at the test scale ∆̃ = ζ ∆̃
(ζ ≥ 1) leads to

β
∆̃
=

CSL(∆̃)∆̃
2

CSL(∆̃)∆̃2
= ζ2 CSL(∆̃)

CSL(∆̃)
=
γ
∆̃
〈|S̃ |2〉 〈|S̃ |3〉

γ
∆̃
〈|S̃ |2〉 〈|S̃ |3〉

. (23)

Again, applying the dynamic procedure mentioned in Sec. I to
the evaluation of the coefficient CSL(∆̃) in (21) yields

CSL(∆̃) =
〈RijLij〉

〈RijRij〉
, (24)

where

Rij = −2∆̃2(β
∆̃
|S̃ |S̃ij − |S̃ |S̃ij). (25)

The Smagorinsky model with the coefficient identified by (24)
is termed as the scale-adaptive dynamic Smagorinsky model
(SADSM).

The advantage of the proposed dissipation constraint lies
in that it can be easily taken into account in the construction
of mixed SGS models. Here, we choose the mixed nonlinear
model44,45 to illustrate the general procedure for the inclusion
of the SGS dissipation constraint (4). The general form of the
mixed nonlinear model can be written as

τmnl
ij = C1(∆̃)∆̃2 |S̃ |S̃ij + C2(∆̃)∆̃2W̃ikW̃jk , (26)

where W̃ik = ∂ũi/∂xk is the filtered velocity gradient tensor.
This formulation in (26) benefits from the features of both the
Smagorinsky-Lilly part and the tensorial eddy-viscosity part,
of which, the former serves as an energy dissipation provider
and is characterised by good numerical robustness and stabil-
ity, and the latter is good at capturing the so-called backscatters
and does not rely on a second filtering.

Note that in the traditional dynamic procedure, the model
coefficients C1 and C2 are assumed to be scale-independent.
Such assumption is a substantially stiff constraint and is valid
only when the grid and test scales are within the inertial sub-
range. To take into account the scale effect on the two model
coefficients, we need another physical constraint in addition
to the SGS dissipation constraint (i.e., Eq. (4)). For simplic-
ity, it is conjectured that the partition of the SGS dissipation
between the Smagorinsky term and the nonlinear term remains
unchanged at different scales. The assumption made as such
is based on the fact that the Smagorinsky term provides most
of the SGS dissipation in the mixed model. With this simple
constraint, one can easily show that the ratio of the model coef-

ficient at the test scale ∆̃ to that at the grid scale ∆̃ takes the
same expression as in (23), i.e.,

βmnl

∆̃
= ζ2 C1(∆̃)

C1(∆̃)
= ζ2 C2(∆̃)

C2(∆̃)
= β

∆̃
=
γ
∆̃
〈|S̃ |2〉 〈|S̃ |3〉

γ
∆̃
〈|S̃ |2〉 〈|S̃ |3〉

. (27)

If we use the dynamic procedure to determine the model
coefficients with the model coefficients constrained by (27),
we will end up with

C1(∆̃) =
〈LijPij〉 〈QijQij〉 − 〈LijQij〉 〈PijQij〉

〈PijPij〉 〈QijQij〉 − 〈PijQij〉 〈PijQij〉
(28)

and

C2(∆̃) =
〈LijQij〉 〈PijPij〉 − 〈LijPij〉 〈PijQij〉

〈PijPij〉 〈QijQij〉 − 〈PijQij〉 〈PijQij〉
, (29)

where
Pij = ∆̃

2(β
∆̃
|S̃ |S̃ij − |S̃ |S̃ij) (30)

and
Qij = ∆̃

2(β
∆̃

W̃ ikW̃ jk − W̃ikW̃ jk). (31)

The mixed model (26) with the coefficients determined by (28)
and (29) is referred to as the scale-adaptive dynamic mixed
(nonlinear) model (SADMM).

IV. COMPUTATIONAL VALIDATION AND RESULTS
A. A priori test

The proposed scale-adaptive SGS models are tested
a priori by using the DNS data of HIT obtained in Sec. II B.
Similar conclusions can be drawn for all data at various
Reynolds numbers. Without loss of generality, we only present
the results calculated from the turbulent velocity fields at
Taylor Reynolds number Reλ = 165 (ν = 0.001). For sim-
plicity, a Gaussian filter is used to filter out the small scales
of turbulent motion. The scale-adaptive dynamic Smagorinsky
models with β

∆̃
determined by Eqs. (17) and (20) are referred

to as SADSM(M) and SADSM(F), respectively. Accord-
ingly, the scale-adaptive dynamic mixed models are named
as SADMM(M) and SADMM(F), separately. In addition, the
results given by the scale-dependent dynamic Smagorinsky
model (SDDSM) proposed by Meneveau and Lund,32 the tra-
ditional dynamic Smagorinsky model (DSM), and the dynamic
mixed (nonlinear) model (DMM) are also presented here for
the purpose of comparison.

The parameter β
∆̃

, which serves as a constraint for the
Smagorinsky model coefficients at the test and filter scales, is
first evaluated when the filter width ∆̃ varies from the dissipa-
tive to inertial range of turbulence. Shown in Fig. 2 is β

∆̃
as

a function of the mesh Reynolds number Re
∆̃

as well as the

normalized filter width ∆̃/η for SADSM(M) and SADSM(F).
Note that in traditional DSM, this constraint parameter remains
constant, i.e., β

∆̃
= 4 for given ζ = 2. The corresponding result

from SDDSM is also plotted for comparison. It turns out that
the values for both SADSM(M) and SADSM(F) are larger
than that for SDDSM, and are increasingly so in low-mesh
Reynolds number range (dissipative range). All the values
for different models (except DSM) decrease monotonically
with increasing Re

∆̃
, and show a tendency to approach 4 when

the mesh Reynolds number Re
∆̃
∼ 850, beyond which a short

inertial range of turbulent motion (70 < ∆̃/η < 100, i.e.,
900 < Re

∆̃
< 1400 as indicated by the region between the

two vertical dashed lines in Fig. 2) is achieved in this simula-
tion case. It should be mentioned that the asymptotic value of
β
∆̃

for SADSM(M) is also dependent on CK , which is another
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FIG. 2. The constraint for the Smagorinsky model coefficients at the test and
filter scales β

∆̃
versus the mesh Reynolds number Re

∆̃
and the filter width ∆̃

calculated a priori using the DNS data of HIT at Reλ = 165: SADSM(M)
(dashed), SADSM(F) (solid), SDDSM (dashed-dotted), and DSM (dashed-
double dotted).

important parameter in (17) in addition to Re
∆̃

and whose value
remains controversial, especially for relatively low-Reynolds
number flows. In this paper, CK is specified as 1.6, which
is within a reasonable range suggested in the experimental
measurement46 and numerical simulation47 of turbulence. It
should also be stressed that SADSM(M) does not apply in very
low-mesh Reynolds number regimes (not shown in this figure)
because the Kovaznay spectrum cannot model the spectral dis-
tribution of turbulent kinetic energy beyond κ = (2/CK )3/4κd

as mentioned previously. The parameter βmnl

∆̃

shall take the

same values as β
∆̃

as conjectured in Sec. III.

The model coefficient CSL(∆̃) in Eq. (24) is calculated
based on different β

∆
with various filter widths. Plotted in

Fig. 3 are the variations of CSL with respect to the mesh
Reynolds number Re

∆̃
, which is associated with the grid

scale of LES and can be easily obtained in computation, for
different Smagorinsky-Lilly-type models, i.e., SADSM(M),
SADSM(F), SDDSM, and DSM. The peak values for DSM
and SDDSM are about 0.02 at Re

∆̃
∼ 300 around which a

short plateau range is achieved in this simulation case, while

FIG. 3. The model coefficients CSL calculated a priori at various mesh
Reynolds numbers for the Smagorinsky-Lilly-type models with different con-
straints: SADSM(M) (line with squares), SADSM(F) (line with triangles),
SDDSM (line with diamonds), and DSM (line with circles).

the peak values for SADSM(M) and SADSM(F) are all smaller
than 0.02 by 10% and 20%, respectively. Note that the for-
mer peak value is close to those obtained for the dynamic
Smagorinsky model and modified dynamic model as reported
in the paper by Meneveau and Lund.32 It should be men-
tioned here that the discrepancy between the mesh Reynolds
numbers at which DSM and SADSM(F) observe their max-
imum coefficients lies in the fact that the model coefficient
obtained in DSM corresponds to the test-filter scale rather
than the gird-filter scale.32 As the mesh Reynolds number
decreases (corresponding to the decreasing filter length), the
coefficients for different models also decrease. The coefficients
for SADSM(M) and SADSM(F) drop more rapidly than those
for DSM and SDDSM. At large scales (Re

∆̃
> 800), the drops

in coefficients for all models are attributed to the effects of
large-scale forcing.

The mixed models with different constraints are tested a
priori with the coefficients C1 and C2 determined by Eqs.
(28) and (29) using the filtered DNS data at various filter
widths. The calculated results are shown in Fig. 4. Note that
in Fig. 4(a), �C1 is presented as opposed to C1 for the purpose
of better visualization and comparison. It can be seen that the
variation trends of the predicted coefficient �C1 for different
models are similar to those for the single-term Smagorinsky

FIG. 4. The model coefficients (a) �C1 and (b) C2 calculated a priori at var-
ious mesh Reynolds numbers for the mixed models with different constraints:
SADMM(M) (line with squares), SADMM(F) (line with triangles), and DMM
(line with diamonds).
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models depicted in Fig. 3, but the coefficient for SADMM(F)
drops more rapidly than that for SADMM(M) at small fil-
ter scales. As seen in Fig. 4(b), nearly all the values of C2

for SADMM(M) and SADMM(F) are smaller than that for
DMM, especially at small mesh Reynolds numbers. When ∆̃
approaches the dissipative scales, C2 for SADMM(M) and
SADMM(F) shows a monotonic decrease while that for DMM
yields a slight increase, which is due to the fact that the tradi-
tional dynamic procedure tends to amplify the impact of the
nonlinear term in the mixed model. The proposed constraint
in the present paper can effectively overcome this difficulty.

B. A posteriori test
1. Homogeneous and isotropic turbulence

The proposed scale-adaptive SGS models are first vali-
dated a posteriori in LES of the large-scale forced isotropic
turbulence at various Reynolds numbers. Formally, the pseu-
dospectral solver solves the filtered Navier-Stokes equations
in the following form:

∂ũi

∂t
+

∂

∂xj
(̃uiũj) = −

1
ρ

∂p̃
∂xi
+ ν

∂2ũi

∂xj∂xj
−
∂τij

∂xj
+ f̃i. (32)

Similar to the DNS, the flow system is maintained by inject-
ing energy in the first two wavenumber shells at constant
rate, which can dynamically yield the large-scale forcing
f̃i. All computations are performed starting from a Gaus-
sian random field with an energy spectrum as introduced in
Sec. II B for DNS. Here, we only present the results for the
low-Reynolds number case with ν = 0.001. The results from
DNS with the same input parameters are used for comparison
purpose.

We show in Fig. 5 the energy spectra calculated in
LES using different Smagorinsky-Lilly-type models, i.e.,
SADSM(M), SADSM(F), SDDSM, and DSM, respectively.
Two spatial grid resolutions ((a) 643 and (b) 1283) are chosen
to demonstrate the scale-adaptive capability of the proposed
model in predicting the SGS effect on the resolved motions.
The long dissipative tails of the DNS spectra are truncated in
order to provide a more clear comparison. The vertical dashed
lines marked by different values of κ indicate the grid scales of
various LES cases. In the low-resolution case (see Fig. 5(a)),
for which the grid scale is approximately at the upper edge of
the dissipative range, both SADSM(M) and SADSM(F) pre-
dict the spectrum more accurately than SDDSM and DSM as
compared with the DNS data, especially at the upper edge
of the inertial range and around the grid scale. In the high-
resolution case (see Fig. 5(b)), SADSM(M) and SADSM(F)
also provide improved prediction of the energy spectrum in the
dissipative range in comparison with SDDSM and DSM. For
example, the scale-adaptive models can improve the predic-
tion of the near grid-scale spectrum by up to 67% as compared
with DSM and SDDSM.

The low energy densities at high wavenumbers predicted
by SDDSM and DSM may result from the overprediction of the
model coefficient as can be clearly seen in Figs. 6(a) and 6(b),
which display the time evolution of the model coefficients CSL

for different models on 643 and 1283 grid points, respectively,
as the computations progress. Note that the horizontal axis has

FIG. 5. Energy spectra obtained in LES of forced isotropic turbulence with
spatial grid resolutions of (a) 643 and (b) 1283, respectively. SADSM(M)
(dashed), SADSM(F) (dashed-double dotted), SDDSM (line with diamonds),
and DSM (line with triangles).

been normalized by τ0, which is the initial large-eddy turnover
time defined by the input characteristic parameters (see
Sec. II B). In the low-resolution case, all the calculated model
coefficients are close to each other, although the coefficients for
SADSM(M) and SADSM(F) are a little bit smaller than those
for SDDSM and DSM. In high-resolution case, however, there
exist considerable discrepancies among the coefficients for dif-
ferent models. For example, the coefficient for SADSM(M) is
almost 40% less than that for DSM, but is about 12% larger
than that for SADSM(F). The difference between the coeffi-
cients for SADSM(M) and SADSM(F) should arise from the
difference between the Kovasznay spectrum and the calculated
spectra in the vicinity of grid scales.

The proposed mixed models are also implemented
a posteriori in LES of the forced isotropic turbulence with the
same input parameters as above. Depicted in Figs. 7(a) and
7(b) are the energy spectra calculated by using SADMM(M),
SADMM(F), and DMM on 643 and 1283 modes, respectively.
Accordingly, we show in Fig. 8 the resultant model coefficients
for the Smagorinsky term with a negative sign as a prefix (�C1)
in terms of the simulation time t/τ0. Similarly, the time varia-
tion of the calculated model coefficients for the nonlinear term
(C2) is plotted in Fig. 9.

From Fig. 7, we can see that the scale-adaptive mixed
models can provide an improvement in predicting the energy
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FIG. 6. Time evolution of the model coefficient CSL in LES of forced isotropic
turbulence with spatial grid resolutions of (a) 643 and (b) 1283, respectively.
SADSM(M) (line with squares), SADSM(F) (line with triangles), SDDSM
(line with diamonds), and DSM (line with circles).

spectrum for large and grid scales. Though the mixed mod-
els can capture the lower-mode energy densities, they tend
to underestimate the energy spectrum in the inertial range
(see Fig. 7(a)) or in the neighbourhood of the lower edge
of the inertial range (see Fig. 7(b)) when compared with the
results from the single-term models (see Fig. 5) and DNS.
Such performance of the mixed models can be ascribed to the
compromise of the Smagorinsky term in competition with the
nonlinear term since the traditional dynamic procedure (the
method of least squares based on SGS stress) has a tendency
to lay emphasis on the latter and attenuate the former.9

The inclusion of the scale-adaptive constraint for the
model coefficient can not only decrease the overpredicted
model coefficients but also adjust the contributions made by
the two terms in a more reasonable fashion. This can be par-
tially manifested by the model coefficients computed in LES
as shown in Figs. 8 and 9. It can be seen that the model coeffi-
cients (both �C1 and C2) for the scale-adaptive models are all
less than those for DMM on different grids. For DMM, �C1

on 1283 modes decreases by about 67% in comparison with
that on 643 modes, but C2 remains almost unchanged on dif-
ferent grids. For the scale-adaptive models (see SADMM(M)
and SADMM(F)), however, both �C1 and C2 decrease
by as high as 80% and 40%, respectively, when the grid
resolution changes from 643 to 1283. Therefore, the use of the

FIG. 7. Energy spectra obtained in LES of forced isotropic turbulence with
spatial grid resolutions of (a) 643 and (b) 1283, respectively. SADMM(M)
(dashed), SADMM(F) (dashed-double dotted), and DMM (line with dia-
monds).

scale-adaptive constraint for model coefficient can be useful
in constructing a more physical and reliable multi-term SGS
model, although the example employed in the present paper
does not perform very well with surprising results as far as the
energy spectrum is concerned.

2. Turbulent channel flow

In practical engineering applications, turbulent flows are
usually subject to the influence of wall boundaries, which pose
a big challenge to the SGS modeling for LES. In this sec-
tion, the proposed scale-adaptive SGS models are applied to
numerical simulation of turbulent channel flow for validation
purposes. The filtered Navier-Stokes equations (32) are solved
in a cuboid box of 4πδ × 2δ × 2πδ, where δ is the channel
half-width. The Fourier-Chebyshev pseudospectral method48

is employed for spatial discretization. Time integration is car-
ried out using a semi-implicit Runge-Kutta scheme, i.e., the
Crank-Nicolson scheme for the linear term, and the second-
order Adams-Bashforth scheme for the nonlinear term. The
three-second truncation rule49 is used to eliminate the aliasing
errors. Periodic boundary conditions are set in the streamwise
and spanwise directions, and non-slip boundary conditions
are assigned at the walls (y = ±δ). A constant pressure gra-
dient in the streamwise direction is provided to drive the
flow.
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FIG. 8. Time evolution of the model coefficient �C1 in LES of forced
isotropic turbulence with spatial grid resolutions of (a) 643 and (b) 1283,
respectively. SADMM(M) (line with squares), SADMM(F) (line with trian-
gles), and DMM (line with diamonds).

The filtering procedure is operated in the x-z plane using a
top-hat filer. The grid filter width is ∆̃ = [∆x∆

2
z ]

1/3
, and the test-

filter width is taken as ∆̃ = 2∆̃. The friction Reynolds number
(Reτ = uτδ/ν, with uτ being the friction velocity) is prescribed
as 180. Three grid resolutions, i.e., 48× 64× 48 (GRID1),
64× 64× 64 (GRID2), and 80× 64× 80 (GRID3), are used
for the grid-convergence study before the main results are pre-
sented. The benchmark DNS is carried out on 128× 128× 128
grid points.

Shown in Fig. 10 are the mean velocity profiles calculated
by LES using (a) SADSM(M), (b) SADSM(F), and (c) DSM
at different grid resolutions. It can be seen that all three SGS
models show good grid-convergence property as the grid num-
ber is larger than or equal to 64 in the streamwise and spanwise
directions. The velocity profiles predicted by SADSM(M) and
SADSM(F) agree with the law of the wall very well, while
those predicted by DSM deviate obviously from the log-law
in the outer layer with a higher intercept.

The mean velocity profiles from SADSM(M) and
SADSM(F) are further compared with those from DSM and
DNS as depicted in Fig. 11. Note that the LES results on
GRID3 are presented here. It is clearly seen that the pro-
files from SADSM(M) and SADSM(F) almost collapse onto
the profile from DNS. Nevertheless, the profile given by

FIG. 9. Time evolution of the model coefficient C2 in LES of forced isotropic
turbulence with spatial grid resolutions of (a) 643 and (b) 1283, respectively.
SADMM(M) (line with squares), SADMM(F) (line with triangles), and DMM
(line with diamonds).

DSM lifts up in the log-law region as compared with the
DNS result. Specifically, DSM overpredicts the mean veloc-
ity by up to 7%, while the maximum deviation of the results
given by scale-adaptive models from the DNS benchmark data
is less than 1%. Therefore, the scale-adaptive SGS models
are superior to the traditional dynamic Smagorinsky model,
which is based on the scale-invariance assumption, in sim-
ulating wall-bounded turbulence, especially in the near-wall
regions.

Turbulence intensity is one of the most important quanti-
ties in turbulent flows. Therefore, one can assess the fidelity
of an LES method through measuring the predicted tur-
bulence intensities. We show in Fig. 12 the resolved tur-
bulence intensities calculated in LES using SADSM(M),
SADSM(F), and DSM at different grid resolutions to eval-
uate the scale-adaptive property of the proposed models. The
DNS data are also presented for comparison purposes. It
is clear to the eyes that the resolved turbulence intensities
given by the scale-adaptive SGS models (SADSM(M) and
SADSM(F)) are closer to the DNS data than those given by
DSM for all three grid resolutions. Hence, it is inferred that the
scale-adaptive SGS models suggested in this paper can pre-
dict turbulence better than traditional dynamic Smagorinsky
models.
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FIG. 10. Mean velocity profiles in wall units calculated in LES using (a)
SADSM(M), (b) SADSM(F), and (c) DSM at different grid resolutions:
GRID1 (48 × 64 × 48, squares), GRID2 (64 × 64 × 64, deltas), and GRID3
(80 × 64 × 80, circles).

FIG. 11. Mean velocity profiles in wall units predicted by SADSM(M)
(dashed line), SADSM(F) (dashed-double dotted line), and DSM (plus signs)
at 80 × 64 × 80 resolution. The data from DNS (solid line) are plotted for
comparison.

FIG. 12. Resolved turbulence intensities normalized by friction velocity from
SADSM(M) (dashed line), SADSM(F) (dashed-double dotted line), and DSM
(plus signs) at different grid resolutions: (a) GRID1 (48×64×48), (b) GRID2
(64 × 64 × 64), and (c) GRID3 (80 × 64 × 80). The DNS data (solid line) are
also plotted for comparison.

The capability to accurately simulate the friction force,
especially in the near-wall region, is another important cri-
terion for the evaluation of an SGS model. The friction
coefficient is defined as

Cf =
µ∂u
∂y

1
2 ρU2

b

, (33)

with Ub being the bulk velocity. Shown in Fig. 13 are dis-
tributions of the friction coefficients along the wall-normal
direction predicted by SADSM(M), SADSM(F), and DSM
at three different grid resolutions. It is seen that the curves
for SADSM(M) and SADSM(F) almost collapse onto the
DNS result. The results from DSM, however, deviate strongly
from the DNS results, especially within the region of y+ < 12.
The DSM underpredicts the skin-friction coefficient, i.e.,
Cf (y+ = 0) by about 10% compared with the benchmark
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FIG. 13. Distributions of the friction coefficient along the wall-normal direc-
tion predicted by SADSM(M) (dashed line), SADSM(F) (dashed-double
dotted line), and DSM (plus signs) at different grid resolutions: (a) GRID1
(48× 64× 48), (b) GRID2 (64× 64× 64), and (c) GRID3 (80× 64× 80). The
DNS data (solid line) are plotted for comparison.

DNS result. The maximum deviation of the results given by
SADSM(F) from the DNS benchmark data is about 1.5% at the
lowest grid resolution (GRID1) used in this paper. Although
the performance of SADSM(M) is not as good as that of
SADSM(F) on GRID1 and GRID2, it is almost identical to
the latter at the highest grid resolution (GRID3). It should be
stressed that the traditional dynamic SGS model (including
DSM) is proposed based on the scale-invariance assumption,
in which the viscous effect is totally ignored. In the near-wall
regions of wall-bounded turbulence, however, the viscous and
inertia forces almost balance each other. Therefore, the vis-
cous effect must be taken into account. The scale-adaptive
SGS models proposed in this paper can effectively incorpo-
rate the viscous effect and are applicable for the multi-scale
simulation of turbulence in the near-wall regions.

In order to evaluate the ability of the proposed models in
predicting higher-Reynolds number turbulent channel flows,
we have carried a series of simulations at Reτ = 1000. In
Figs. 14(a) and 14(b), we display the mean velocity pro-
file and the total Reynolds stress predicted by SADSM(M),
SADSM(F), and DSM, respectively at Reτ = 1000. The DNS
results from Lee and Moser50 are also shown here for compari-
son. It can be seen in Fig. 14(a) that the mean velocity predicted
by SADSM(M) and SADSM(F) is closer to the DNS profile
than that given by DSM when y+ > 30. From Fig. 14(b), we
can also see that SADSM(M) and SADSM(F) can predict the
total Reynolds stress more accurately than DSM in the region
of 20 < y+ < 300.

To make a more comprehensive comparison, we have con-
sidered the Vreman model,51 the volumetric strain-stretching
(VSS) model,52 and the explicit algebraic subgrid-scale stress
model (EASSM)53 as a supplement to DSM. Figs. 15(a) and
15(b) show the mean velocity profiles in wall units and the
distributions of friction coefficients along the wall-normal
direction at Reτ = 180 predicted by SADSM(M), SADSM(F),
DSM, Vreman model, VSS model, and EASSM. All LESs
are carried out on 80 × 64 × 80 grid points. From Fig. 15(a),
we can see that SADSM(M) and SADSM(F) predict the
most accurate velocity profile if one takes the DNS data as
reference. EASSM obtains a better result than DSM, VSS

FIG. 14. (a) Mean velocity profiles in wall units and (b) total Reynolds stress
predicted by SADSM(M) (dashed line), SADSM(F) (dashed-double dotted
line), and DSM (plus signs) at Reτ = 1000. The DNS data from Lee and
Moser50 (solid line) are shown for comparison.
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FIG. 15. (a) Mean velocity profiles in wall units, and (b) distributions of
the friction coefficients along the wall-normal direction at Reτ = 180 pre-
dicted by SADSM(M) (dashed line), SADSM(F) (dashed-double dotted line),
DSM (plus signs), Vreman model (squares), VSS model (deltas), and EASSM
(diamonds) at grid resolution of 80 × 64 × 80.

model, and Vreman model, although the VSS model performs
quite well in the high-y+ region. A similar conclusion can be
drawn for the prediction of the friction coefficient as seen in
Fig. 15(b). Although the performance of EASSM is close to
that of the scale-adaptive models, SADSM(M) and SADSM(F)
still make the most accurate predictions. The Vreman model
underpredicts the friction coefficient severely when y+ < 10.

As mentioned in Sec. II A, the ratio function of the dissi-
pation rates (γ∆) derived based on homogeneous and isotropic
turbulence also applies to flows with homogeneous directions.
The corresponding SGS dissipation constraint can provide
the SGS model with multiscale and scale-adaptive properties,
which lead to the favourable results for turbulent channel flow
as compared with other models considered in this paper. It is
inferred that the proposed scale-adaptive models should offer a
similar improvement in the simulation of turbulent flows with
complex boundaries.

V. CONCLUSIONS

In this paper, the relation between the subgrid-scale (SGS)
and resolved viscous dissipation rates of turbulent kinetic
energy at an arbitrary filter scale (∆̃) is investigated by using a
hypothesized energy spectrum and a series of direct numerical

simulation (DNS) data for incompressible isotropic turbu-
lence. It turns out that the ratio (γ

∆̃
) of the SGS dissipation

rate to the resolved viscous dissipation rate can be expressed
as a function of the normalized filter length (∆̃/η, with η being
the Kolmogorov length scale) or the mesh Reynolds number
(Re
∆̃

), and its variation with respect to ∆̃/η (or Re
∆̃

) is almost
independent of the Reynolds number.

The dissipation ratio factor γ
∆̃

is then used as a grid
self-recognizing constraint (β

∆̃
) for the model coefficients

of dynamic Smagorinsky models. The SGS model with the
model coefficient determined in such a manner is referred to
as the scale-adaptive dynamic Smagorinsky model (SADSM).
Specifically, the resultant models are called SADSM(M) and
SADSM(F), respectively, if the dissipation ratio factor is given
based on a model spectrum (17) and direct numerical simula-
tion (DNS) data fitting (20). Furthermore, it is hypothesized
that both of the coefficients in the mixed nonlinear SGS model
also satisfy the same constraint as that in the single-term
model. The corresponding dynamic mixed models are termed
as SADMM(M) and SADMM(F), respectively.

The proposed scale-adaptive models are tested both a pri-
ori and a posteriori in simulations of homogeneous isotropic
turbulence. In a priori text, the constraint parameter β

∆̃

decreases monotonically with increasing mesh Reynolds num-
ber (or the filter width ∆̃), and approaches a sympototic value
of 4. The calculated values for β

∆̃
based on modeled and fitted

γ
∆̃

are all larger than that employed in the scale-dependent
dynamic Smagorinsky model (SDDSM),32 especially in the
dissipative range. The model coefficients of the scale-adaptive
models are found to be smaller than those of the conventional
dynamic SGS models. In the a posteriori test, the scale-
adaptive models can improve the accuracy in predicting the
energy spectra at grid resolutions as compared with traditional
dynamic models and SDDSM, especially on the dissipative-
range grids. It is found that the use of the scale self-recognizing
constraint can effectively optimize the allocation between the
Smagorinsky part and the nonlinear part of the mixed SGS
model, which is the major issue of the conventional dynamic
mixed SGS models.

Then, the scale-adaptive models are tested a posteriori
in the simulation of turbulent channel flow. It turns out that
the scale-adaptive models can effectively incorporate the vis-
cous effect in the near-wall region and obtain obviously better
results for the mean velocity profile, the resolved turbulence
intensities, the total Reynolds stress, skin-friction coefficient,
etc.

It should be stressed that the constraint parameter intro-
duced in the present paper can be straightforwardly incorpo-
rated in optimizing any other base models, such as stretched
vortex model and anisotropic model, in both Eulerian and
Lagrangian dynamic regimes.
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