
October 5, 2016 14:22 IJMPB S0217979217500072 page 1

International Journal of Modern Physics B

Vol. 30 (2016) 1750007 (10 pages)
c© World Scientific Publishing Company

DOI: 10.1142/S0217979217500072

Association equilibria for proteins interacted with crowders

of short-range attraction in crowded environment

Jiachen Wei∗ and Fan Song†

State Key Laboratory of Nonlinear Mechanics (LNM),

Institute of Mechanics, Chinese Academy of Sciences,

Beijing 100190, P. R. China

School of Engineering Science,
University of Chinese Academy of Sciences,

Beijing 100049, P. R. China
∗weijiachen@lnm.imech.ac.cn
†songf@lnm.imech.ac.cn

Received 12 May 2016

Revised 15 August 2016

Accepted 15 September 2016
Published 5 October 2016

Based on a very simple coarse-grained colloidal model, here we implement an effective

hard-sphere theory and numerical simulation to capture the general features of the asso-

ciation equilibria for globular proteins in crowded environment. We measure the activity
coefficient, i.e., the deviation from ideal behavior of protein solution, and the crowd-

ing factor, i.e., the contribution of crowders to the association equilibria, for proteins

in macromolecular crowding. The results show that the association balance in macro-
molecular crowding depends sensitively on the magnitude of protein–crowder attraction

and the relative size of reactant to crowding agent. Since our coarse-grained model is

irrelevant to the microscopic details of the molecules, it can be applied to the control
of the association equilibria of many globular proteins such as bovine serum albumin,

crystallin and lysozyme.

Keywords: Globular protein; association equilibria; short-range attraction; macromolec-
ular crowding.

PACS numbers: 61.20.Gy, 82.60.Lf, 87.14.Ee

1. Introduction

In living cells, proteins are always found in crowded environment so that their in-

termolecular interactions strongly depend on the surrounding medium. Abnormal

intermolecular interactions can destabilize the association balance, i.e., the equi-

librium populations of unbound protein monomers and dimers, resulting in the
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formation of protein aggregates and even phase transition of the bulk system such

as phase separation. Many polymerization diseases, such as cataract, sickle cell and

Alzheimer’s disease,1–3 are caused by the association of a great number of proteins

with abnormal intermolecular interactions. In addition, although the association

equilibria of proteins and other types of globular macromolecules in suspension

have been found to be significantly affected by intermolecular attraction,4–6 a de-

tailed quantitative description for such process is still absent. Therefore, research

on the attraction dependence of the association equilibria for proteins is of great

interest.

As one of the simplest coarse-grained approaches to study equation of states of

colloidal particles, the scaled particle theory (SPT)7 captures the very general fea-

tures of protein interactions. As a result, it has previously been used to study poly-

merization diseases of proteins.1–3 The original SPT only applies to proteins without

intermolecular attraction by modeling them as hard-convex particles.1,7 To intro-

duce intermolecular interactions, Minton and co-worker4,8–10 proposed the effective

hard-sphere theory (EHT). According to the assumption of EHT, the effective size

of molecules changes as a function of intermolecular interaction (Fig. 2). However,

the valid regime for such theoretical approximation has not yet been determined.

Due to its advantages in accurate prediction of the free energy and equilibrated

configurations, Monte Carlo (MC) simulation11–15 has recently been used to obtain

the changes in free energy of the binding of two proteins as reactant into a dimer

as product in crowded environment. Specifically, Kim and Yethiraj11 combined MC

simulation with Widom insertion method to test the validity of SPT. In their study,

they found that crowder–crowder interaction can barely influence the association

equilibria of proteins. However, how the association balance depends on the protein–

crowder attraction as well as their size ratio was not investigated.

In this work, we implement MC simulation as well as EHT to investigate the

effects of strength and range of intermolecular attractions on association equilibria

of globular proteins. We find that EHT is effective when intermolecular attraction is

weak or protein concentration is low. The strength of protein–crowder attraction can

severely influence the thermodynamic stability of the system, especially at higher

protein density. The crowding factor strongly depends on the relative size of reac-

tant protein to crowders, which suggests the possibility of an avalanche of protein

associations with the increase of protein sizes. The paper is organized as follows: in

Sec. 2 we introduce the model and relevant theories. Section 3 provides results and

discussions of the attraction strength, size and range effects on the crowding factor

of proteins in macromolecular crowding. Concluding remarks are presented in Sec. 4.

2. Methods

2.1. Model

Globular proteins are considered as impenetrable hard-spheres devoid of internal

degrees of freedom with diameter D. According to Noro–Frenkel extended law of
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Fig. 1. (Color online) Sketch of SRSW potential.

corresponding states,16 phase properties are insensitive to the specific shape of the

potential for short-range attractive systems. Thus, we set the interaction between

two spheres to pairwise short-range square-well (SRSW) potential,16–23 which has

already been widely applied to the study of the phase behavior19,23 as well as

colligative properties6,9,10 of protein solutions, and serves as the basic state for

understanding the role of attractions in protein association:

U(r) =


∞ for r < d,

−U0 for d < r < dλ,

0 for r > dλ,

(1)

where U0 is the well depth, λ controls the well width, r is the particle distance

and d represents the contacting distance, see Fig. 1. For single-component system,

d = D. In our study, U0 and D are the units of energy and length, respectively.

For our model, the second virial coefficient, B2, is given as

B2 = 4π

∫ ∞
0

[
1− e

−U(r)
kT

]
r2dr, (2)

where T is temperature and k is the Boltzmann’s constant. Combining Eqs. (1)

and (2), we obtain the reduced second virial coefficient, B∗2 , via:

B∗2 =
B2

BHS
= 1−

(
e

U0
kT − 1

)
(λ3 − 1), (3)

where BHS = 4πD3/3 is the second virial coefficient of hard-sphere system.

According to Noro–Frenkel extended law of corresponding states,16 all short-range

attractive systems are characterized by the same thermodynamic properties at the

same B∗2 and φ.
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2.2. Crowding factor

Consider two monomers as reactants that polymerize into a dimer as product — all

embedded in a crowded environment. The crowding factor (or nonideality factor),

Γ, which measures the contribution of crowders to the association equilibria of the

two reactants, is defined as

Γ =
K

K0
, (4)

where K0 and K denote the equilibrium association constants in dilute and crowded

environments, respectively, and are related to the activity coefficients γr and γp for

reactant and product:

lnK − lnK0 = 2 ln γr − ln γp. (5)

Combining Eqs. (4) and (5), we obtain:

Γ =
γ2r
γp
. (6)

The activity coefficient, γ (for either reactant or product), is associated to the

work of inserting another reactant/product particle into the sea of crowders. For

system consisting of hard-spheres, according to SPT, we have

ln γ = −ln(1− φ) +A1
φ

1− φ
+A2

(
φ

1− φ

)2

+A3

(
φ

1− φ

)3

, (7)

where φ is the packing fraction of the system, and

A1 = ς3 + 3ς2 + 3ς,

A2 = 3ς3 + 4.5ς2,

A3 = 3ς3,

(8)

where ς is the ratio of the diameter of the inserted particle to that of background

crowders. We assume the product is spherical and the total volume is conserved.

Therefore, if reactants and crowders are of the same size, we have ςr = 1 for

reactants and ςp =
3
√

2 for products. The effect of size polydispersity (i.e., the

variation of ςr) on crowding factor will also be discussed.

2.3. Effective hard-sphere theory

Since the SPT only gives γ for hard-spheres, we implement EHT to introduce

attractive interaction between globular proteins. According to the approximation

of EHT,8–10 if the interaction between particles is pairwise additive and isotropic,24

we have

φ′ =
cB2

8M
, (9)

1750007-4

In
t. 

J.
 M

od
. P

hy
s.

 B
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 P

U
R

D
U

E
 U

N
IV

E
R

SI
T

Y
 o

n 
10

/1
6/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.



October 5, 2016 14:22 IJMPB S0217979217500072 page 5

Association equilibria for protein–crowder interaction in crowded environment

Fig. 2. (Color online) Sketch of two proteins as reactants polymerizing into a dimer as product
based on EHT, where dashed lines and blue spheres, respectively, represent the actual and effective

sizes of proteins.

where φ′ is the effective packing fraction, c is the particle concentration and M is the

molar mass of proteins. Therefore, φ′ changes as a function of interaction between

particles. The larger the attraction between proteins, the smaller the value of φ′

(see Fig. 2). By substituting φ′ for φ in Eq. (7), we obtain the activity coefficient

of proteins with attraction.

2.4. Widom insertion method

We can also numerically obtain the crowding factor to test the effective regime of

EHT. Let pr and pp be the probabilities of inserting a reactant and product particle,

respectively, into the seas of crowders in conventional Metropolis scheme, we have11

ln Γ = ln pp − 2 ln pr. (10)

While MC simulation is used to produce equilibrated configurations that are

nearly independent in NVT ensemble, Widom insertion method11 is implemented

to obtain pr and pp. The initial equilibrated configuration is generated by per-

forming standard Metropolis scheme of 6912 particles of square-well interaction as

crowders in a box with periodic boundary condition. Note that we adjust the dis-

placement of the trial move of the particle at every 104 MC simulation steps so

that approximately 50% of the moves will be accepted. Next, for every 105 MC

trial moves, we make 107 attempts to insert a “ghost” particle (either for reactant

or product) at randomly chosen positions. The insertion probabilities are then ob-

tained by averaging over 10 independent runs, each of which consists a total of 108

trial moves.

3. Results and Discussion

3.1. Crowding factor

First, we investigate how crowding factor, Γ, depends on the packing fraction of

crystallins, φ, at different reduced second virial coefficient, B∗2 . It should be noted

that the accuracies of both our simulation and theoretical results decrease with the

increase of density, therefore we focus more on dilute and moderate concentrations,

i.e., φ ≤ 0.4, which are common for proteins in physiological environment. We
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Fig. 3. (Color online) The crowding factor, Γ, as a function of packing fraction, φ, for SRSW

system at different B∗2 with λ = 1.01 and the diameter ratio of reactants to crowders ςr = 1. All
symbols are numerical results of ln Γ obtained by Widom insertion, while all corresponding lines

are derived from EHT.

do not consider any dramatic changes of phase behavior of the bulk, such as phase

separation or crystallization, which can hardly take place for thermodynamic states

we mainly focus on (i.e., φ < 0.4 and B∗2 > 0.0). Figure 3 shows that, when the

reactant and crowders are identical in size, i.e., ςr = 1, for both numerical and

theoretical calculations, ln Γ increases monotonically with the increase of φ at fixed

B∗2 . Since nonspecific attractive interactions always favor reactions that maximize

surface exposure, i.e., dissociation of proteins, we always obtain smaller ln Γ for

smaller B∗2 at constant φ. The ln Γ derived from EHT agrees well with that obtained

by Widom insertion for purely repulsive system (B∗2 = 1.0). However, with decrease

of B∗2 , results of EHT start to deviate from those of Widom method, especially at

higher φ. Nevertheless, although EHT might underestimate the depletion effect at

higher density for proteins of strong short-range attraction, it is still quite effective

for φ < 0.1. We also find that the larger the intermolecular attraction, the more

deviation of ln Γ obtained by EHT to that obtained by Widom insertion.

Next, we analyze how ln Γ depends on the ratio of the diameter of inserted

reactants to that of background crowders, ςr. Figure 4 provides the ln Γ−φ relation,

for SRSW system with λ = 1.01 and B∗2 = 0.7, at different values of ςr. We can see

that, at constant φ, ln Γ increases with the increase of ςr. In addition, since there

exists no strong intermolecular attraction (B∗2 = 0.7), we find ln Γ derived from EHT

agrees well with that obtained by Widom insertion at different ςr in both cases.

Figure 5 provides the ln Γ–ςr relation at φ = 0.1 for SRSW system with λ = 1.01.

We can see that, at fixed B∗2 , ln Γ increases monotonically with the increase of size

ratio. In this case, since the crowding effect is very weak (φ = 0.1), ln Γ derived from

EHT agrees well with that obtained by MC simulation, even for system with strong

intermolecular attraction (B∗2 = 0.2). Figure 5 also shows that the growth rate

of ln Γ with the increase of reactant diameter is larger for weaker intermolecular

attraction. This is due to the cancellation effect of the steric entropic and the

attractive enthalpic contributions.
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Fig. 4. (Color online) The crowding factor, Γ, as a function of packing fraction, φ, for SRSW

system with λ = 1.01 and B∗2 = 0.7, at different diameter ratios ςr. All symbols are numerical

results of ln Γ obtained by Widom insertion, while all corresponding lines are derived from EHT.

Fig. 5. (Color online) The crowding factor, Γ, as a function of diameter ratio ςr, at fixed packing

fraction φ = 0.1, for SRSW system at different B∗2 with λ = 1.01. All symbols are numerical

results of ln Γ obtained by Widom insertion, while all corresponding lines are derived from EHT.

In fact, the so-called entropy–enthalpy compensation14 denotes the condition at

which the steric repulsion and chemical attraction between proteins are canceled out

and effectively the crowded environment has no impact on the association equilibria

of the proteins (i.e., ln Γ = 0). To determine the critical point at which ln Γ = 0 is

achieved, here we present the crossover behavior of crowding factor, i.e., the ln Γ–B∗2
relation, in Fig. 6. We can see that, with the estimation of EHT, ln Γ = 0 is obtained

as long as B∗2 = 0.0, see Fig. 6(a). It also shows that ln Γ increases linearly with

B∗2 at fixed packing fraction, which is consistent with former studies on association

equilibria of certain types of proteins.12,25 However, for ln Γ obtained by Widom

insertion, as shown in Fig. 6(b), we find only at φ = 0.05, ln Γ = 0.0 is achieved

when B∗2 = 0.0. For higher values of φ, the ln Γ–φ relation is no longer linear. In

addition, although the critical second virial coefficient, Bcri
2 , at which ln Γ = 0.0

is obtained, decreases with the increase of φ. This indicates that the association
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(a)

(b)

Fig. 6. (Color online) The crowding factor, Γ, as a function of B∗2 at different packing fractions

φ, for SRSW system with λ = 1.01 obtained by (a) EHT and (b) Widom insertion. We fix the
diameter ratio ςr = 1. All lines in (b) are to guide the eyes. The horizontal dashed line denotes

ln Γ = 0.0. The vertical dashed line gives B∗2 = 0.0.

equilibrium of the system is sensitive to the concentration of crowders (or proteins

if crowders and reactants are identical).

3.2. Range effect

According to Noro–Frenkel extended law of corresponding states,16 the thermo-

dynamic behaviors for short-range attractive system are insensitive to the specific

shape of the interaction potential. To test the validity of the law in terms of crowd-

ing factor, Fig. 7 presents how ln Γ changes as a function of φ for SRSW system

with λ = 1.01 and λ = 1.05 at different B∗2 . We can see that, at same B∗2 , we obtain

very close ln Γ–φ relation for λ = 1.01 and λ = 1.05, especially at small φ, which

confirms the extended law of corresponding states. Moreover, when the attractive

interaction is small (B∗2 = 0.7 and B∗2 = 0.0), ln Γ increases monotonically with

the increase of φ. When B∗2 = −0.7, ln Γ first decreases and becomes negative with

the increase of φ, which means that system favors the disassociation of proteins

at φ ∼ 0.1. If protein density is further increased, due to the presence of strong

depletion effect, ln Γ starts to increase and becomes positive in value.

Figure 8 shows how ln Γ changes as a function of ςr for SRSW system with

λ = 1.01 and λ = 1.05 at different B∗2 . We find ln Γ increases monotonically with

the increase of ςr at the same B∗2 . And, the larger the value of B∗2 , the greater is

the growth rate of ln Γ. Again, we obtain very close ln Γ–ςr relation for λ = 1.01

and λ = 1.05 at same B∗2 , especially when ςr is small in value.
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Fig. 7. (Color online) The crowding factor, Γ, as a function of packing fraction, φ, for SRSW

system with λ = 1.01 (black solid lines) and λ = 1.05 (red dotted lines), at different B∗2 . The
diameter ratio of reactants to crowders is ςr = 1. Blue dashed line indicates ln Γ for HS system.

All symbols are numerical results of ln Γ obtained by Widom insertion, and the lines are spline

fitting curves to guide the eyes.

Fig. 8. (Color online) The crowding factor, Γ, as a function of diameter ratio, ςr, at fixed packing

fraction φ = 0.15, for SRSW system with λ = 1.01 (black solid lines) and λ = 1.05 (red dotted
lines), at different B∗2 . Blue dashed line indicates ln Γ for HS system. All symbols are numeri-

cal results of ln Γ obtained by Widom insertion, and the lines are spline fitting curves to guide

the eyes.

4. Conclusion

In this work, we analyzed the effect of protein–crowder attraction on their associa-

tion equilibria in crowded environment. By comparing MC simulation with theoret-

ical calculation, we find EHT is effective in dilute environment. In addition, EHT

can also be applied to systems of moderate or higher density as long as interparticle

attraction is weak enough. At fixed packing fraction, we find the crowding factor

depends on the second virial coefficient of the system but not the attractive range of

the interaction, which confirms the extended law of corresponding states. Both EHT

and numerical estimation show that the crowding factor becomes larger for larger

reactant–crowder size ratio, which is in accord with former study.26 According to

the MC simulation results, the critical second virial coefficient for entropy–enthalpy
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compensation is different at different packing fractions. This suggests that the asso-

ciation equilibria of the proteins are very sensitive to the crowded environment. Our

work can provide general guidelines on how to steer protein interactions in order

to cure certain polymerization diseases, and to control the association equilibria of

certain types of globular proteins in biochemical engineering.
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