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a b s t r a c t

On the basis of the two-dimensional Navier–Stokes equations, a new numerical method is proposed
to generate internal solitary waves (ISWs) of expected parameters by adding a source term above the
interface and a sink term below the interface into the continuity equation. Fluxes between the source
and the sink are balanced to assure mass conservation, and the source/sink regions (the spatial windows
over which the sink/source terms are placed) are adjusted as functions of time with the interface motion.
Thus, the nonphysical trailing waves can be eliminated, which makes it easy to assure the prescribed
ISW parameters. Moreover, a new layout is presented to avoid the difficulty of sizing and positioning
the source/sink region, which has been proved to be an intrinsic drawback of the traditional mass
source method. Numerical experiments are performed to validate the proposed method by analyzing
the wave displacements and vertical profiles of velocity fields. It is shown that the numerical waveform
remains stable with much less trailing waves than previous methods, and the numerical results are in
good agreement with theoretical and experimental results. In addition, through sensitivity analysis, a
reasonable method to determine the width of source/sink region is recommended.

© 2017 Elsevier Masson SAS. All rights reserved.

0. Introduction

Internal solitary waves (ISWs) are gravity waves that typically
occur in stratified fluids because of the natural density stratifica-
tion arising from salinity and temperature variations. A large num-
ber of observations showed that ISWs occur frequently and exist
widely inmost of theworld’s oceans [1]. There are plentymore ap-
plications of ISWs such as parameterizing their role in continental
shelf energetics, their impact onmarine ecology andwater quality,
their influence on seafloor morphology, and their implications for
underwater acoustics. Specifically, ISWs have resulted in severe
impacts on operation of offshore engineering structures [2]. With
regard to deep-sea oil and gas exploration, ISWs have become a
fundamental environmental issue, which should be considered in
engineering design [3].

A two-layer representation of the ocean density stratification
is a conventional approximation to study ISWs both analytically
and numerically [4]. Nonlinearity and dispersion are the two fun-
damental mechanisms that govern the physics of ISWs. In general,
nonlinearity tends to steepen a given waveform during the course
of its evolution, while dispersion has the opposite effect and tends
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to flatten the waveform [5]. In the case of weak nonlinearity,
ISWs can be described by Korteweg–de Vries (KdV) equation and
extended KdV (eKdV) equation [6]. For large-amplitude models, a
useful extension of the weakly nonlinear two-layer eKdV model
was proposed by Miyath [7], who derived equivalent two-layer
models with full nonlinearity, while retaining only the first-order
weakly dispersive effects. Choi and Camassa [5] derived fully non-
linearmodels to describe the evolution of finite-amplitude long in-
ternalwaves in a two-fluid system for both shallow anddeepwater
configurations. Guyenne [8] computed solitary wave solutions of a
Hamiltonian model for large-amplitude long internal waves in a
two-layer stratification. Grimshaw et al. [9] conducted an experi-
mental study of the effect of rotation on large amplitude internal
waves. Solitary waves in continuously stratified flows have been
explored with numerical solutions of the Dubreil–Jacotin–Long
(DJL) equation [10]. In addition, Turkington et al. [11] presented
an iterative algorithm to compute steady, translational nonlinear
waves in an incompressible fluid with a stable density stratifica-
tion. In particular, Dunphy et al. [12] developed a numerical tool
based on DJL equation, which can produce an exact solution to
the incompressible Euler–Boussinesq equations. Theoretically, it
is more reasonable to consider continuous density stratification.
However, the present purpose is to construct a simple and effec-
tive numerical wave-maker for investigating interactions between
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ISWs and offshore structures. The continuous density stratification
will make the derivation of numerical wave-maker more com-
plicated. Thus, the two-layer system is used as the basis for the
proposed wave-maker.

To investigate ISW–structure interaction, people often have to
generate ISWs in laboratory or numerically. Under laboratory con-
ditions, an ISW can be generated in variousways such as themixed
region collapse method [13], the oscillating rod drive method [14],
the piston drive method [15], and the flap drive method [16].
In numerical methods, previous ISW generation approaches are
mostly implemented by imitating the laboratory wave-maker.
Hsieh et al. [17] adopted the gravity collapse method in a fluid
system with a density pycnocline. Lin and Song [18] constructed
a two-dimensional nonhydrostatic model to study ISW generation
and evolution. Shin [19] developed a numericalmethod to simulate
internal waves by a translating and pitching foil. However, the
abovementioned laboratory approaches inevitably produce obvi-
ous trailingwaves at the tail of a tank. Consequently, the numerical
methods imitating laboratory wave-maker techniques will also
produce trailing waves. The existence of the trailing waves implies
the dissipation of wave energy during wave generation. Therefore,
the conventional numerical ISW generation methods are very dif-
ficult to accurately produce an expected IWS (expected waveform
and amplitude).

To build an accurate and beforehand controllable numerical
wave-maker for ISWs, we propose to borrow the mass source
wave-generationmethod for surface gravity waves, which directly
starts from surface gravity wave equations (e.g., Stokes wave)
instead of just imitating the laboratorywavemaker. As a numerical
wave-generation method, the mass source term method is more
flexible because the source term can be located at any position
in principle. For surface gravity wave generation, many works
regarding the source term method have been conducted in recent
years. Lin and Liu [20] developed an internal wave-maker on the
basis of theNavier–Stokes (N–S) equations by adding amass source
term. Hafsia et al. [21] constructed a two-dimensional numerical
wave flume by usingmass source terms and validated the accuracy
of wave generation for different types of surface waves. However,
there is no general rule to determine the size and position of
the mass source region, which significantly affects the numerical
results. Moreover, because of lack of consideration of the temporal
change of the interface, the numerical waveforms often decay
obviously during the initial stage of the wave propagation. Thus,
we have to make some technical improvements of the source term
method to apply the method to generate ISWs.

In the present paper, on the basis of the existing mass source
method for surface gravity waves, a newmethod to generate ISWs
is proposed. The new method accounts for the variations of the
interface displacement and presents a new layout for the mass
source/sink region to parry the difficulty of sizing and positioning
the mass source region. Thus, the new method produces an ex-
pected ISW because of much less trailing waves than in previous
methods.

The paper is organized as follows. On the basis of derivation
of the new wave generation method, Section 1 describes the nu-
merical models to be used. Section 2 contains comparisons of the
waveform and velocity field between the numerical results by the
proposed method and theoretical ones, as well as the generation
process of ISWs. Finally, some conclusions are given in Section 3.

1. Numerical model

1.1. Governing equations

The present numerical method adopts N–S equations to gener-
ate ISW by adding a mass source term into the continuity equation

in the source region Ω located within the computation domain.
For an incompressible fluid of density ρi, the velocity components
(u, w) in Cartesian coordinates Oxz and the pressure pi satisfy the
continuity equation and N–S equations:

uix + wiz = 0, (1)

uit + uiuix + wiuiz = −pix/ρi + ν(uixx + uizz), (2)

wit + uiwix + wiwiz = −piz/ρi + ν(wixx + wizz) − g, (3)

where g is the gravitational acceleration, the subscripts with re-
spect to space and time represent partial differentiation, i = 1 (i =

2) denotes the upper (lower) layer fluid.
To generate ISWs by using mass source term, the mass conser-

vation Eq. (1) is modified as follows:

uix + wiz =

{
0
Si (x, z, t) /ρi

(x, z) ̸∈ Ω

(x, z) ∈ Ω
(4)

where the addedmass source term Si (x, z, t) is a nonzero function
only in the source regionΩ .

1.2. Derivation for Si (x, z, t)

In principle, any expected ISW can be generated as long as the
source function is properly specified. Thus, the key point is how
to design a source function (Si (x, z, t)). If we just consider a two-
layer fluid system, the mathematical relation between the source
function and thewaveform ζ (t) of an expected ISW can be derived
as follows.

Fig. 1 shows the wave generation mechanism for ISW by using
the mass source method, where c is the phase speed and h1 (h2)
is the undisturbed thickness of the upper (lower) fluid layer, and
the mass source region is defined as a rectangle of width 21 and
height h(h = h1 + h2). Considering the interface fluctuation in the
mass source region during the wave generation process, demar-
cated by ISW interface, the mass source region can be divided into
two subregions (Ω1,Ω2), which denote the source region above
and the sink region below the ISW interface, respectively. The
mass source/sink terms for Ω1 and Ω2 are set to S1 (x, z, t) and
S2 (x, z, t), and fluxes between the source and the sink are balanced
at any time,which ensuresmass conservation of the computational
domain. Because the absorbing and releasing processes coexist at
the left and right sides of the source/sink term region, two com-
pletely symmetrical ISW trains will be generated and propagate in
opposite directions. For convenience, unless otherwisementioned,
only the rightward propagating ISW will be discussed hereafter.

The upper fluid mass released from regionΩ1 in time dt can be
expressed as follows:

mout =

∫
Ω1

S1(x, z, t)dΩdt. (5)

Assuming that the mass source function is dependent only on
time (in otherwords, themass source function Si (x, z, t) isuniform
inΩi at any time), Eq. (5) can be written as follows:

mout = S1(t)dt
∫
Ω1

dΩ. (6)

Let us consider the rightward propagating ISW. Hence, the
width ofΩ1 is∆x. Thus,

∫
Ω1

dΩ = ∆(h1−ζ (t)), and we have

mout = ∆(h1 − ζ (t))S1(t)dt. (7)

Fig. 2 shows that after a short time interval dt , the ISW interface
changes from ζ (t) to ζ (t + dt), and the wave travels a horizontal
distance of c · dt . The upper fluid mass variation dm1 (the shaded
region in Fig. 2) can be approximately expressed as follows:

dm1 = ρ1 · c · dt
− (ζ (t)+ ζ (t + dt))

2
. (8)
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Fig. 1. ISW generation mechanism based on the mass source method.

Fig. 2. Upper fluid mass variations during the generation of ISWs.

For an infinitesimal dt , we have the first-order approximation
ζ (t + dt) ≈ ζ (t). Therefore, Eq. (8) can be rewritten as

dm1 = −ρ1cζ (t) dt. (9)

For any given time interval dt , the released fluidmassmout from
region Ω1 is equal to the upper fluid mass variation dm1 in the
computation domain; therefore,

∆(h1 − ζ (t))S1(t)dt = −ρ1cζ (t) dt. (10)

Thus

S1 (t) = −ρ1c
ζ (t)

h1 − ζ (t)
1
∆
. (11)

Similarly, the mass sink function S2(t) is given by

S2 (t) = ρ2c
ζ (t)

h2+ζ (t)
1
∆
. (12)

1.3. Boundary and initial conditions

The top and bottom of computation domain are required to
satisfy the following boundary conditions:

w1|z=h1 = 0, w2|z=−h2 = 0. (13)

According to the continuity of normal velocity and pressure, the
boundary conditions at the interface (z = ζ (t)) are given by

ζt + u1ζx = w1, ζt + u2ζx = w2, p1 = p2. (14)

The computation domains are exactly symmetrical, and only
the rightward propagating ISWs are studied. Therefore, the left
boundary can be set to a symmetry boundary condition.

The right boundary is specified as a smooth nonslip wall. To
avoid wave reflection at the end, a dissipation region is applied
to dissipate ISWs in the numerical flume, which is realized by
adding a source term into the momentum transport equation in
the vertical direction. Hence, Eq. (3) can be rewritten as follows:

wit + uiwix + wiwiz = −piz/ρi+ν (wixx + wizz)− g − δ (x) w (15)

where the damping function δ (x) is nonzero only in the dissipation
region, otherwise δ (x) = 0.

In the present paper, we choose a linear expression for δ (x)

δ (x) = ξ
x − xs
xe − xs

, (16)

where ξ is an empirical coefficient and we choose ξ = 9.0 here, xs
and xe denote the horizontal coordinates of the beginning and end
points of the dissipation region, respectively.

At the initial moment, there is no wave or current motion in the
computation domain, which implies that both the velocity and the
velocity gradient are equal to zero.

1.4. Interface treatment

The volume of fluid (VOF) method [22] is employed for tracking
the ISW interface during the generation and propagation pro-
cesses. The VOF equation is
∂ai
∂t

+
∂

∂x
(aiu)+

∂

∂z
(aiw) =

sai
ρi
, (17)

where ai is the volume fraction of the ith phase fluid. The volume
fractions of the two phases sum to unity, and the following three
conditions are possible for each control volume: (1) ai = 0: the
cell is empty of the ith phase fluid, (2) ai = 1: the cell is full of the
ith phase fluid and (3) 0 < ai < 1: the cell contains the interface
between the two fluids.

1.5. The internal solitary wave theory

To validate the proposed numerical wave-maker, besides the
KdV, eKdV, andMCC (Miyata–Choi–Camassa) theory of a two-fluid
system, the DJL model that can produce an exact solution to the
incompressible Euler-Boussinesq equations is also employed.

As we know, the KdV equation is a classical theory to describe
ISWs of weak nonlinearity and dispersion in shallow water.

∂ζ

∂t
+ (c0 + αζ)

∂ζ

∂x
+ β

∂3ζ

∂x3
= 0. (18)

With the increase in nonlinearity, it is difficult tomake accurate
predictions in contrast to experiments by using the KdV equation.
An effective solution is to add a cubic nonlinear term in KdV
equation, thereby leading to the so-called eKdV equation

∂ζ

∂t
+
(
c0 + αζ+α1ζ

2) ∂ζ
∂x

+ β
∂3ζ

∂x3
= 0. (19)
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Under the two-layer approximation, the coefficients of the
KdV/eKdV equation are given by

c0 =

√
g
h1h2(ρ2 − ρ1)
ρ1h2 + ρ2h1

, α = −
3c0
2

ρ1h2
2 − ρ2h2

1

ρ1h1h2
2 + ρ2h2h2

1

(20)

α1 =
3c0
h2
1h

2
2

(
7
8

(
ρ1h2

2 − ρ2h2
1

ρ1h2 + ρ2h1

)2

−
ρ2h3

1 + ρ1h3
2

ρ1h2 + ρ2h1

)
,

β =
c0(ρ2h1h2

2 + ρ1h2h2
1)

6(ρ1h2 + ρ2h1)
.

(21)

Here c0 is the wave phase speed, α, α1, and β denote the coeffi-
cients of quadratic nonlinearity, cubic nonlinearity, and dispersion,
respectively.

Eq. (19) has a traveling wave solution as follows [3]:

ζ =
A

B + (1 − B)cosh2(λeKdV (x − ceKdV t))
(22)

where A is the amplitude of ISWs, and

ceKdV = c0 +
A
3

(
α +

1
2
α1A

)
, λ2eKdV =

A(2α + α1A)
24β

,

B =
−α1A

2α + α1A
.

(23)

The eKdV includes both a quadratic term and a cubic nonlinear
term and exhibits solitary wave solutions that are bounded above
by the limit of flat-crest waves [23], and the limiting amplitude is
given [6] as follows:

Alim = −
α

α1
. (24)

The MCC equations describe an ISW in the approximation of
weak dispersion but with no limitation of nonlinearity. In addi-
tion, the shape of ISW is determined from the ordinary nonlinear
equation for the interfacial displacement ζ (in the Boussinesq
approximation)

(ζX )2 =
3g(ρ2 − ρ1)

c2mcc(ρ1h
2
1 − ρ2h2

2)
ζ 2(ζ − a−)(ζ − a+)

ζ − a∗

(25)

where cmcc is the phase velocity, and a− and a+ (a− < a+) are the
two roots of ζ 2 + q1ζ + q2 = 0, in which

q1 = −
c2mcc

g
− h1 + h2, q2 = −

c2mcc

g
− h1h2(c2mcc/c

2
0 − 1),

c2mcc

c20
=

(h1 − a)(h2 + a)
h1h2 −

(
c20/g

)
a
.

(26)

Fully nonlinear, rightward propagating ISWs in a framemoving
at a wave speed c are governed by a nonlinear elliptic eigenvalue
problem, namely the Dubreil-Jacotin-Long (DJL) equation [23]

∇
2ζ +

N2(z − ζ − h2)
c2

= 0 (27)

ζ = 0 at z = −h2h1 (28)

ζ = 0 as x → ∞ (29)

where N2 (z) = −g dρ̄(z)
dz is the square of buoyancy frequency,

and the propagation speed c is to be determined as part of the
solution. Once ζ and c are obtained, the induced velocity fields can
be computed from the stream function ψ = cζ .

2. Numerical experiments and discussions

To test the wave generation method proposed above, using
user-defined function redevelopment tools given by the Fluent

software, a numerical flume is built to generate ISWs. For a spe-
cific numerical case, the numerical method first calculates the
ISW interface displacement ζ (t) (Eqs. (18/22/25)) for the specific
case, then substitutes ζ (t) in the mass source function derived
(Eqs. (11), (12)), and finally excites the ISW in the source term
region.

The computation domain is shown in Fig. 3, which consists of
three regions: the mass source region, wave propagation region,
and dissipation region. The widths of the three regions are ∆ =

0.02m, Lp = 24 m and Ld = 6 m. The upper/lower fluid density
in the two-layer fluid system is ρ1 = 998 kg/m3 and ρ2 =

1025 kg/m3.
Structured quad-type elements are used to ensure the mesh

quality of the computational domain. In the x direction, a grid
is refined to the size of λ/Nh (where Nh denotes the number of
meshes within the integral wavelength λ =

1
A

∫
∞

xm
ζ (x) dx as

introduced by Koop and Butler [24] and xm is the maximum wave
displacement). In the z direction, the computational domain is
divided into three areas: −h2 ≤ z < −A, −A ≤ z < 0, and
0 ≤ z ≤ h1 (where A is the ISW amplitude). Local grid refinements
are employed to overcome the numerical dispersion in the region
of wave motion (−A ≤ z < 0), where the grid is refined to the
size of A/Nv (where Nv denotes the number of meshes within this
region). For the other two areas, the grids are determined by the
law of geometric progressionwith a common ratio of 1.03 (the grid
thickness of the first layer remains A/Nv, the greater the distance
between the interface and the top/bottom boundary, the greater
the thickness is). Thus, using these two parameters (Nh and Nv),
we can easily determine the computational grid distributions.

The time iteration step is 0.001 s during the simulation. The
N–S equations are discretized on the two-dimensional structured
grids by using finite volume method, and appropriate numerical
schemes are used to avoid the spurious effects due to numeri-
cal dispersion. In particular, the pressure implicit with splitting
of operators algorithm is adopted to solve the pressure velocity
coupling, the spatial gradients are discretized using the Green–
Gauss node-based method and a second-order upwind scheme for
VOF volume fraction.Moreover, the temporal terms are discretized
using a second-order implicit scheme.

Four different numerical experiments are chosen to demon-
strate the accuracy of the proposed mass source ISW generation
method. As shown in Table 1, Case A, Case B, and Case D represent
theweakly, medium, and strongly nonlinear ISW, respectively, and
Case C is for a special situation where the designed amplitude
approaches the limiting amplitude of eKdV (Eq. (24)). Some crucial
issues, i.e., the accuracy of the numerical waveform and the flow
field, the variation in the flow field during wave generation, the
sensitivity of the mass source region width ∆, and the results of
the grid-independence test are discussed in detail as follows.

2.1. Generation process of the ISW

With the variation in the mass source terms (S1 (t) and S2 (t)),
the velocity field and waveform will change. To explain the wave
generation history, the velocity field andwaveform variations near
the source term region during wave generation for Case B are
shown in Fig. 4, where the blank and solid areas on the left rep-
resent the source and sink term regions, respectively, which vary
with the interface motion during the propagation. The solid lines
and the vectors indicate the wave interface and induced velocities,
respectively.

When t = 10 s, themass source functions are very close to zero,
namely uix + wiz ≈ 0 in the source/sink region. Hence, there is no
significant change in the velocity field and the waveform.

At t = 18 s, with the increase in the source functions, the mass
source S1 (t) releases fluid in region Ω1 and S2 (t) absorbs fluid in
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Fig. 3. Sketch of numerical flume for ISWs based on the proposed mass source ISW generation method. (Ω at the left end denotes the generation region.)

Table 1
Numerical cases.

ID h1 / (m) h2 / (m) A / (m) ISW theory Re (= λUmax
ν

) (Nh,Nv)/Grid number

Case A 0.2 0.8 0.0470 KdV 3.9e4 (80, 10)/6.07e5
Case B 0.3 0.7 0.1055 eKdV 1.1e5 (80, 10)/3.67e5
Case C 0.3 0.7 0.1780 eKdV 3.8e5 (80, 10)/1.30e5
Case D 0.2 0.8 0.2433 MCC 2.0e5 (80, 10)/3.02e5

(Re =
λUmax
ν

, where Umax is the maximum horizontal velocity induced by ISWs. Because of the lack of consideration of
numerical viscosity, the Reynolds number may be overvalued.)

regionΩ2 gradually (see Fig. 1). Thus, the flow fields are disturbed,
and the waveform is beginning to take shape.

From t = 24 s to t = 30 s, the source functions continue
to increase, and the interface declines sharply. The profile of ISW
is more and more apparent, and the velocity induced increases
significantly during this stage.

At t = 38 s, the entire ISWwaveform is generated. The velocity
is strong at the trough and weak at the tail, which indicates that
the source functions decrease from its maximum value gradually.

From t = 38 s to t = 50 s, the ISW continues to propagate
rightwards, and the mass source functions gradually decrease to
zero. Hence, the interface displacement near the source term re-
gion returns to zero, and the flow field decreases gradually.

2.2. Validation of waveforms

Fig. 5 shows the comparisons of the numerical interface dis-
placements monitored at x = 7 m with theoretical and experi-
mental ones under four different cases. The experiments [25] are
conducted in the large-scale density stratified tank (length: 30 m,
width: 0.6m, height: 1.2m) of Shanghai Jiao TongUniversity (ISWs
are generated using a double-plate wavemaker). For Case A, B, and
D, the numerical interface displacements are in good agreement
with both theoretical (the relative errors of amplitudes are within
3%) and experimental results, demonstrating that the numeri-
cal wave-maker can accurately generate the waveform whether
weakly nonlinear ISW or strongly nonlinear ISW.

For Case C, which is designed to test our method for the lim-
iting amplitude of eKdV (Eq. (24)), the comparison shows a larger
difference inwaveform between the theoretical and our numerical
results than the above three cases, although the relative error of
amplitude is not large. The reason is that the amplitude (0.1780
m) gets close to the theoretical limiting amplitude (0.1787 m), as
obtained by Eq. (24) of the eKdV equation. Accordingly, the ISWs
evolves flat-crested waves [26], and these waveforms are difficult
to match the eKdV theory as pointed out by Dunphy et al. [12] for
limiting solution of eKdV.

The numerical ISW waveforms for Case B at different times
(t = 45, 65, 85, 105 s) are shown in Fig. 6. The results indicate that
each of the numerical waveforms remains stable, and the decay of
the amplitudes is weak during the propagation. From 45 to 105 s,
the relative differences of the amplitude and phase are 3.30% and
0.12%, respectively.

Furthermore, we compared our numerical waveform with that
of the DJL theory, which can produce an exact solution to the in-
compressible Euler–Boussinesq equations. The isopycnal displace-
ment (1010 kg/m3) at t = 50 s for Case B between our numerical
waveform and the results calculated using the DJL equation pro-
duced by Dunphy [14] are given in Fig. 7. In addition, the numerical
isopycnal displacement is also in good agreement with the results
calculated using the DJL equation.

It should be noted that the proposed numerical model is based
on the two-layer fluid approximation. Because of numerical diffu-
sion, the two-layer system at beginning will evolve into a smooth-
ing structure of the pycnocline near the interface. Fig. 8 shows the
actual density profile at the ISWtrough (t = 50100 s). Although the
density distribution does not strictly confirm to the two-layer fluid
approximation, the deviation is not significant. Moreover, from
50 to 100 s, the profile remains the same. These suggest that the
influence of numerical diffusion is limited though unavoidable.

2.3. Validation of the velocity field

To further test the accuracy of the proposed wave generation
method, the validation of velocity fields induced by ISWs is very
important, especially for estimating the hydrodynamic action of
ISWs on offshore structures.

The theoretical results, which are shown in Fig. 9, are based on
the strongly nonlinear asymptotic approximation model in a two-
fluid system of Camassa et al. [27]. The leading-order horizontal
velocity dependence on z can be written as

Upper layer fluid: u1 (X, z)

= c
[
1 −

h1

η1
+

(
η21

6
−
(h1 − z)2

2

)(
h1η

′′

1

η21
−

2h1(η′

1)
2

η31

)]
(30)

Lower layer fluid: u2 (X, z)

= c
[
1 −

h2

η2
+

(
η22

6
−
(z + h2)

2

2

)(
h2η

′′

2

η22
−

2h2(η′

2)
2

η32

)]
(31)

where X = x − ct, η′

1 = η1X , η2
′
= η2X , η′′

1 = η1XX , η2
′′

= η2XX ,
and η1 = h1 − ζ , η2 = h2 + ζ .

Fig. 9(ii) shows the comparisons of vertical profiles of horizontal
velocities at the ISW trough at t = 50 s with the theoretical and
DJL equation results. In the figure, except the vicinity adjacent to
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Fig. 4. Velocity fields and interface displacement near the wave generation zone at different times for Case B. (a) t = 10s, (b) t = 18 s, (c) t = 24 s, (d) t = 30 s (a) t = 38 s,
(b) t = 50 s.

the interface, the vertical distributions of horizontal velocities alter
little in the upper or lower fluid. Overall, the results show that
velocity distributions agree well with theoretical results.

To quantitatively evaluate the error of the induced velocity
field, in Fig. 9(iii), we present the numerical and theoretical vari-
ation coefficients (relative standard deviation) at different slices.
The horizontal coordinates of the selected slices are as follows
(shown in Fig. 9(i)): (a) x = 9 m, (b) x = 8 m, (c) x = 7 m, (d)
x = 6 m, (e) x = 5 m, (f) x = 4 m, and (g) x = 3 m. The minimum

of RMSE appears at the forepart of ISW, and its maximum appears
at the wave tail. The overall variation coefficients are within 15%.

2.4. Sensitivity analysis

For a specific numerical case, the only influential factor in the
proposed method is the source term region width ∆ (shown in
Eqs. (11), (12)). Seven numerical experiments are performed to
analyze the sensitivity of ∆. These experiments are defined by
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Fig. 5. Comparisons of interface displacements monitored at x = 7 m with theoretical and experimental ones (a) Case A, (b) Case B, (c) Case C, and (d) Case D.

k = 0.3, k = 0.5, k = 0.8, k = 1, k = 2, k = 3, and k = 4
(where k = ∆/L and L is the computational grid width in the wave
propagation region marked by ‘‘Lp’’ in Fig. 3). Two dimensionless
parameters (the nonlinearity ϵ = A/h and dispersion µ = (h/λ)2)
are introduced to assess the influence of∆.

Fig. 10 shows the comparisons of numerical results of differ-
ent numerical experiments for Case B. In the figure, the symbol
‘‘•’’ denotes the theoretical value, and other symbols denote the
numerical experimental results. The horizontal distances from the
symbol ‘‘•’’ to other symbols represent the absolute errors of the
nonlinearity between the theoretical and the numerical results.
Similarly, the vertical distances represent the absolute errors of
the dispersion. The relative errors of the nonlinearity between
the numerical and the theoretical results are within 5%, which
means the numerical amplitudes are very close to the theoretical
amplitudes (refer to the definition of the nonlinearity). In addition,
the relative errors of the dispersion arewithin 3%,whichmeans the
relative errors on the integral wavelength are also limited. These
imply that the influence of∆onnumerical results is little. Although
the choice of∆ seems rather arbitrary, considering the principle of
mesh generation, the ratio k should not be too large or too small.
For convenience, ∆ = L is recommended in the proposed wave
generation method.

2.5. Grid-independence test

To verify the grid independence, simulations were performed
at six different spatial resolutions of Case B (amplitude: 0.1055m),
and the amplitude and phase speed measured are listed in Table 2.

Table 2
Simulated amplitude and phase speed for the grid-independence test (iteration
step: 0.001 s).

Grid distribution Amplitude (m) Phase speed (m/s)

(20, 10) 0.0978 0.2508
(40, 10) 0.1009 0.2511
(60, 10) 0.1011 0.2511
(80, 10) 0.1019 0.2511
(80, 20) 0.1020 0.2511
(100, 30) 0.1020 0.2511

Generally, the more the grid number, the smaller is the nu-
merical error. However, when the grid number is greater than a
critical value, the error will not be significantly decreased, but the
computation cost increases. In Table 2, both the amplitude and
phase speed remain nearly unchanged when grids are finer than
the configuration (60, 10). This indicates that the influence of grid
number on numerical results is little with the configuration (80,
10) employed in the present paper.

3. Conclusions

To accurately generate a prescribed ISW in a two-layer fluid,
a new numerical wave-maker is proposed based on the two-
dimensional N–S equations. Themethod is implemented by adding
a source/sink term into the continuity equation. In particular, the
two regions are separated by the timely updated interface of the
two fluid layers. In view of the change of the interface during the
process of wave generation, the expressions for the source/sink in-
tensity are derived. Such a new layoutmakes the proposedmethod
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Fig. 6. Numerical waveforms at different times based on the proposed method (a) t = 45 s, (b) t = 65 s, (c) t = 85 s, and (d) t = 105 s.

Fig. 7. Comparison of the isopycnal displacement (1010 kg/m3) at t = 50 s for Case
B between the simulated waveform and the calculations by the DJL. Fig. 8. Vertical profiles of density at the ISW trough (t = 50 s, 100 s).
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Fig. 9. Validation of the velocity field at t = 50 s for Case B, (i) The induced velocity field and the locations of various slices; (ii) The vertical profiles of horizontal velocities
at the ISW trough; (iii) The variation coefficient of horizontal velocities at various slices.

Fig. 10. Influence of the source region width∆ on numerical results.

more advantageous over the existing ISWwave generationmethod
in that it efficiently eliminates the nonphysical trailing waves. In
addition, the sizes and the positions of the source/sink can bemore
easily determined than the previous source mass term methods.

Different ISW cases described by KdV/eKdV/MCC equations are
employed to validate the proposed method. It is demonstrated

that the numerical waveforms and velocity profiles at different
moments obtained by the proposed method are in good agree-
ments with the analytical results of KdV/eKdV/MCC equations and
the solution of DJL equation. Moreover, a sensitivity analysis of
the source/sink region width suggests that considering it as the
computational grid width in thewave propagation region is a good
choice.

As an internal excitation wave generation method for ISWs, the
present paper provides a new possibility to accurately investigate
ISW–structure interaction.
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