Effect of HCl on NO Formation during CO/NH₃ Combustion in an Entrained Flow Reactor at 1023–1223 K

Yang Wang, Jing Zhao, Xiaolin Wei and Sen Li

State Key Laboratory of High-Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
Aerospace Research Institute of Special Material and Processing Technology, Beijing 100190, People’s Republic of China
School of Engineering and Science, University of Chinese Academy of Sciences, Beijing 100190, People’s Republic of China

ABSTRACT: Biomass and coal that contain high amounts of chlorine release HCl during combustion. There is no universal agreement regarding the effect of HCl on NO formation. To investigate the effect of HCl on NO formation, CO/NH₃ combustion experiments and simulations were conducted in an entrained flow combustion reactor at 1023–1223 K. The experimental results show that the HCl addition tends to inhibit NO formation at low temperatures and exhibits promotion effects when the temperature is increasing and a temperature enhancement tends to inhibit NO formation. The simulation results provide evidence that the HCl addition inhibits NO formation by reducing the concentrations of the H, O, and OH radicals.

1. INTRODUCTION

Halogen (F, Cl, Br, etc.) often exist in solid fuels, such as coal, biomass, municipal solid waste (MSW), etc., and, in particular, the content of chlorine or bromine is over 1% in some types of coal and biomass. Halogens in fuels influence combustion, and chlorine is generally released as HCl and Cl₂ during the combustion of gaseous fuel or coal, which is because halogen addition suppresses the concentrations of radicals (O, H, OH, etc.). Hence, the oxidation of CO to CO₂ is significantly inhibited. The addition of halogens not only suppresses CO oxidation but also affects the chemical reactions of nitrogen during combustion. To date, there is no universal agreement regarding the effect of halogens on NO formation during combustion. A lot of work had been conducted to study the effect of HCl on pollution emissions in fluidized bed combustors at a relatively lower temperature. Julien et al. and Gokulakrishnan and Lawrence reported that the formation of NOₓ decreased as a result of the addition of halogen in circulating fluidized bed combustion (CFBC) or fluidized bed combustion (FBC). However, Liang et al. confirmed that halogens enhanced the formation of NOₓ in FBC. Bloomer and Miller reported that NOₓ increased when methyl chloride (CH₃Cl) was added. Wei et al. measured NOₓ profiles along the reactor length with HCl addition during pulverized coal flame. The results clearly show that NOₓ formation reduces with an increasing HCl concentration. However, Linak et al. reported that the formation of NO is not significantly reduced by chlorine in a swirling burner. Molina et al. reported that HBr addition altered NO production depending upon the temperature during char combustion; the presence of HBr decreased NO production by 80% at 1170 K, whereas HBr addition decreased NO production by 20% at 1570 K. The NO formation induced by the HCl addition is determined by the fuel type and combustion conditions. The concentrations of HCl and NOₓ precursors (NH₃) are determined by the fuel types, whereas the field of laminar or turbulence flow, the temperature, and the concentration of the species (e.g., CO, O₂, NH₃, NO, etc.) are determined by combustion conditions (such as gas combustion, pulverized fuel combustion, FBC, CFBC, etc.). In addition to homogeneous reactions, the effect of HCl on NO formation can arise from the catalysis of ash or bed materials. To simplify the combustion conditions, experiments were conducted to investigate the effect of the HCl addition on NO formation in an entrained flow combustion reactor (EFCR), where the combustion conditions are well-controlled by adjusting the species concentrations and temperatures.

2. EXPERIMENTAL SECTION

An EFCR was used to investigate the effect of HCl on CO and NO emissions during combustion, and the structure (see Figure 1a) was similar to that used at the Technical University of Denmark (DTU), which has been described elsewhere in detail. The reactors were similar to that used at the Technical University of Denmark (DTU), where the combustion was conducted in a low-swirl burner. Molina et al. studied the effect of HCl addition on NO emission during char combustion; the presence of HBr decreased NO production by 80% at 1170 K, whereas HBr addition decreased NO production by 20% at 1570 K. The NO formation induced by the HCl addition is determined by the fuel type and combustion conditions. The concentrations of HCl and NOₓ precursors (NH₃) are determined by the fuel types, whereas the field of laminar or turbulence flow, the temperature, and the concentration of the species (e.g., CO, O₂, NH₃, NO, etc.) are determined by combustion conditions (such as gas combustion, pulverized fuel combustion, FBC, CFBC, etc.). In addition to homogeneous reactions, the effect of HCl on NO formation can arise from the catalysis of ash or bed materials. To simplify the combustion conditions, experiments were conducted to investigate the effect of the HCl addition on NO formation in an entrained flow combustion reactor (EFCR), where the combustion conditions are well-controlled by adjusting the species concentrations and temperatures.

Received: December 16, 2016
Revised: January 20, 2017
Published: February 1, 2017

DOI: 10.1021/acs.energyfuels.6b03353
Energy Fuels 2017, 31, 3281–3287
1. NH3 is chosen as a precursor for NO formation, and a plunger pump was used to control the liquid distribution. The reactant gas, main gas (N2/O2), and nozzles for the reactant gas jetting were employed as the catalysts. The main gas (N2/O2) was added to the acid liquid gasification device (see Figure 1c) via a flow controller with a 1% error, and the reactant gas was maintained at 1%, whereas HCl was added to the acid liquid gasification device. Heat losses were minimized with an electric resistance heater that maintained the reactor tube at a stable reaction temperature. At the entrance of the reaction section, the spherical end of the internal tube had four small drilled orifices. Through the orifices, the reactants flowed out vertically with the tube axis and were quickly mixed with the main gas flow. The length of the reaction zone was 600 mm, and the diameter was 14 mm. In the experiments using the CO/NH3/H2O/HCl system, water and dense hydrochloric acid were mixed with dilute acid as needed.

The concentrations of gaseous N2, O2, CO, and NH3 were controlled separately by mass flow controllers with a 1% error, and the solution content was controlled via a water injector pump with a 3% error. In the tests, the solution was vaporized steadily using a preheater, and then the gas mixture flowed into the reactor. The initial total gas flow rate was kept at 4 L/min at 293 K and 0.1 MPa. In the CO/NH3 combustion system, the mixture of gases consisted of 3% O2, 3% CO, and 1% H2O, and NH3 and HCl were adjusted as required. N2 was used as the gas balance. The gases were deacidified by sodium hydroxide solution and then dehydrated by silica gel, and they were then removed and placed in gas analyzers. NO was determined using online chemiluminescent NOx analysis (model NOA-305, Shimadzu, Japan) with an uncertainty of 1%. O2 and CO were measured continuously using a portable gas analyzer (model 3500, Landcom), and their errors were 1 and 4%, respectively.

The chemical kinetic behavior of the reactants was modeled via the Sandia SENKIN program for CHEMKIN subroutines. The program solves the conservation equations for mass and energy, and it can calculate the temporal evolution of mole fractions of species for a homogeneous mixture in a closed reactor. Simple hydrocarbons (C1–C4) were documented in ref 29, and the chlorine reactions were selected from refs 30–32 and incorporated into the mechanism. The mechanism included 1112 reversible reactions and 181 species. In the simulation of adding HCl for NO reduction using the Sandia SENKIN model, an adiabatic system at a constant temperature (T = 1023 K) and solving the energy equation was used to model the NO reduction process, and the residence time of the gas reactions was 0.25 s.

3. EXPERIMENTAL AND SIMULATION RESULTS

3.1. Experimental Results. 3.1.1. Effect of HCl on CO Emission. In Figure 2, the CO emission is shown during combustion with additions of various concentrations of NH3 and HCl. The experimental results indicate that CO emission increases with the HCl addition. HCl inhibits CO oxidation via the following three reactions:

\[\text{HCl} + \text{H} = \text{H}_2 + \text{Cl} \]

Figure 2. Concentrations of CO emission from combustion at 1173 K, 0.1 MPa, 3% O2, 3% CO, 1% H2O, and using N2 as the gas balance.
As a result of the consumption of the H radical, the formation of the OH radical is limited by the following reaction:

\[H + O_2 = OH + O \quad (R2) \]

Thus, HCl inhibits the oxidation of CO via the following reaction:

\[OH + CO = CO_2 + H \quad (R3) \]

This obviously increases the CO emission and agrees with the experimental results. Additionally, as shown in Figure 2, the CO emission increases with increasing amounts of NH₃ when the initial CO concentration is kept constant. A small amount of NH₃ may also inhibit the CO oxidation. Similar results at different temperatures are shown in a previous paper.³³

3.1.2. Effect of HCl on NO Emission

The NO emission as a function of the NH₃ and HCl concentrations in gas combustion is shown in Figure 3. NO formation was determined by the synergistic effect of the HCl concentration and temperature. At 1023 K, the existence of HCl mainly inhibits the NO formation and decreases the NO emission (Figure 3a). For example, at an initial 750 ppm of NH₃, the final emission of NO decreases from 280 to 155 ppm when HCl is increased from 0 to 1250 ppm. The total reduction ratio of NO reached 40%. As the reaction temperature increased, the effect of the HCl addition on the NO formation changed gradually. At 1173 K (Figure 3b), the NO formation reduces when the HCl concentration increases from 0 to approximately 800 ppm. Under this condition, NO formation is apparently inhibited by the HCl addition. As the added HCl concentration increases to more than 800 ppm, the NO emission begins increasing in a stable manner. Here, the HCl addition enhances NO formation. At 1223 K (Figure 3c), the NO formation was affected very slightly by the small amount of HCl that was added; thus, NO emission is relatively stable when the HCl concentration increases from 0 to 400 ppm. When the HCl concentration is over 800 ppm, the NO emission begins to obviously increase, which means that, under this condition, the existence of a large amount of HCl might enhance the transformation from NH₃ to NO. The results in Figure 4 indicate that the reaction temperature and HCl concentration play an important role in the effect of HCl on NO formation.

3.1.3. Effect of the Temperature on NO Emission as a Function of the HCl Addition

In Figure 4a, when CO/NH₃ combusts at 0 or 1250 ppm of the HCl addition, the NO concentration decreases as the temperature increases from 1023 to 1223 K; however, with 600 ppm of HCl addition, the NO concentration rises slightly when the temperature first increases from 1023 to 1073 K and then decreases abruptly. The effect of HCl on the NO emission is more obvious at lower temperatures (1023–1173 K) than at high temperatures (1173–1223 K). Increasing the temperature suppresses the inhibition of HCl on NO formation. At higher temperatures (>1173 K), HCl even enhances the formation of NO. Without the HCl addition, the NO concentration decreases from above 270 to below 50 ppm as the temperature increases, whereas the NO concentration is reduced by 80 ppm after 1250 ppm of the HCl addition. These results indicate that the HCl addition suppresses the effect of the temperature on NO formation. Figure 4b shows the results for NO formation at 1500 ppm of initial NH₃. Except for the curve of 600 ppm for the HCl addition, the results are very similar to that of Figure 4a, which indicates that the NO concentration decreases continuously as the temperature rises. The experimental temperature rose from 1023 to 1223 K, which is within the temperature range of the DeNOₓ reaction upon the addition of NH₃. The peak temperature of kinetics of DeNOₓ reactions is near 1100 K. The major reactions³⁴ can be expressed as

\[NH_3 + Cl = NH_2 + HCl \quad (R4) \]
\[NH_3 + OH = NH_2 + H_2O \quad (R5) \]
\[NH_2 + H = NH + H_2 \quad (R6) \]
When the experimental temperature is near 1100 K, eqs R7 and R8 become dominant as the temperature is increased; therefore, the NO concentration is reduced, suggesting that NO formation is inhibited. The same results were obtained from the experiments (see Figure 4), except for the curve for 600 ppm of HCl and 750 ppm of NH3 addition.

3.1.4. Effect of the CO Concentration on NO Formation with the HCl Addition.

To study the equivalence ratio on NO formation, the CO concentration was varied from 3 to 6.5% and the O2 concentration was held constant at 3%, corresponding to oxygen-rich or -lean conditions. Figure 5 indicates that the CO concentration affects NO formation. More NO was formed under oxygen-lean conditions than under oxygen-rich conditions. Although the oxygen was lean for combustion when CO was held at 6.5%, NH3 still tended to form NO. These results are consistent with the studies reported by Suhimann and Rotzoll. In their experiments, adding CO to the NH3/NO/O2 system led to more NO release. This indicates that sufficient CO combustion might enhance the oxidation of NH3 to NO because it can supply more radical sources.

3.2. Simulation Results.

3.2.1. Reaction Path Analysis of the Effect of HCl on NO Formation. To investigate the NO formation mechanisms, a reaction pathway flux analysis was performed using MixMaster (a Python program that is part of the Cantera suite) and the integral path analysis was based on a conserved scalar approach to the reaction fluxes. Figure 6a

\[\text{NH}_2 + \text{NO} = \text{N}_2 + \text{H}_2\text{O} \quad \text{(R7)} \]

\[\text{NH} + \text{NO} = \text{N}_2 + \text{OH} \quad \text{(R8)} \]

When the experimental temperature is near 1100 K, eqs R7 and R8 become dominant as the temperature is increased; therefore, the NO concentration is reduced, suggesting that NO formation is inhibited. The same results were obtained from the experiments (see Figure 4), except for the curve for 600 ppm of HCl and 750 ppm of NH3 addition.

3.1.4. Effect of the CO Concentration on NO Formation with the HCl Addition. To study the equivalence ratio on NO formation, the CO concentration was varied from 3 to 6.5% and the O2 concentration was held constant at 3%, corresponding to oxygen-rich or -lean conditions. Figure 5 indicates that the CO concentration affects NO formation. More NO was formed under oxygen-lean conditions than under oxygen-rich conditions. Although the oxygen was lean for combustion when CO was held at 6.5%, NH3 still tended to form NO. These results are consistent with the studies reported by Suhimann and Rotzoll. In their experiments, adding CO to the NH3/NO/O2 system led to more NO release. This indicates that sufficient CO combustion might enhance the oxidation of NH3 to NO because it can supply more radical sources.

3.2. Simulation Results.

3.2.1. Reaction Path Analysis of the Effect of HCl on NO Formation. To investigate the NO formation mechanisms, a reaction pathway flux analysis was performed using MixMaster (a Python program that is part of the Cantera suite) and the integral path analysis was based on a conserved scalar approach to the reaction fluxes.

\[\text{NH}_2 + \text{NO} = \text{N}_2 + \text{H}_2\text{O} \quad \text{(R7)} \]

\[\text{NH} + \text{NO} = \text{N}_2 + \text{OH} \quad \text{(R8)} \]
illustrates the detailed reaction pathway diagram for N-containing species at 1023 K for 0.1 s and 800 ppm of HCl, where the relative width of the arrows indicates the pathway importance. The most important reaction path is “1”. The importance of the other reaction paths is in comparison to “1”, and the smaller number shows that the reaction is unimportant. Figure 6a indicates that NO is formed via the oxidation of NH and HNO. The detailed pathways of NO formation are provided below.

1) Detailed pathway of NO formation via NH:

\[
\text{NH}_3 + H = \text{NH}_2 + H_2 \quad (R9)
\]

\[
\text{NH}_3 + O = \text{NH}_2 + OH \quad (R10)
\]

\[
\text{NH}_2 + OH = \text{NH}_2 + H_2O \quad (R11)
\]

\[
\text{NH}_2 + H = \text{NH} + H_2 \quad (R12)
\]

\[
\text{NH}_2 + O = \text{NH} + OH \quad (R13)
\]

\[
\text{NH} + O = \text{NO} + H \quad (R14)
\]

\[
\text{NH} + O_2 = \text{NO} + OH \quad (R15)
\]

\[
\text{NH} + OH = \text{NO} + H_2 \quad (R16)
\]

2) Detailed pathway of NO formation via HNO:

\[
\text{NH}_2 + O = \text{HNO} + H \quad (R17)
\]

\[
\text{HNO} + H = \text{NO} + H_2 \quad (R18)
\]

The reaction pathway diagram also indicates that NO would be reduced by the following reaction pathways:

\[
\text{NO} + \text{NH}_2 = \text{N}_2 + H_2O \quad (R19)
\]

\[
\text{NO} + \text{NH} = \text{N}_2 + OH \quad (R20)
\]

From the above analysis, the reaction pathways of N-containing species are complicated. The NH2, NH, and HNO free radicals derive from NH3, where H, O, and OH are intermediates at different stages. These free radicals can not only produce NO via eqs R9–R18 but also reduce NO via eqs R19 and R20. The net effect of NH and HNO is NO formation, and the net effect of NH2 and NH is NO reduction. This conclusion is also similar for the DeNOx reaction. The high concentrations of H, O, and OH can promote H2, NH2, and HNO formation, which easily increase the NO formation. However, concentrations of H, O, and OH that are too high always make NH3 convert largely into NH2 and NH to easily reduce NO into N2. Thus, appropriate concentrations of H, O, and OH are important for controlling NO formation.

To further investigate the effects of the chemical mechanisms of HCl on NO formation, Figure 6b illustrates the detailed reaction pathway diagram for Cl-containing species at 1023 K for 0.1 s and 800 ppm of HCl. Adding HCl can effectively consume the H radical, leading to a reduction of O and OH radicals. This will inhibit NO formation via the following reactions:

\[
\text{HCl} + H = \text{Cl} + H_2 \quad (R21)
\]

\[
\text{H} + O_2 = \text{OH} + O \quad (R22)
\]

Wei et al.33 also found two main elementary reactions to promote NO formation.

\[
\text{HCl} + \text{OH} = \text{Cl} + \text{H}_2\text{O} \quad (R23)
\]

HCl addition can inhibit NO formation, and the amount of NO gradually decreases with an increase of the HCl concentration. When the HCl concentration reaches 800 ppm, the NO concentration varies slightly with the HCl addition. These results are similar to the experimental results. As shown in Figure 8, adding 800 ppm of HCl results in a decrease in H radicals from 230 to 75 ppm, a decrease in O radicals from 400 to 190 ppm, and a decrease in OH from 160 to 110 ppm. The concentration of H radicals without HCl is 3 times more than that with 800 ppm of HCl, and the concentration of O radicals is less than half of that without HCl. Figure 8 also indicates that adding HCl can inhibit NO formation by inhibiting the concentrations of O, H, and OH radicals.

3.3. Discussion. The detailed mechanism of the CO/NO/HCl system was also used to analyze the experimental results of the CO/NH3 co-combustion upon the HCl addition. Calculations were performed for a mixture with an initial 3% CO, 3% O2, 1% H2O, 750 ppm of NH3, 0 or 800 ppm of HCl, and a balance of N2 at 0.1 MPa in the reactor at 1023 K. As shown in Figure 3, the experimental results indicate that adding HCl inhibits NO formation before 800 ppm of HCl were added. The experimental results at 1023 K and with 750 ppm of NH3 are very similar to the simulation results shown in Figure 7. However, with the above conditions, including 800 ppm of HCl (panels a–c of Figure 3), HCl might promote NO formation. However, this may not be explained by the present reaction mechanisms.

The effect of HCl on the concentrations of radicals with time is shown in Figure 8. In Figure 8a, without the HCl addition, the concentrations of the O, H, and OH radicals reach peak values at approximately 0.04 s. As shown in Figure 8b, with the
In solid fuel (such as coal, biomass, and waste) combustion relating to fluidized beds, CO and NH₃ are the main species included in the released volatiles. For a CO/NH₃ co-combustion system, the NO formation is affected by the synergic action of the HCl concentration and temperature. When the initial gaseous concentration is kept constant, the higher temperature prefers to inhibit NH₃ oxidation to NO. In the actual combustion of solid fuel, besides the homogeneous gaseous combustion, the combustion flow field, the heterogeneous gas–solid combustion, the ash behavior, and even the surface effects of the bed material (in FBC or CFBC) may affect the final NO emission. Therefore, for combustion that occurs in different reactors and fuel types, NO emission exhibits different and even adverse variations with varying HCl concentrations.

4. CONCLUSION

The effect of HCl on NO formation in combustion of a CO/NH₃ system was investigated experimentally in an EFCR. The results show that NO formation is sensitive to the concentration of HCl and the temperature during the co-combustion of CO/NH₃. With an increasing temperature, the effect of HCl on NO formation changes from inhibition to promotion. When the initial gas concentrations are constant, a higher temperature results in the release of less NO. The equivalence ratio of CO/O₂ also appears to affect NO formation. NO emission under oxygen-lean conditions is more than that under oxygen-rich conditions. A detailed kinetic mechanism was used to analyze the experimental results of the CO/NH₃ co-combustion when HCl was added. We determined that HCl inhibits the formation of OH and affects NO formation via the reactions of H, O, and OH with NH₃, NH₂, NH, and HNO.

■ AUTHOR INFORMATION

Corresponding Author
*E-mail: xlwei@imech.ac.cn.

ORCID

Xiaolin Wei: 0000-0002-8856-4032

Notes

The authors declare no competing financial interest.

■ REFERENCES

(28) Sandia National Laboratories. CHEMKIN-II: A Fortran Chemical Kinetics Package for the Analysis of Gas Phase Chemical Kinetics; Sandia National Laboratories: Livermore, CA, 1989; SAND89-8009B.

(30) Zamansky, V. M.; Maly, P. M.; Lissianski, V. V.; Sheldon, M. S.; Moya, D.; Payne, R. Secondary Generation Advanced Reburning for High Efficiency NOx Control; GE Energy and Environmental Research Corporation: Irvine, CA, 2001; DOE Contract DE-AC22-95PC95251.

(35) Suhmann, J.; Rotzoll, G. Experimental characterization of the influence of CO on the high-temperature reduction of NO by NH3. Fuel 1993, 72, 175–179.