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We consider the motion of a gravity-driven flow down a uniformly heated vertical fibre. This flow exhi-
bits rich dynamics including the formation of droplets, or beads, driven by a Rayleigh-Plateau mechanism
modified by the presence of gravity as well as the thermocapillarity at the interface. A spatio-temporal
stability analysis is performed to investigate the effect of thermocapillarity (Marangoni effect) on the
convective/absolute instability (CI/AI) characteristics of the problem. We also performed a numerical
simulation of Eq. (30) on the nonlinear evolution of the film to connect the breakup behaviours with
the CI/AI characteristics. Our numerical results showed that for various Marangoni number (Ma), breakup
of the film mainly occurs in the AI regime. With the increase of Ma, the film has a tendency to break up
into droplets due to the enhancement of the absolute instability.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

The dynamics of a liquid film flowing down a vertical fibre has
been encountered in many industrial applications, for example,
draining, coating of insulation on a wire, and the protection coating
tube walls [1]. It is well known that a cylindrical thread or jet has a
tendency to break up into spherical droplets to reduce the surface
area due to a surface tension driven mechanism (the Rayleigh-
Plateau instability) [2]. For a film flowing down a slender cylindri-
cal fibre, the Rayleigh-Plateau mechanism is modified by the flow
driven by gravity. At small Reynolds numbers, the film is always
unstable and spontaneously breaks up into a wave train consisting
of axisymmetric droplets.

Experimental investigation on the gravity-driven flow on a fibre
was performed first by Quéré [3]. The results showed that two dif-
ferent kinds of behaviour can be observed according to the film
thickness: For a thick film on a slender fibre, drops develop due
to the Rayleigh instability and flow downwards. Some of drops
grow by swallowing the other ones, and quickly fall, leaving behind
them a thick film which breaks up in turn into droplets. For a thin
film on a large fibre, the breakup process may be arrested by the
mean flow. The arrest by the mean flow of the latter case was
investigated by many authors [4–6] using a lubrication-type
(Benney-like) equation for the film thickness wherein the fibre
radius a is much larger than the film thickness h.

Kliakhandler et al. [7] studied experimentally the case where
the film thickness is larger than the fibre radius. Three qualitatively
different regimes of the interfacial patterns in the form of beads
were observed in the experiments. In their experiments, the film
is at least twice as thick as the fibre radius. Therefore, the previ-
ously derived Benney-like equations under the assumption of
h � a do not apply there. The authors proposed an evolution equa-
tion which does not rely on the previously made lubrication-type
assumptions. Two typical regimes at relatively small flow rate
are well predicted by their model. However, this equation fails to
capture a regime that features beads separated by relatively long
flat thin-film regions. Craster and Matar [8] derived a new evolu-
tion equation similar to that used by Kliakhandler et al. [7] and
revisited the same problem. The authors showed that numerical
solutions of their model equation yield good agreement with the
experimental observations reported by Kliakhandler et al. [7].

All modelling mentioned above are valid for the Reynolds num-
ber Re � Oð1Þ or smaller due to the assumption of negligible inertia
effects. Ruyer-Quil et al. [9] formulated a two-equation model for
the film thickness h and flow rate q using a weighted residuals
approach. This model accounting for inertia and streamwise vis-
cous diffusion is valid for both small and Oð1Þ aspect ratios of
h=a. Comparisons between the numerical result and experimental
results show good agreement in both linear and nonlinear regimes.
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Fig. 1. Sketch of the geometry of a film flow coating a fibre.
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In practical processes, a more complex situation is that the
fibre-coating is operated in a cooling environment. In glass manu-
facturing process, glass fibres are made by drawing molten glass
through an array of small diameter bushings. In order to enhance
the heat removal from the fibres, they are sprayed with water from
atomizing nozzles [10]. In this situation where the coating film is
cooled by the environment, the Rayleigh-Plateau instability is
modified by thermocapillary stress due to surface tension varia-
tions produced by temperature disturbances at the interface.

The effect of thermocapillarity on the dynamics of thin films on
cylinders have given rise to broad scientific interest for its techno-
logical importance. Dávalos-Orozco and You [11] performed a lin-
ear stability analysis on the Navier-Stokes equations to investigate
the three-dimensional thermocapillary instability of a fluid film
coating the outside or the inside of a cylinder in the absence and
in the presence of gravity. The results showed that pure thermo-
capillarity is possible to excite non-axisymmetric unstable mode.
Liu and Liu [12] studied the longwave stability of thin film flowing
down a uniformly heated vertical fibre. The results showed that the
Marangoni instability and the Rayleigh-Plateau instability rein-
force each other. With the increase of the thermocapillary effect,
the coating flow has a tendency to break up into smaller droplets.
Ding and Wong showed that these smaller droplets could also be
unstable due to the azimuthal disturbances and would evolve into
an asymmetric state [13]. Recently, Moctezuma-Sánchez, and
Dávalos-Orozco [14] studied the non-axisymmetric longwave
instability of a thin viscoelastic liquid film flowing down a vertical
heated cylinder. The results show that, in comparison with the
Newtonian case, it is easier to excite the azimuthal modes when
viscoelasticity and thermocapillarity destabilize at the same time.

In experiments, the instability characteristics can be catego-
rized by the location where instability growth can be visually
detected. The concept of the convective/absolute stability was first
developed in the context of plasma physics [15,16] and later has
been extended to the problems of hydrodynamics [17]. Transitions
between different wave regimes in coating flows on a fibre can be
understood within the framework of absolute and convective
instabilities. Convectively unstable flows behave as spatial ampli-
fiers of the incoming perturbations: at a fixed point in the labora-
tory frame of reference, the signal eventually dies out. Whereas,
absolutely unstable flows display intrinsic self-sustained dynam-
ics: although advected, the perturbation is so strongly amplified
that it contaminates the entire flow region (downstream and
upstream).

Joo and Davis [18] have studied the absolute and convective sta-
bilities for viscous falling films on a vertical plate. Recently, the
absolute and convective instabilities of flows with a cylindrical free
surface give rise to broad scientific interest. Duprat et al. [19] have
studied the absolute and convective stabilities for a viscous film
flowing down a vertical fibre. The authors have reported a flow
regime diagram which identifies, depending on the fibre radius
and the flow rate, the AI/CI characteristics. At large or small film
thicknesses, the instability is convective, whereas absolute insta-
bility is observed in an intermediate range of film thicknesses for
fibres of small enough radius. Balestra et al. [20] studied the linear
spatio-temporal stability of heated coaxial jet flows. The results
showed that the temperature ratio and the velocity ratio between
the core jet play important roles in the transition from convectively
to absolutely unstable flows.

In the present paper, we are interested in the aspect of the abso-
lute and convective instabilities of a film flowing down a vertical
fibre with a temperature difference between the fibre wall and
the film interface.

This paper is organized as follows. In Section 2 the mathemati-
cal formulation of the physical model is presented. In Section 3 we
present the results and discussions. In Section 4 we summarize the
results and present the conclusions.

2. Mathematical formulation

As shown in Fig. 1, a Newtonian fluid, of constant viscosity l
and density q, flows down a vertical fibre of radius r ¼ a under
gravity g. The initial radius of the fluid ring measured from the cen-
tre of the fibre is r ¼ R. The temperatures of the fibre wall and the
interface of the film are Ta and Ti.

The dynamics of the axisymmetric flow of the film is governed
by the Navier-Stokes equations,

ur þ u
r
þwz ¼ 0; ð1Þ

ut þ uur þwuz ¼ �pr

q
þ l
q

urr þ ur

r
� u
r2

þ uzz

h i
; ð2Þ

wt þ uwr þwwz ¼ g � pz

q
þ l
q

wrr þwr

r
þwzz

h i
; ð3Þ

Tt þ uTr þwTz ¼ j Trr þ Tr

r
þ Tzz

� �
; ð4Þ

where t denotes time, u and w denote the radial (r) and axial (z)
velocity components, p denotes the pressure, T denotes the temper-
ature, j denotes the thermal diffusivity. Note that unless stated
otherwise, the subscript denotes partial differentiation.

At the fibre surface (r ¼ a), no penetration and no slip condi-
tions for the velocities are
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u ¼ w ¼ 0: ð5Þ
The temperature at the fibre wall is prescribed,

T ¼ Ta: ð6Þ
At the free surface r ¼ Sðz; tÞ, the shear stress is balanced by the

thermocapillary force,

t � T � n ¼ t � $sr; ð7Þ
and the normal stress is balanced by surface tension times the
curvature,

n � T � n ¼ 2rH; ð8Þ
here T is the stress tensor, n and t are the unit vectors normal and
tangent to the interface expressed as

t ¼ ð1; SzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ S2z

q ; ð9Þ

n ¼ ð�Sz;1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ S2z

q ; ð10Þ

and 2H is the surface principal curvature. The surface tension is
assumed to be linearly dependent on the temperature,

r ¼ r0 � cðTi � T0Þ; ð11Þ
where c is a constant coefficient and T0 is the temperature of the
reference state.

The kinematic boundary condition on the free surface is

St þ 1
S

@

@z

Z S

a
wrdr ¼ 0: ð12Þ

The balance between heat supply to and heat loss from the sur-
face is given by Newton’s law of cooling,

�vn � $T ¼ qðT � T1Þ; ð13Þ
in which v is the thermal conductivity of the liquid and q is the heat
transfer coefficient describing the rate of heat transport from the
liquid to the ambient gas with temperature T1 far away from the
interface.

2.1. Scaling and asymptotic reduction

We assume that the radius of the fluid ring, R, is much smaller
than the wavelength L. The dimensionless variables denoted by
stars are defined as

r ¼ Rr�; z ¼ Lz�;p ¼ qgLp�; t ¼ LV�1t�;w ¼ Vw�;

u ¼ �Vu�; T � T1 ¼ DTT�; ð14Þ

where V � qgR2=l. The length scale L is taken to be the capillary
length L ¼ r=qgR. The Bond number Bo ¼ qgR2=r naturally appears
and in the experiments it is typically small. The parameter
� ¼ R=L ¼ Bo is for a low Bond number and surface-tension-
dominated theory.

The dimensionless Navier-Stokes equations become

ur þ u
r
þwz ¼ 0; ð15Þ

�4Reðut þ uur þwuzÞ ¼ �pr þ �2 urr þ ur

r
� u
r2

þ �2
@2u
@z2

" #
; ð16Þ

�2Reðwt þ uwr þwwzÞ ¼ 1� pz þ wrr þwr

r
þ �2wzz

h i
: ð17Þ
�ReðTt þ uTr þwTzÞ ¼ 1
Pr

Trr þ Tr

r
þ �2Tzz

� �
; ð18Þ

where the Prandtl number is defined as Pr ¼ m=j, and the Reynolds
number is defined as Re ¼ qVL=l. Note that the Reynolds number
can be expressed as Re ¼ rqR=l2. This parameter is independent
of g. This means that the present problem is for surface tension
dominant flow which is mainly driven by surface tension instead
of gravity.

For simplicity we have dropped the star for all the dimension-
less variables. Assuming �� 1 and Re � Oð1Þ, we can remove the
contributions of the inertial terms. We now seek solutions as reg-
ular perturbation expansions in

u ¼ �u0 þ �2u1 þ . . . ;

w ¼ w0 þ �w1 þ . . . ;

p ¼ p0 þ �p1 þ . . . ;

T ¼ T0 þ �T1 þ . . . ;

8>>><
>>>:

ð19Þ

and the leading-order Navier-Stokes equations are given by

w0rr þw0r

r
¼ p0z � 1; ð20Þ

T0rr þ T0r

r
¼ 0: ð21Þ

The leading-order normal and tangential stress balances at the
surface are

p0 ¼ 1
S
� �2Szz; w0r ¼ ��MaðSzTir þ TizÞ; ð22Þ

where the Marangoni number is defined as Ma ¼ cDT=lV .
The temperature at r ¼ a is

T0 ¼ 1; ð23Þ
and Newton’s law of cooling at the surface r ¼ S is

T0r þ BiT0 ¼ 0; ð24Þ
where the Biot number is defined as Bi ¼ qR=v. We obtain the dis-
tribution of the temperature as

T0 ¼ Bi ln r
S � 1

S

Bi ln a
S � 1

S

: ð25Þ

At the interface, the temperature is

TiðzÞ ¼ �1
BiS ln a

S � 1
: ð26Þ

The velocity w0ðr; z; tÞ is

w0 ¼ ð1� p0zÞ
1
4
ða2 � r2Þ þ 1

2
S2 ln

r
a

� �
� �MaTizS ln

r
a
: ð27Þ

Substituting w into the continuity equation, we obtain the
expression of u,

u0 ¼ �1
r

1
16
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z
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4
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: ð28Þ

We can define a stream functionWðrÞ ¼ R r
a rudr, and obtainWðrÞ

as
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; ð29Þ
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and the flow rate, Q ¼ WðSÞ, along the fibre can be expressed as

QðSÞ ¼ ð1� p0zÞ
1
4
S4 log

S
a
þ ð3S2 � a2Þða2 � S2Þ

16

" #

� �MaTiz
S3

2
ln

S
a
� S
4
ðS2 � a2Þ

" #
; ð30Þ

where

Tiz ¼
BiSzðln a

S � 1Þ
ðBiS ln a

S � 1Þ2
: ð31Þ

Substituting Q into the kinematic boundary condition yields an
evolution equation for Sðz; tÞ as
@tS

2 þ 2@zQðSÞ ¼ 0: ð32Þ
For unperturbed state, the dimensionless flow rate

�Q ¼ �1
4
log aþ ð3� a2Þða2 � 1Þ

16
; ð33Þ

is the function of a. In experiments, one needs to know the mass
flux q� which can be expressed as

q� ¼ 2pðqVR2Þ�Q ¼ �Re � ðlRÞ�QðaÞ: ð34Þ
Thus, the mass flux rate q� can be converted from the flow

rate �Q .

3. Results and discussions

3.1. Absolute and convective instabilities

Let us now consider the linear stability of the problem. A small
periodic disturbance in the streamwise direction is imposed on the
film such that the film thickness can be decomposed into a basic

state component �S, and a small disturbance with amplitude Ŝ,

S ¼ �Sþ Ŝeiðkz�xtÞ; ð35Þ
in which �S ¼ 1;x is the frequency and k is the wavenumber.

Substituting Eq. (35) into Eq. (32) yields a dispersion relation

Dðk;xÞ¼�ixþ 1
16

k2ðk2�2�1Þð4ln1
a
�a4þ4a2�3Þ

�

þik
2
ða2�1�2lnaÞ

�
þ�
4
k2MaBi

ða2�1�2lnaÞðlna�1Þ
ðBilna�1Þ2

¼0:

ð36Þ
The maximum real growth rate

maxxi ¼ A
64�2

1þ 4�Ma
B
A

	 
2

ð37Þ

is realized at the wavenumber

km ¼ 1ffiffiffi
2

p
�

1þ 4�Ma
B
A

	 
1=2

; ð38Þ

in which the coefficients A and B are

A ¼ 4 ln
1
a
� a4 þ 4a2 � 3;

B ¼ �Bi
ða2 � 1� 2 ln aÞðln a� 1Þ

ðBi ln a� 1Þ2
: ð39Þ

The cut-off wavenumber at which the real growth rate is zero is

kc ¼ 1
�

1þ 4�Ma
B
A

	 
1=2

: ð40Þ
It can be shown that the sign of B=A is positive. So, with the
increase of the Marangoni number, both the wavenumber of the
most unstable mode and the cut-off wavenumber increase.

In spatio-temporal stability analysis, both the wavenumber k
and the frequency x are complex numbers. The solution of the
impulsive response can be expressed in the form of

Gðz; tÞ ¼ 1
2p

Z
A

Z
F

eiðkz�xtÞ

Dðk;xÞdxdk; ð41Þ

where the Bromwich contour F in the x-plane is a horizontal line
lying above all the singularities to satisfy causality, and the integra-
tion path A lies inside the analyticity band around the k-axis. The
absolute/convective instability is determined by the long-time
behaviour of the impulse response Gðz; tÞ along the rays
z=t ¼ const. The spatio-temporal asymptotic behaviour of a pertur-
bation is determined by the complex solutions k ¼ kðVsÞ (saddle
points) of the equation @x=@k ¼ Vs ¼ z=t along a given ray
Vs ¼ const. At a fixed location z, the long-time behaviour is deter-
mined by the study of the behaviour of the disturbance with a zero
group velocity, i.e.

@x
@k

����
k¼k0

¼ 0; ð42Þ

wherex0 ¼ xðk0Þ is called the absolute frequency and k0 the saddle
point. If Imðx0Þ > 0=Imðx0Þ < 0 the instability is said to be abso-
lutely/convectively unstable. It should be noted that the saddle
point k0 used to identify absolute/convective instability must satisfy
the Briggs-Bers [15,16] collision criterion, i.e. the saddle point must
be a pinch point produced by two distinct spatial branches of solu-
tions of the dispersion relation coming from the upper and lower
half-k-planes. The method to study absolute/convective instability
(AI/CI) is a standard procedure. For more detail on AI/CI problems,
we refer the reader to a good review article by Huerre and Monke-
witz [17].

In Eq. (32), the parametersMa and Bi play roles in the dispersion
relation. As Ma ¼ 0 or Bi ¼ 0, the thermocapillarity is absent and
the dispersion relation is reduced to the isothermal case. Liu and
Liu [12] have performed a temporal linear stability analysis on
the effect of thermocapillarity on the coating flow on a vertical
fibre. In this subsection, we will perform a spatio-temporal analy-
sis to study the effects of thermocapillarity on the AI/CI
characteristics.

In order to investigate the influence of the Marangoni effect on
the AI/CI characteristics, we compute x0 for various parameters of
a;Bo;Bi and Ma. In Fig. 2, the locus of x0 with the increase of Ma
are plotted for various a at Bi ¼ 1 and Bo ¼ 0:4. As shown in this
figure, at Ma ¼ 0 the negative imaginary part ofxmarked by a cir-
cle corresponds to convective instability. In each curve of the locus,
the imaginary part of x0 increases with Ma. As Ma exceeds a cer-
tain value, Imðx0Þ becomes positive. This means that the increase
of Marangoni effect enforces the absolute instability.

In order to know the influence of Ma on the AI/CI characteristics
for different flow regimes, we present in Figs. 3 and 4 the AI/CI
boundaries for various Ma and Bi in the a� Bo plane. The range
of parameter a is ð0;1Þ. The model is valid for small �, thus when
presenting the results the range of Bo is confined in ð0;0:5Þ.

In Fig. 3(a) for small Biot number of Bi ¼ 0:1, with the increase
ofMa the AI/CI boundaries extend towards the larger Bo regions. As
a ! 0;Bo at the boundary curves increases as Ma increases from 0
to 1. The AI/CI boundaries for a larger Biot number of Bi ¼ 1 are
plotted in Fig. 3(b) for various Marangoni numbers. As Ma
increases to 0.2, a new branch of the boundary begins to appear
near the region of a ¼ 1. As Ma increases further, the two branches
of the boundary coalesce and the AI regime extends in the a� Bo
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plane. As shown in Fig. 3(c) and (d) for larger Biot numbers of
Bi ¼ 10 and 100, the AI regime always extends in the a� Bo plane
with the increase of Ma. This means that with the increase of the
Marangoni effect promotes the absolute instability for a film inter-
face with a non-zero Biot number.
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Fig. 3. The boundaries between the convective and absolute instabilities in the
In order to know the effect of Biot number on the AI/CI charac-
teristics of the problem, we plot the boundaries of the AI/CI regime
in Fig. 4. For Bi ! 0 and 1, no Marangoni effect exists. For small
Biot numbers, with the increase of Bi the AI regime extends in
the a� Bo plane. For large Biot numbers, the boundary shrinks
towards that with no Marangoni effect.

3.2. Breakup behaviour and transient solutions

In this subsection, we will study the Marangoni effect on the
nonlinear evolution of the film. The computational domain is set
to be the interval ½�l=2; l=2�, and periodical condition is imposed
to simulate the evolution. The solution of the position of the inter-
face is approximated by a Fourier series:

Sðz; tÞ ¼
XN=2

n¼�N=2

ŝnðtÞ expði2pnz=lÞ; ð43Þ

where ŝn is the Fourier coefficient and N is the number of Fourier
modes. A Fourier pseudospectral method is used to provide the dis-
cretization in space. The second-order Runge-Kutta method for stiff
problems was used for the time advance and the relative error is set
to be less than 10�6.

When break-up occurs, there is numerical evidence that the
model can break down with some form of finite-time blow-up.
Near the blow-up time, the interface deformation with largest
amplitude undergoes rapid growth to the point of becoming com-
parable to the fibre radius, i.e. Sðz; tÞ ¼ a. As Sðz; tÞ � a approaches
to zero, some of the coefficients of the long-wave model equation
become large, leading to a very stiff problem in which the
numerical simulation usually breaks down. It is natural to take
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a� Bo plane for various Ma. (a) Bi ¼ 0:1, (b) Bi ¼ 1, (c) Bi ¼ 10, (d) Bi ¼ 100.
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the tendency for the interface location S approaches to a, as an
indication of the breakup.

We will test the breakup behaviour based on the numerical
solution of Eq. (32) for a wide range of parameters of a and Bo. It
is a very difficult task to determine whether breakup eventually
occurs from the numerical results within a limited time period.
In general, the breakup behaviour is a local behaviour which is
not sensitive to initial and boundary conditions. Perform numerical
simulations on nonlinear evolution in a long spacial domain is very
costly numerically. In our computation, we apply a convenient way
to examine the breakup. We can test the breakup case in a rela-
tively short spacial domain for a relatively long time period. If
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breakup occurs, we then compute it in a long spacial domain. We
found that the breakup behaviour is insensitive to the length of
spacial domain. For this reason, we can easily observe the breakup
in a relatively short domain. In each no-breakup case, when the
film reaches a saturated state the interface is in the form of a
quasi-steady travelling wave. The snapshots of different time are
qualitatively similar. In general, t ¼ 1000 is enough for the film
to reach quasi-steady state.

In Figs. 5 and 6, the breakup and no-breakup regimes are
marked by the shaded squares and hollow circles in the parametric
a� Bo plane. The boundaries between convective and absolute
instabilities are plotted by solid lines to show the relation between
the AI/CI boundary and the breakup behaviours. In Fig. 5, the
breakup and non-breakup regimes are presented for small Biot
number of Bi ¼ 0:1. As shown in Fig. 5(a) and (b), almost all the
breakup points are located in the AI regime. At small Bo, the values
of a of the AI regime are much lower than the AI/CI boundary. The
maximum a of the AI regime gradually decreases with the increase
of Bo. As Bo slightly exceeds the CI/AI boundary, the breakup
regime disappears. In Fig. 6, the breakup and non-breakup regimes
are presented for medium Biot number of Bi ¼ 100. In Fig. 6(a) for
Ma ¼ 0:4 and 1.0, almost all breakup points are confined in the AI
regime.

In order to know the properties of the solutions which are nat-
urally selected, we perform numerical simulations on relatively
long domains. Starting from a film surface of uniform radius
seeded with random disturbances with an amplitude in the range
of 0–10�3 on a spatial domain with a length of l, the profiles of the
free surface are plotted in Fig. 7–9 for several typical parameters.

For a ¼ 0:4, Bo ¼ 0:3, Bi ¼ 0:1, the flow is convectively unstable
for Ma ¼ 0 as shown in Fig. 3(a). As Ma increases to 1.0, the flow
becomes absolutely unstable. In Fig. 7, the profiles of the interface
-50
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50

(a) (b) (c) (d)

Fig. 7. The profiles of the interface via numerical simulations of Eq. (32) for various
Marangoni numbers. Other parameters are Bo ¼ 0:3; Bi ¼ 0:1; a ¼ 0:4. Ma ¼ 0, 0.5,
1.0 and 2.0 for (a), (b), (c) and (d). The parameters of (a), (b), (c), (d) are located in
the CI regimes. The evolution time of the snapshot is t ¼ 1000 for (a), (b), (c), (d).
forMa ¼ 0 to 2.0 are shown. Even for absolutely unstable case with
a high Ma, no breakup phenomenon has been observed in Fig. 7.
The interface is in the form of a quasisteady travelling wave for
each case. As shown in Eq. (36) that the wavenumber of the most
unstable mode increases with the increase of Ma. The wavenum-
bers of most unstable mode for Fig. 7(a)–(d) are km ¼ 2:36, 2.44,
2.53, 2.69. In the nonlinear stage, as shown in Fig. 7(a)–(d), the
average wavenumber is 1.88, 2.09, 2.51 and 2.51. It seems that at
the nonlinear stage, the average wavenumber of the beads are
smaller than that predicted by linear stability analysis. The reason
is that in the nonlinear stage, the interface consists of several fam-
ilies of quasi-steady travelling waves but separated by different
lengths of gaps.

For a ¼ 0:2, Bo ¼ 0:2, Bi ¼ 100, the flow is absolutely unstable
forMa ¼ 0 to 1.0 as shown in Fig. 3(b). As shown in Fig. 8, the inter-
face has broken up into a series of beads. In Fig. 8(a) forMa ¼ 0, the
film consists of beads with similar structures which is enlarged in
Fig. 8(c). In Fig. 8(b) for Ma ¼ 1:0, beads with different shapes are
distributed in an irregular way. As shown in Fig. 8(b) which is par-
tially enlarged in Fig. 8(d), some beads with large size accompany
with smaller droplets.

For a ¼ 0:2, Bo ¼ 0:5, Bi ¼ 100, as shown in Fig. 3(b) the flow is
convectively unstable forMa ¼ 0. With the increase ofMa, the flow
becomes absolutely unstable. In Fig. 9(a)–(c), no breakup occurs
and the interface is in the form of a travelling wave. With the
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Fig. 8. The profiles of the interface via numerical simulations of Eq. (32) for various
Marangoni numbers. Other parameters are Bo ¼ 0:2; Bi ¼ 1:0; a ¼ 0:2. Ma ¼ 0, 1.0
for (a), (b). The parameters of (a), (b) are located in the AI regimes. (c) and (d) are
the magnifications of the droplets in (a) and (b), respectively. The breakup time
tb ¼ 23:9 and 16.1 for (a) and (b).
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Fig. 9. The profiles of the interface via numerical simulations of Eq. (32) for various
Marangoni numbers. Other parameters are Bo ¼ 0:5; Bi ¼ 1:0; a ¼ 0:2. Ma ¼ 0, 0.5,
1.0, 1.5, 2.0 for (a), (b), (c), (d), (e). The evolution time of the snapshot is t ¼ 1000 for
(a), (b), (c). The breakup time tb ¼ 28:8 and 22.1 for (d) and (e).
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increase ofMa, the beads-like shape becomes more pronounced. As
Ma increases to 1.5, as shown in Fig. 9(d) the interface breaks up
into a series of beads with almost the same size. As Ma increases
to 2.0, as shown in Fig. 9(e) the interface consists of large beads
with almost the same size accompanied with small beads with
irregular size.

4. Conclusions

In the present paper, we investigate the dynamics of a coating
flow on a fibre driven by the gravity combined with Marangoni
effect (thermocapillarity induced by a temperature gradient in
the radial direction) in the framework of longwave approximation.
A spatio-temporal stability analysis is performed to investigate the
convective and absolute instabilities of the film. The results show
that the increase of Marangoni effect promotes the absolute
instability.

We performed numerical simulations on the nonlinear evolu-
tion of axisymmetric disturbances. The breakup behaviour is
examined in a� Bo parametric planes for various Ma and Bi. The
result show that most of the breakup points are located in the
absolutely unstable regimes, however, at small a it can occur in
the convectively unstable regimes. The direct simulations of non-
linear evolution also show that the increase of Ma promote the
interface to break up into droplets due to the enhancement of
the absolute instability. In the no-breakup regimes, the interface
is in the form of a travelling wave. With the increase of Ma, the
beads-like shape of interface becomes pronounced. In the breakup
regimes, with the increase of Ma the size of beads and the gaps
between different beads become more irregular.

Acknowledgments

This work was supported by National Natural Science Founda-
tion of China (Grant Nos. 11102211, 11302236, 11532015).

References

[1] D. Quéré, Fluid coating on a fiber, Annu. Rev. Fluid Mech. 31 (1999) 347–384.
[2] L. Rayleigh, On the instability of a cylinder of viscous liquid under capillary

force, Phil. Mag. 34 (1892) 145–154.
[3] D. Quéré, Thin films flowing on vertical fibers, Europhys. Lett. 13 (8) (1990)

347–384.
[4] A.L. Frenkel, ‘‘Nonlinear theory of strongly undulating thin films flowing down

vertical cylinders, Europhys. Lett. 18 (7) (1992) 583–588.
[5] S. Kalliadasis, H.-C. Chang, Drop formation during coating of vertical fibres, J.

Fluid Mech. 261 (1994) 135–168.
[6] H.-C. Chang, E.A. Demekhin, Mechanism for drop formation on a coated

vertical fibre, J. Fluid Mech. 380 (1999) 233–255.
[7] I.L. Kliakhandler, S.H. Davis, S.G. Bankoff, Viscous beads on vertical fibre, J.

Fluid Mech. 429 (2001) 381–390.
[8] R.V. Craster, O.K. Matar, On viscous beads flowing down a vertical fibre, J. Fluid

Mech. 553 (2006) 85–105.
[9] C. Ruyer-Quil, P. Treveleyan, F. Giorgiutti-Dauphiné, C. Dupat, S. Kalliadasis,

Modelling film flows down a fibre, J. Fluid Mech. 603 (2008) 431–462.
[10] M. Sweetland, J.H. Lienhard V, Evaporative cooling of continuously drawn glass

fibers by water sprays, Int. J. Heat Mass Trans. 43 (5) (2000) 777–790.
[11] L.A. Dávalos-Orozco, X. You, Three-dimensional instability of a liquid layer

flowing down a heated vertical cylinder, Phys. Fluids 12 (9) (2000) 1198–2099.
[12] R. Liu, Q.S. Liu, Thermocapillary effect on the dynamics of viscous beads on

vertical fiber, Phys. Rev. E 90 (2014) 033005 (1–11).
[13] Z. Ding, T.N. Wong, Three-dimensional dynamics of thin liquid films on vertical

cylinders with Marangoni effect, Phys. Fluids 29 (2017) 011701.
[14] M. Moctezuma-Sánchez, L.A. Dávalos-Orozco, Azimuthal instability modes in a

viscoelastic liquid layer flowing down a heated cylinder, Int. J. Heat Mass
Trans. 90 (2015) 15–25.

[15] R.J. Briggs, Electron-Stream Interaction with Plasmas, MIT, Cambridge, 1964.
[16] A. Bers, Linear waves and instabilities, Physique des Plasmas, in: C. DeWitt, J.

Peyraud (Eds.), Gordon & Breach, New York, 1975.
[17] P. Huerre, P.A. Monkewitz, Local and global instabilities in spatially developing

flows, Annu. Rev. Fluid Mech. 22 (1990) 473–537.
[18] S.W. Joo, S.H. Davis, Instabilities of three-dimensional viscous falling films, J.

Fluid Mech. 242 (1992) 529–547.
[19] C. Duprat, C. Ruyer-Quil, S. Kalliadasis, F. Giorgiutti-Dauphiné, Absolute and

convective instabilities of a viscous film flowing down a vertical fiber, Phys.
Rev. Lett. 82 (2007) 244502 (1–4).

[20] G. Balestra, M. Gloor, L. Kleiser, Absolute and convective instabilities of heated
coaxial jet flow, Phys. Fluids 27 (2015) 054101 (1–17).

http://refhub.elsevier.com/S0017-9310(17)30761-5/h0005
http://refhub.elsevier.com/S0017-9310(17)30761-5/h0010
http://refhub.elsevier.com/S0017-9310(17)30761-5/h0010
http://refhub.elsevier.com/S0017-9310(17)30761-5/h0015
http://refhub.elsevier.com/S0017-9310(17)30761-5/h0015
http://refhub.elsevier.com/S0017-9310(17)30761-5/h0020
http://refhub.elsevier.com/S0017-9310(17)30761-5/h0020
http://refhub.elsevier.com/S0017-9310(17)30761-5/h0025
http://refhub.elsevier.com/S0017-9310(17)30761-5/h0025
http://refhub.elsevier.com/S0017-9310(17)30761-5/h0030
http://refhub.elsevier.com/S0017-9310(17)30761-5/h0030
http://refhub.elsevier.com/S0017-9310(17)30761-5/h0035
http://refhub.elsevier.com/S0017-9310(17)30761-5/h0035
http://refhub.elsevier.com/S0017-9310(17)30761-5/h0040
http://refhub.elsevier.com/S0017-9310(17)30761-5/h0040
http://refhub.elsevier.com/S0017-9310(17)30761-5/h0045
http://refhub.elsevier.com/S0017-9310(17)30761-5/h0045
http://refhub.elsevier.com/S0017-9310(17)30761-5/h0050
http://refhub.elsevier.com/S0017-9310(17)30761-5/h0050
http://refhub.elsevier.com/S0017-9310(17)30761-5/h0055
http://refhub.elsevier.com/S0017-9310(17)30761-5/h0055
http://refhub.elsevier.com/S0017-9310(17)30761-5/h0060
http://refhub.elsevier.com/S0017-9310(17)30761-5/h0060
http://refhub.elsevier.com/S0017-9310(17)30761-5/h0065
http://refhub.elsevier.com/S0017-9310(17)30761-5/h0065
http://refhub.elsevier.com/S0017-9310(17)30761-5/h0070
http://refhub.elsevier.com/S0017-9310(17)30761-5/h0070
http://refhub.elsevier.com/S0017-9310(17)30761-5/h0070
http://refhub.elsevier.com/S0017-9310(17)30761-5/h0075
http://refhub.elsevier.com/S0017-9310(17)30761-5/h0075
http://refhub.elsevier.com/S0017-9310(17)30761-5/h0080
http://refhub.elsevier.com/S0017-9310(17)30761-5/h0080
http://refhub.elsevier.com/S0017-9310(17)30761-5/h0080
http://refhub.elsevier.com/S0017-9310(17)30761-5/h0080
http://refhub.elsevier.com/S0017-9310(17)30761-5/h0080
http://refhub.elsevier.com/S0017-9310(17)30761-5/h0085
http://refhub.elsevier.com/S0017-9310(17)30761-5/h0085
http://refhub.elsevier.com/S0017-9310(17)30761-5/h0090
http://refhub.elsevier.com/S0017-9310(17)30761-5/h0090
http://refhub.elsevier.com/S0017-9310(17)30761-5/h0095
http://refhub.elsevier.com/S0017-9310(17)30761-5/h0095
http://refhub.elsevier.com/S0017-9310(17)30761-5/h0095
http://refhub.elsevier.com/S0017-9310(17)30761-5/h0100
http://refhub.elsevier.com/S0017-9310(17)30761-5/h0100

	Thermocapillary effect on the absolute and convective instabilities of film flows down a fibre
	1 Introduction
	2 Mathematical formulation
	2.1 Scaling and asymptotic reduction

	3 Results and discussions
	3.1 Absolute and convective instabilities
	3.2 Breakup behaviour and transient solutions

	4 Conclusions
	Acknowledgments
	References


