滑移爆轰作用下多层金属平板的

爆炸复合参数的计算方法

邵丙璜 周之洪 李国豪

(1984年10月26日收到)

本文建立了多层金属平板在滑移爆轰作用下,各层间存在不同程度加速运动时的二维计算公式。根据材料性质所事先给定的各层最佳碰撞角β,可计算 出各层相应的最佳飞行间距。计算结果和实验对比表明,在多达10层铝板复合 的各层β角和X光实测值仍相当一致。

前 言

在爆炸焊接的报导中,迄今大量介绍的是两层金属板的复合,涉及多层焊接的较少,多 层复合是爆炸焊接应用中的一个重要方面。在一些电工原件中需要四层甚至六层不同合金的 爆炸复合,由于多层复合的每层都要满足最佳焊接参数,这使得用试验方法确定可焊接参数 的工作量大大增加。EL-Sobky,H.和Blazynsky,T.Z.⁽²⁾和Al-Hassani,T.S., Salem,S.A.L⁽³⁾,在1981年七届国际高能加工会议上分别发表了两篇从理论上预报各层焊 接参数(4和β)的论文。但是Sobky的计算模型认为各层复板在碰撞前已经发生弯曲,这和 我们从脉冲X光照片上所观察到的现象并不一致。图1a为Sobky的计算模型,图1b为四层爆

炸复合的瞬态X光照片,不难看到各层复板在碰撞复合前看不到有显见的弯曲现象。Hassani 所采用的是"驱动板"的理论计算模型,即爆炸复合的全部能量储存在第一层复板(即驱动 板)中,在以后各层复板的焊接过程中不再接受爆炸产物压力的作用。显然这种计算模型只 有在第一层复板的质量远大于其余各层的总和时,才能接近实际的物理过程。当各层复板具 有相同的质量(M)时,根据这种理论计算模型,随着复合层的层数增加,动态角β不断减 小,波状界面的波幅将逐层下降如图2所表示。因此很难实现各层之间有均衡一致的焊接质

a)铜/铜复合片,第1层驱动板厚 0.9mm,第2~5层厚度为0.5mm,第1 ~2层间距8.5mm,其余层间距1.4 mm,炸药厚15mm,第6层为刚性基 础。

b)铜/黄铜复合。第1层驱动板 (铜)厚0.9mm,第3层、第5层为铜 厚0.5mm,第2层、第4层、第6层为 黄铜厚0.5mm,第1~2层间距8.5 mm,其余层间距1.4mm,炸药厚15 mm。

图 2 多层复合金相照片

量 (例如 β 角)。本文的工作在于指出:实际的多层复合过程中,由于采用小间隙装置,则设 计时必须考虑 爆炸产物压力对多层复合过程中的加速作用,并且认为这种作用是实现各层之 间获得最佳焊接参数的重要因素。文中给出了计算各层焊接参数(来流速度V/和动态碰撞角 β)的计算公式。并与X光脉冲照片的实测结果进行对比。其弯曲角β的误差约±1°,和测 量误差大致相当。

二、多层复板的运动特性分析

图1b为四层金属复板在一次爆炸复合的脉冲X光照片,从中不难看到

1. 在**肃移爆轰作用下**,各层复板在复合过程中由水平位置转为某一特定弯曲角β,都存 在不同程度的加速过程,即弯曲角由零值逐渐增大到β值。

2. 各层复板在碰撞前,没有观察到弯折现象,即弯曲波的效应即便在亚音速的扰动中也 可以忽略,因此可近似认为在碰撞发生前,复板始终为平面。

3. 各层复合时,复合板的运动加速度是不同的。若各层密度、厚度相同,则第一、二层 复合时,爆炸产物压力大,复板加速度快,所需加速间隙小。而最后几层复合时,由于爆炸 压力大大衰减,复板加速缓慢,所需加速间隙大,因此各层之间要得到合适的焊接参数,必 须通过调整间隙来实现。

三、多层复板爆炸焊接参数的确定

1. 各层之间无加速度运动的多层复合

首先我们讨论一种最简单的简化过程,即各层之间无加速运动的 Hassani 模型的结果, 即复合能量全部由第一层复板即驱动板所提供。复合过程中其截面呈折线 *ABC* 如图3*a* 所表 示。从图中我们看到动态角 β 将逐层下降,由于波长和β²成正比,因此界面波幅也将逐层减 小。

图 3 多层复合示意图

通常的平行法爆炸复合过程中,驻点压力为材料强度的几十倍,因此在碰撞区附近近似 认为不可压缩流体。根据经典的流体力学的复变函数方法或平面速度法⁽⁴⁾Taylar, Robinson, YTKин 等给出了复板互相碰撞时,在碰撞点附近流场V;的变化规律。计算表明来流速度 v,只 是在驻点附近存在急剧的变化,而在1 ~ 2 个复板厚度以外, v,趋近于无穷远处的来流速度 v/∞。这表明在多层复合时,每层的碰撞点实际上是独立而不相互干扰的。它可以独立地建立 各自的动量、质量守恒方程,而不必求解各点之间的联立方程,这样就大大简化了计算方程。 假设碰撞点已远离引爆端,则上述问题可以认为是定常的。

置坐标原点于碰撞点上。图3b给出了在碰撞点A附近,复板1、2对称碰撞示意图。但 通常是不对称的如图3 c 所表示。这时再入射流不二等分动态角β,令 ν 角为再入射流 Āj 与水平轴 x之间的夹角。由于通常 ν 是一个小角度,因此在讨论 ν 对 "出流"的质量影响时, 可近似令 cor ν = 1。我们假定碰撞点附近满足不可压流体模型。令 m,表示各层复板的单位面 积质量,β,表示相应的碰撞角, i = 1,2,...n。如图3 α中所表示。

现讨论第1、2两层碰撞时的守恒方程。在水平轴 x上的动量、质量守恒方程为

$$v_f m_i \cos \Delta \beta_i = (m_{is} - m_{ir} \cos \gamma') v_f \qquad (1)$$

$$m_l = m_{ls} + m_{lr} \tag{2}$$

$$v_c \ m_2 \cos \beta_2 = (\ m_{2s} - m_{2r} \cos \gamma') v_c \tag{3}$$

$$m_2 = m_{2s} + m_{2r} \tag{4}$$

这里脚注s表示出流,r表示再入射流, D。为碰撞点移动速度,在平行爆炸装置中 D_f= 4。

在垂直轴 y上的动量、质量守恒方程为

$$v_{f} m_{i} \sin \Delta \beta_{i} = v_{c} m_{e} \sin \beta_{2} + (m_{i} + m_{e},)v_{f} \sin \gamma^{\prime}$$
 (5)

$$\beta_1 = \beta_2 + \Delta \beta_1 \tag{6}$$

这里有七个未知数 m_{i} 、 m_{i} 、 m_{2} 、 M_{2} 、 $\Delta \beta_{1}$ 、 β_{2} 和 ν' ,而方程只有六个,因此是一个不能确定的问题。但这种困难不是原则性的,因为 ν' 角不可能大于 β_{1} ,因此如前所述,在讨论 ν' 对"出流"质量影响时,可忽略它的影响。令 cos $\nu' \approx 1$,而在(5)中则(m_{i} , + m_{i}) ν_{i} sin $\nu'=0$,这样上述方程有解。由(5)式得到

$$\sin\beta_{2} = \frac{m_{i} v_{f}}{m_{2} v_{c}} \sin \Delta\beta_{i}, \quad \text{利用(6)} \ \text{式} \Delta\beta_{i} = \beta_{i} - \beta_{2} \ \text{代入}, \quad \text{则得}$$

$$\beta_{2} = \tan^{-i} \left(\frac{m_{i} v_{f} \sin \beta_{i}}{m_{2} u + m_{i} v_{f} \cos \beta_{i}} \right)$$
(7)

在平行装置中,众所周知u = u = u, u为爆速,又若复板质量相等, $m = m, m \beta_2$ 可简化为

$$\beta_2 = \tan^{-1} \left(\frac{\sin \beta_1}{1 + \cos \beta_1} \right) \tag{8}$$

如果复合时为小动态碰撞角,则 $\cos\beta_i \approx 1$, $\sin\beta_i \approx \beta_i$ 。则 $\beta_2 \doteq (1/2)\beta_i$,即再入射流平分 β_i 角,也即由1、2两层复板所构成的"复合板"与第3层复板的碰撞动态角为 β_2 角,如图3a所示。

相应地可求得第3、4层碰撞时,即由1、2、3层所构成的"复合板"与第4层碰撞的动态角 β_1 为

$$\beta_{3} = \tan^{-1} \frac{(m_{1} v_{f} (1 + \cos \Delta \beta_{1}) + m_{2} u_{1} (1 + \cos \beta_{2})) \sin \beta_{2}}{(m_{1} (1 + \cos \Delta \beta_{1}) v_{f} + m_{2} u_{1} (1 + \cos \beta_{2})) \cos \beta_{2} + 2 m_{3} u_{1}}$$
(9)

依次求得与第5层碰撞时的动态角β,为

$$\beta_{4} = \tan^{-1} \frac{\langle (1/2)(m_{1}v_{1}(1+\cos\Delta\beta_{1})+m_{2}u_{1}(1+\cos\beta_{2}))(1+\cos\Delta\beta_{2})}{\langle (1/2)(m_{1}v_{1}(1+\cos\Delta\beta_{1})+m_{2}u_{1}(1+\cos\beta_{2}))(1+\cos\Delta\beta_{2})+} + \frac{m_{3}u_{1}(1+\cos\beta_{3})(1+\cos\Delta\beta_{2})}{+m_{2}u_{1}(1+\cos\beta_{3})(1+\cos\beta_{3})}$$
(10)

其中 $\Delta\beta_2 = \beta_2 - \beta_3$ 。相应地与第6层碰撞时的 β_3 为

$$\beta_{s} = \frac{\{1/2\} ((1/2)(m_{t} v_{f}(1 + \cos \Delta \beta_{t}) + m_{2} v_{c}(1 + \cos \beta_{2}))(1 + \cos \Delta \beta_{2}) +}{\{(1/2) ((1/2)(m_{t} v_{f}(1 + \cos \Delta \beta_{1}) + m_{2} v_{c}(1 + \cos \beta_{2}))(1 + \cos \Delta \beta_{2}) +} + \frac{m_{b} v_{c}(1 + \cos \beta_{3}) ((1 + \cos \Delta \beta_{3}) + m_{t} v_{c}(1 + \cos \beta_{4})) (1 + \cos \Delta \beta_{2}) +}{m_{b} v_{c}(1 + \cos \beta_{3}) (1 + \cos \Delta \beta_{3}) + m_{t} v_{c}(1 + \cos \beta_{4}) (\cos \beta_{4} + 2m_{t} v_{c})}$$
(11)

其中 $\Delta\beta_{J} = \beta_{J} - \beta_{4}$ 。

上面给出的是一般条件下动态角 β 的计算公式。如果问题同样简化为平行装置、各层复板质量相等($m_i = m_i = \cdots = m_i$),以及动态角 β_i ($i = 1, 2 \cdots, n$)较小,则可以看到一种近似的规律,即

第2期

 $\beta_2 \doteq (1/2)\beta_1$, $\beta_1 \doteq (1/3)\beta_1$,, $\beta_n \doteq (1/n)\beta_1$

这一计算表明:用驱动板形式传递爆炸有效能量,实现多层复合将引起动态角β,的逐层迅速衰 减,因此难以保证各层之间有均衡一致的焊接质量。所以利用驱动板原理来实现多层焊接是 不理想的。下面讨论我们设计多层复合所采用的方法。

2. 各层之间存在加速运动的多层爆炸复合的参数(层间间距或碰撞角)的计算公式

图 4 中给出了存在加速度运动的多层复合示意图。其特征是复合瞬间的复板运动姿态是 OA、AB、BC等弧线组成。和上节驱动板模型图 3,所呈现折线 AB、BC …不同。如 果考虑到加速运动,则多层爆炸复合的数学表达式是非常复杂的。现在我们利用滑移爆轰作 用下复板运动的二维近似解⁽¹⁾,并在其基础上发展多层复合的计算方法。有关该近似解的推 演过程请参看文献(1)。本文仅直接引用其方程式,即

图 4 在爆炸产物驱动下,复板运动存在加速度运动 时的多层复合示意图

$$d\sin a = \frac{\rho_0 \delta}{m} \frac{1}{1+\gamma_H} \left\{ \cos\left(\sqrt{\frac{\gamma_0 - 1}{\gamma_0 + 1}} \tan^{-1} \frac{x}{\delta}\right) - \frac{\gamma_0 - 1}{2} \frac{\Delta q}{C_H} \right\}^{\frac{2\gamma_0}{\gamma_0 - 1}} d\left(\frac{x}{\delta}\right) \quad (12)$$

式中 ρ_0 、 δ 分别表示炸药密度和厚度, m为复板面密度, a 为复板弯曲角, ν_H 、 ν_0 分别为爆轰波 头和爆炸产物的多方指数, x 为离爆轰阵面0 - 0'的水平距离。其中($\Delta q/C_H$)为

$$\frac{\Delta q}{C_{H}} = \sqrt{\frac{\gamma_{0}+1}{\gamma_{0}-1}} \left\{ 1 - \frac{2}{\gamma_{0}-1} \cos^{2} \left(\sqrt{\frac{\gamma_{0}-1}{\gamma_{0}+1}} \tan^{-1} \frac{x}{\delta} \right) \right\}^{1/2}.$$

$$\cdot \left\{ \cos\left(\tan^{-1}\left(\sqrt{\frac{\gamma_{\theta}+1}{\gamma_{\theta}-1}} \tan\left(\sqrt{\frac{\gamma_{\theta}-1}{\gamma_{\theta}+1}} \tan^{-1}\frac{x}{\delta} \right) \right) + \tan^{-1}\frac{\delta}{x} \right\} + \sin \alpha \right\}$$
(13)

表示复板的存在和弯曲运动所产生的稀疏作用所引起在 y轴向的速度增量 (1 q),和波头声

速 $C_H\left(=\frac{\gamma_H D_d}{1+\gamma_H}\right)$ 比值。

在复板上作用压力为

$$\frac{p}{p_{H}} = \left(\cos\left(\sqrt{(\gamma_{0}-1)/(\gamma_{0}+1)} \tan^{-1}\frac{x}{\delta}\right) - \frac{\gamma_{0}-1}{2} \frac{\Delta q}{C_{H}} \right)^{\frac{\gamma_{0}-1}{p_{0}-1}}$$
(14)

(12)、(14) 式原则上也适用于多层复合过程。

将坐标原点放在爆轰波头0-0'上,如图4所表示。图中h_i表示待求的各层之间距离, x_i 表示各碰撞点与爆轰波头距离。i=1,2,3,.....n。

计算过程如下

第一步,先确定第1~2两层的复合参数 h_1 、 a_1 。若已知质量比 $R_1 = \frac{\rho_0 \delta}{m_1}$ 和由1~2层 材料所决定的最佳碰撞角 $a_1 = a_1$,则通过简便的数值计算可求解方程(12),得到和 a_1 相应的 水平距离 x_i^*/δ 和最佳间隙 $y_i^*/\delta = \int_0^{x_i^*/\delta} \tan a d\left(\frac{x}{\delta}\right)$, y_i^* 即为图4中 h_1 。其方程的边界条件为: $\frac{x}{\delta}$ =0处,弯曲角a = 0。

第二步确定第2~3层复板碰撞时的最佳飞行距离 h。

第 1 ~ 2 层复板在爆炸复合后结合在一起,然后在爆炸产物驱动下加速运动,直到与第 3 层发生碰撞。显然复合板在加速过程中同样可以应用(12)~(14)式来描写,不过这时的质 量比 R₁和边界条件,有所变化。

从图 4 中可以看到在 x_i/δ 处, $1 \sim 2$ 层复合板的弯曲角 a_i 。由(7)式可知在平行装置 中($v_c = v_f$), $a_i' = \tan\left(\frac{m_i \sin a_i}{m_2 + m_i \cos a_i}\right)$,此处 a_i 在平行装置中等于 β_i 。相应的质量比 $R_2 = \frac{\rho_0 \delta}{m_i + m_i}$, 此处 m_2 表示第2层复板质量。同样根据第2~3层复板的材料性质,事先确定了相应的最佳 碰撞角 a_i 。则由(12)~(14)式不难用数值解求得相应的 x_i^2/δ 和 y_i^2/δ 。此处 y_i 就是第2~ 3层之间的最佳间隙 h_i 。

依次根据质量比 $R_i = \frac{\rho_0 \delta}{m_1 + m_2 \cdots + m_i}$ 和弯曲角 a_i (a_i 的表达式如(9)~(11)式所表示), 通过(12)~(14)式不难计算出相应间距 h_i 。

如果多层复合中各层材料相同,厚度一样,则各层之间应具有相同的碰撞角。,和相同 的波状界面的形貌,也即有均衡一致的焊接质量。为了验证我们的计算公式,进行了多层铝 的爆炸复合,最多达到十层复合。并利用脉冲X光照相以校验瞬态的实际碰撞角是否与计算 相一致,以及对比多层复合中的各层波状界面形貌是否相同。

对比结果表明,计算和实测的误差约在1°~2°左右,这为工程应用提供了一种有效的方法。

四、举 例

1. 多层铝的复合

Wylie⁽⁴⁾的试验指出: 铝-铝爆炸复合在 u = 500~970 m/s, a[°] = 14~18[°]间有良好波状

2

结合。

图 6

10层铝复合金相照片

我们采用爆速为2300 m/s, $y_{H} = 2$, $y_{0} = 1.65$ 的多孔铵油炸药,对铝进行多层复合,选用各层碰撞角均为12°,进行十层一次爆炸复合,图 5 为复合过程中的瞬态X光照片。由于前

图 5 十层铝板一次爆炸复合的瞬态脉冲X光照片 (铝板厚 1.5 mm,各层设计碰撞角a=12°)

图 7 10 层铝板一次爆炸复合时,复合运动姿态 y/δ 曲 线和压力 P/P₃~x/δ 曲线,每层 a = 12°

几层的间隙较小和X光的绕射现象,因此动态角 β 不易测量,从第8~9和第9~10这两层的照片来看,计算和实际观察到的误差约在±1°左右,也即和测量误差为同一量级。图 6 为10层(每层铝板厚1.5 mm,碰撞角 $a = 12^\circ$,最后一层置于准刚性基础上)。复合时的金相照片,图内黑色

粗线为爆炸复合界面。由于各层的碰撞角 β 较小,均为12°,因此为均匀一致的平直界面。表 1 为10层复合时的层间间距的计算值。图 7 为10层铝板一次爆炸复合的爆炸产物压力 p/ pn,~

(8)	距 		2	3	4	5	6	(8	9
间	距R(mm)	0.68	0.66	0.87	0.98	1.19	1.5	1 .92	2.73	4.37
磁	撞角a,	12.2°	12 .01°	12.09°	12 .03°	12.01°	12 .03 °	12.01°	12.00°	12.01°

x/δ 分布和运动姿态 y/δ~ x/δ 曲线的理论计算结果。不难看到每当复板层之间碰撞时(碰 撞点A、B…I)由于复板运动速度突然减慢,作用于复板背面的爆炸产物压力 p/ p_H突然上 升,其值为 AA',BB…,并随复板运动移向下游而逐渐下降。从运动姿态曲线看到在每一 碰撞点处 a≈12°。

图 8 五层铝合金 Ly12 爆炸复合, 瞬态 X 光照片 (第 3 ~ 4 层碰撞角计算值 a = 14.88°, 测量值 a = 14.5°, 第 4 ~ 5 层碰撞角计算 值 a = 15.75°, 测量值 a = 15.5°, 炸药 A NFO, ρ = 0.75 g/cm²)

图 9 五层铝复合时的波状界面金相照片, 各层碰撞角a = 14°·x = 6.5 mm (炸药为铵油,爆速2300 m/s,药厚30 mm, 铝板厚2mm,试件置于准刚性基础上)

图 8 为 a = 14°时, 5 层铝合金 Ly12 一次爆炸复合的 X 光照片。图 9 为其金相照片。由 于各层碰撞角 a 相同,板厚相同,因此可以看到从第 1 层到第 4 层的波形相当一致。第五层 复板放在准刚性基础上,对这一层复板而言,由于第 1 ~ 4 层复板所构成的"复合板"的厚 度远小于刚性基础的厚度,因此,碰撞时的a,角,由"复合板"弯曲所形成。众所周知,碰 撞角 a 相同时,界面波长和复板厚度成正比。复合板由四层复板组成,因此,其波长应大致 等于第 1 ~ 4 层复合时界面波长的 4 倍。由于基础为准刚性,所以实际上的波长约为2倍。 '表 2 为五层铝合金复合时理论计算的碰撞角an和X 光照片实测的and 对比。其偏差大约在 ±1°左右,其值与测量误差大致相同。

表 2

 层数 N	质量比 R _i	水平距离x(mm)	层间间距y(mm)	a _{it}	a 🙀						
1~2	4.16	6.5	1.0	14.4°	测不准						
2~3	2.08	10.5	1.0	12.6°	测不准						
3~4	1.387	23.5	3.0	14.88°	14.5°						
4~5	1.04	56	12.5	15.75°	15.5°						

从图 6、图 9 的复合界面的金相照片中不难看到, 当各层的碰撞角 a,相同时,焊接质量比较一致,具有 相同的平直界面和波状界面,从而表明本文采用的多 层计算方法比较合理和可靠。

2. 不同金属(或合金)的多层爆炸复合

如果需要多层的不同金属爆炸复合在一起,而且 事先已经用实验方法确定了每两层之间的最佳碰撞角 *a*_m,则同理也可以计算出相应的各层之间的最佳间距 *h*_i。

图10为不锈钢—紫铜—黄铜—紫铜—黄铜五层金 属一次爆炸复合的界面形貌。

图10 不锈钢(1) 一 紫铜(2) 一 黄铜 (3) 一 紫铜(4) 一 黄铜 五层一次 堡炸复合

多层爆炸复合也可以使不锈钢—W18Cr4V1高速钢—不锈钢,或不锈钢—65Mn(弹簧 钢)一不锈钢一次爆炸复合。各层碰撞角取12°。复合后的材料经受热锻,轧制和热处理,所 制成的刀子兼有锋利刀刃和防锈蚀的优点。

结束语

金属(或合金)的多层爆炸复合进一步扩大了以双金属复合为主要形式的爆炸复合技术 的应用范围,使金属材料的特性更为丰富多采。但复合层数增加,给用实验方法或理论计算 来确定各层焊接参数带来很大困难。本文的贡献在于提出了一种比较行之有效的理论计算模 型和数学表达公式。特别是它考虑到了多层复合过程中爆炸产物对各层复板运动的加速过程 的影响,这样使多层复合有了可能实现均匀一致的焊接质量。实验和计算对比表明其误差约 ±1°左右。

本工作得到李国豪同志、石成、欧秀芝等同志在实验中所给予的帮助和支持,有关X光照相是黄良佐、 边小兵同志拍摄的,作者对此深表感谢。

参考文献

〔1〕 邵丙璜、张登霞、李国豪、周之洪,爆炸与冲击, 5 (3)(1985),1.

(2) H. El-Sobky, Blazynski, T. Z., 7th Inter. Conf. High Energy Rate Fab. (1981), Leeds, 100.

(3) S.T.S. Al-Hassani, Salem, S.A.L., 7th Inter. Conf. High Energy Rate Fab. (1981) Leeds, 208.

(4) Wylie, H.K., 3rd Inter. Conf. Center High Energy Form. (1971) 1.3.1.

CALCULATING METHOD OF THE EXPLOSIVE CLADDING PARAMETERS OF MULTILAMINATES UNDER SLIPING DETONATION

Shao Binghuang Zhou Zhihong Li Guohao

Abstract

In this paper, a two-dimensional calculating formula of the accelerating motion of each layer under sliping detonation over multilaminates is given. According to the characteristics of metal, given an optimum collision angle β for each layer, the optimum flying distance of the corresponding layer can be calculated. The calculated results are in good agreement with the experimental even in the case of ten layers of aluminum plates. The calculated β angle of each layer is in good accord with that determined by Xray photograph.