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Abstract Nanocomposites have shown excellentmechanical and physical properties; however, their properties
are seriously affected by the nucleation of misfit defects at the interfaces between the inclusion and the matrix.
Based on the energy rule, the nucleation criteria for a misfit extended dislocation dipole (MEDD) and a
misfit screw dislocation dipole (MSDD) are analytically given. Furthermore, we systematically investigate the
effects of the geometrical and mechanical factors, such as the radius of the inclusion, the misfit strain, the
shear modulus ratio and the stacking fault energy, on the competitive nucleation between MEDD and MSDD.
It is found that the stacking fault energy has a decisive effect on the competitive nucleation of MEDD and
MSDD. The critical stacking fault energy for the nucleation transferring fromMSDD toMEDD increases with
the increase of the shear modulus ratio and decrease of the misfit strain, while it is almost not affected by the
inclusion radius.

1 Introduction

Nanocomposites have been widely studied and used due to their excellent mechanical and physical properties
[1,2]. Meanwhile, their microstructure can be manipulated by adjusting the characteristics of the inclusion and
matrix to optimize their performance. However, the misfit stress, which results from the misfit of the crystal
lattices between the inclusion and matrix, seriously influences the properties of the nanocomposites. The misfit
stress can be partially relaxed by the formation of misfit defects at the phase interfaces [3–9]. Thus, it is desired
to understand the mechanism and the critical condition for the nucleation of misfit defects.

The nucleated misfit dislocations usually act as the source for the initiation of damage and crack. A lot of
researches have focused on the nucleation of various dislocation configurations at or near phase boundary in
different materials, such as misfit dislocations and misfit dislocation dipole in nanowires composites [10–14],
misfit dislocation loop in nanocomposites with dilatational inclusions as quantum dots or wires [15] and misfit
dislocation dipole in core/shell nanowires [8,16]. Generally, the interface is treated as perfect and classical
theory of elasticity is employed in the aforementioned publications. In recent years, it has been claimed that
the surface/interface effects also played a role if the inclusion size is on the order of nanometer and the
interface-to-bulk ratio is significant [17–20] or the interface is imperfect [21–26]; great effort has been made
by researchers to tackle this kind of problemswith the Gurtin–Murdochmodel (namely, surface/interface stress
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model) [27–33]. For conducting a systematic research, the interface effect will be considered in the subsequent
work, and in this paper, a perfect interface is employed to make the first effort.

Theoretically, the dislocations can exist as extended dislocations (or partial dislocations) in materials
according to Frank’s energy criterion [34]. In nanocomposites, it has also been experimentally observed that
once a full misfit dislocation is formed, it would dissociate into two partials which then split further from each
other to form a stacking fault (SF) [9]. The formed stacking faults can easily rearrange to nucleate embryonic
twins; then, these nuclei may coalesce to form twins during further deformation. Introducing nanoscale twins
into the material is a sophisticated strengthening method, which can improve the strength without compromis-
ing ductility [35–38]. Thus, twins in nanocomposites will not only release the stress concentration, but also
accommodate further deformation and thus enhance the strength and ductility of the nanocomposites [9]. The
desired microstructure of twin is easier to form in materials with lower SF energy, where a wider SF ribbon
required to connect the two dissociated partial dislocations may eventually trigger the nucleation of twin [39].
Therefore, it is very important to understand the nucleation mechanism of extended dislocations in nanocom-
posites. However, comparing to the great effort for the nucleation of misfit dislocations in nanocomposites,
the misfit dislocations nucleated as partial dislocations in nanocomposites were rarely reported [7,9,40].

In nanocrystalline materials, it has been found that there is a competition between the nucleation of full
and partial dislocations (related to SF) [41,42]. However, there is no comprehensive study to reveal such
competition in nanocomposites. Considering the fact that the nucleation of these two different kinds of defects
could lead to contrary effect on the mechanical performance of materials, in this paper, we devote to investigate
the competition mechanism for the energetically favorable nucleation of these two defects, which accompanies
the relaxation of misfit stress due to the lattice misfit between the inclusion and the matrix with classical theory
of elasticity. For the purpose of illustrating the main features of the nucleation of misfit dislocation dipole due
to themisfit strain at the interface, and of avoiding the complicatedmathematical description, screw dislocation
dipole is chosen to be investigated here. Specifically, the influences of some parameters, such as the radius of
the inclusion, the misfit strain, the shear modulus ratio of the inclusion to the matrix and the SF energy on the
competitive nucleation of these two defects, are investigated in detail.

The paper is organized as follows: Firstly, the nucleation of an MSDD is reviewed. Then, the energetically
favorable nucleation criterion of anMEDD and the related equilibrium separation of the SF ribbon are studied,
accompanying the systematically analysis of the influence of the material parameters. Finally, we discuss the
competitive nucleation between the MEDD and MSDD.

2 Nucleation of a MSDD

It has been revealed that the nucleation of misfit dislocation dipoles is more favorable than misfit dislocations
because the energy barrier for nucleating a misfit dislocation dipole is lower in wire composites [16]. The
specifically analyzed nanocomposite is idealized as an infinite matrix containing a buried strained cylindrical
inclusion for simplification, which can be treated as a two-dimensional problem. Generally, the dislocation
should nucleate at preferred location where the whole energy of the system is at its minimum. However,
considering the fact that preferred location of the MEDD discussed below will be affected by two nonlinear
coupled parameters, i.e., the distance of the MEDD from the interface and the separation of the two extended
partials, brings great challenge for computation. Thus, the investigated configuration is simplified for anMSDD
with its two constituents located at the phase interface x = R and x ′ = −R, where R is the radius of the
inclusion, as shown in Fig. 1. Future work will focus on the real situation of dislocation with preferred location
and then compare with the results in this paper. The misfit dislocation lines and their Burgers vectors are
parallel with the axis of the cylindrical inclusion (z-axis). For the material with a face-centered cubic (FCC)
structure, the Burgers vectors are chosen as b = b/

√
2[1 1̄ 0] and b′ = −b/

√
2[1 1̄ 0] for the nucleated dipole,

where b is the magnitude of the Burgers vector.
Starting from a status where the investigated configuration is free of dislocations, the nucleation of misfit

dislocation dipole will incur energy variation. If the total energy variation �WMSDD due to the generation of
the misfit dislocation dipole is negative, the nucleation process is energetically favorable and allowed, such
criterion to be expressed as [16]

�WMSDD = Wd + Wm ≤ 0, (1)

where Wd denotes the elastic energy of the MSDD per its unit length in the inclusion–matrix configuration,
which is the energy barrier needed to be overcome for the nucleation;Wm is the energy arising from the elastic
interaction between the MSDD and the misfit stress, which provides the driving force for the nucleation.
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Fig. 1 MSDD at the interface between an inclusion and an infinite matrix

The final normalized nucleation energy for the MSDD is given as [13]

�W ∗
MSDD = �WMSDD

μmb2/2π
= ln

2R + r0
r0

+ α − 1

α + 1
ln

R (R + r0) + R2

R (R + r0) − R2 − 8πaεmR2

b (a + 1)

1

R + r0
, (2)

where r0 is the dislocation core radius, εm is the misfit strain which was treated as eigenstrain (uniform shear
strain) in evaluating Wm [43], and α = μi/μm characterizes the relative shear modulus of the inclusion and
the matrix.

3 Nucleation of a MEDD

According to the Frank’s energy criterion [34], a full dislocation often dissociates into two partial dislocations
connected through an SF ribbon if such dissociation is a process of energy decrease. Analyzing through the
construction of the Thompson tetrahedron [34], the full screw dislocation dipole discussed above with Burgers
vectors of b and b′ is further split as

b → b1 + b2,

b√
2

[
1 1̄ 0

] →
√
2b

6
[2 1̄ 1] +

√
2b

6
[1 2̄ 1̄], (3)

with b1 as the leading partial dislocation and b2 as the trailing partial dislocation and

b′ → b3 + b4,

− b√
2

[
1 1̄ 0

] → −
√
2b

6
[1 2̄ 1̄] −

√
2b

6
[2 1̄ 1], (4)

with b3 as the trailing partial dislocation and b4 as the leading partial dislocation. As mentioned in part 2,
for strong nonlinear coupling among the parameters to be studied in the following, the analyzed MEDD
configuration containing the four partials above is simplified with its trialling partials at the interface and
leading partials in the matrix for a buried strained nanoscale inclusion within the matrix, as schematically
shown in Fig. 2, and the two partials are connected through an SF ribbon with a width of p. Specifically, the
leading partial dislocation b1 and trailing partial dislocation b2 are located at x1 = R + p and x2 = R, while
the symmetrical distribution of trailing partial dislocation b3 and leading partial dislocation b4 are located at
x3 = −R, x4 = − (R + p), respectively.

A more specific illustration of the decomposition of the full screw dislocation located at the phase interface
x = R is given in Fig. 3a, while the full screw dislocation located at the phase interface x = −R decomposes
in a similar and symmetrical process. The dissociated partial dislocations are all mixed dislocations with the
line directions and Burgers vectors neither perpendicular nor parallel, i.e., they consist of both screw and edge
characters. Since the problem regarding mixed partial dislocations can be solved as a superposition of plane
strain problem for edge character and anti-plane strain problem for screw character, the partial dislocations
are further decomposed into edge and screw parts along the x([1 1 2]) and z([1 1̄ 0]) axes, respectively, as
shown in Fig. 3b. In the configuration considered here, the Burgers vector components of the four partial
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Fig. 2 MEDD near the inclusion within an infinite matrix

Fig. 3 a The decomposition of a screw dislocation into two partials, b the partials decomposed again into screw and edge parts

dislocations meet the relationships that b1e = −b2e = b3e = −b4e and b1s = b2s = −b3s = −b4s, where
bne (n = 1, 2, 3, 4) are the edge components and bns (n = 1, 2, 3, 4) are the screw components.

Different from the criterion for the formation of an MSDD, the criterion for the nucleation of an MEDD is

�WMEDD = Wd + Wm + Ws ≤ 0, (5)

where�WMEDD denotes the total energy variation due to the nucleation of the MEDD, which consists of three
contributions, i.e., Wd representing the elastic energy of the MEDD per its unit length, Wm representing the
elastic energy due to the interaction between the misfit stress and the MEDD, and the SF energy Ws. For an
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MEDD to be nucleated, the driving energy coming from Wm should overcome the energy barriers coming
from Wd and Ws.

It is noted that there is no interaction energy between the screw and edge dislocations since their dislocation
lines are parallel to each other; thus, the elastic energy of a mixed dislocation can be treated as a simple
summation of the screw and edge parts. Specifically, Wd is further divided into the edge part Wde and screw
part Wds, i.e.,

Wd = Wde + Wds. (6)

In the configuration of MEDD, Wde is expressed as [34],

Wde = b1e
2

∫ N

x1+r0
σxy(x, 0) dx − b2e

2

∫ N

x2+r0
σxy(x, 0) dx

+ b3e
2

∫ −N

x3−r0
σxy(x, 0) dx − b4e

2

∫ −N

x4−r0
σxy(x, 0) dx, (7)

where N characterizes the material size and is taken to be N → ∞ to represent the infinite matrix, and bne =
b cos 60◦/

√
3 is the magnitude of bne (n = 1, 2, 3, 4). The stress component σxy(x, 0) = ∑4

n=1 σxyn(x, 0)
comprises the contributions from the edge part of the four partial dislocations, which is calculated as [44,45]

σxyn(x, 0) = μmb (−1)n+1

2
√
3π (κm + 1)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2 1
x−xn

− (A + B)
xn

xxn−R2

−2A β2
n−1
β3
n

(
1 − β2

n−1
βn

R

x− R2
xn

)
R(

x− R2
xn

)2

+ (B − A) 1
βn

R
x2

+ (A + B) 1
x − 2A R2

x3

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

, (8)

where A = (1 − α)/(1 + ακm), B = (κi − ακm)/(κi + α), βn = xn/R (n = 1, 2, 3, 4), and κ is taken to
be 3 − 4ν for plane strain. The elastic energy of the screw components can be expressed as

Wds = b1s
2

∫ N

x1+r0
σyz dx + b2s

2

∫ N

x2+r0
σyz dx

− b3s
2

∫ −N

x3−r0
σyz dx − b4s

2

∫ −N

x4−r0
σyz dx, (9)

where bns = b cos 30◦/
√
3 is the magnitude of bns (n = 1, 2, 3, 4), and the stress component σyz(x, 0) =

∑4
n=1 σyzn(x, 0) comprises the contributions from the screw part of the four partial dislocations, which is

calculated as [46]

σyzn(x, 0) = λ

(
μmb

4π

1

x − xn
+ kμmbR2

4π

1

x(xnx − R2)

)
, (10)

with λ = 1 for n = 1, 2 and λ = −1 for n = 3, 4.
The elastic energy due to the interaction between the misfit stress and the MEDD can also be divided into

the edge part Wme and screw part Wms
Wm = Wme + Wms. (11)

For the edge part,

Wme = −b1e

∫ N

x1+r0
σxym(x, 0) dx + b2e

∫ N

x2+r0
σxym(x, 0) dx

− b3e

∫ −N

x3−r0
σxym(x, 0) dx + b4e

∫ −N

x4−r0
σxym(x, 0) dx, (12)

which is omitted since the misfit stress component σxym(x, 0) is equal to zero for the current plane problem
of a buried strained cylindrical inclusion within the infinite matrix [14,16], while for the screw part,

Wms = −b1s

∫ N

x1+r0
σyzm(x, 0) dx − b2s

∫ N

x2+r0
σyzm(x, 0) dx
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+ b3s

∫ −N

x3−r0
σyzm(x, 0) dx + b4s

∫ −N

x4−r0
σyzm(x, 0) dx, (13)

the misfit stress σyzm(x, 0) is calculated from the complex potential method as [13]

σyzm(x, 0) = 2μiμmεm

μi + μm

R2

x2
. (14)

The energy of the SF ribbon is
Ws = γ s = γ p, (15)

where γ is the intrinsic SF energy per unit area and s is the area of the SF ribbon and equal to the ribbon width
for the considered dislocation lines of unit length.

Combining the three parts of energy contribution calculated from Eqs. (6), (11) and (15) into the nucleation
energy�WMEDD of theMEDDshown inEq. (5), and normalizing the nucleation energy�WMEDD byμmb2/2π
similar to the normalized treatment in Eq. (2), the nucleation criterion for the MEDD is finally given as

�W ′
MEDD = �WMEDD

μmb2/2π

=
4∑

n=1

(−1)n

12π (κm + 1)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 ln (xn+r0−x1)(xn+r0−x3)
(xn+r0−x2)(xn+r0−x4)

− (A + B) ln
(
x1(xn+r0)−R2)(x3(xn+r0)−R2)

(x2(xn+r0)−R2)(x4(xn+r0)−R2)

+2AR
4∑

j=1

β2
j −1

(−1) jβ3
j

x j
x j (xn+r0)−R2

−AR2
4∑

j=1

(
β2
j −1

)2

(−1) jβ4
j

x2j

(x j (xn+r0)−R2)
2

− (B − A)
(

1
β1

− 1
β2

+ 1
β3

− 1
β4

)
R

xn+r0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

− k

4
ln

(
R2 − (x2 + r0) x1

) (
R2 − (x2 + r0) x2

)

(
R2 − (x2 + r0) x3

) (
R2 − (x2 + r0) x4

)

+ 1

8
ln

(x2 + r0 − x1) (x2 + r0 − x2)

(x2 + r0 − x3) (x2 + r0 − x4)

(x3 − r0 − x1) (x3 − r0 − x2)

(x3 − r0 − x3) (x3 − r0 − x4)

Fig. 4 Nucleation energy for MEDD �W ′
MEDD as a function of the separation p with various inclusion radius R for α = 5, γ ∗ =

0.1, εm = 0.005, νi = νm = 0.3 and r0 = 0.5b
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− 1

4
ln

(x1 + r0 − x1) (x1 + r0 − x2)

(x1 + r0 − x3) (x1 + r0 − x4)

− k

4
ln

(
R2 − (x1 + r0) x1

) (
R2 − (x1 + r0) x2

)

(
R2 − (x1 + r0) x3

) (
R2 − (x1 + r0) x4

)

− 2πμiεmR2

b (μi + μm)

(
1

x1 + r0
+ 1

x2 + r0
− 1

x3 − r0
− 1

x4 − r0

)
+ γ ∗ p

b
≤ 0, (16)

where γ ∗ = γ /(μmb/2π) represents reduced SF energy.
For the energetically favorable nucleation of an MEDD, there is an equilibrium separation of the SF ribbon

peq, which results in a minimum nucleation energy. TheMEDDwith SF ribbon of such width is most preferred
to nucleate. Therefore, to obtain the equilibrium separation of the SF ribbon which minimizes the nucleation
energy, the relationship between the nucleation energy�W ′

MEDD and the SF ribbon width p is plotted in Fig. 4
for νi = νm = 0.3, r0 = 0.5b, α = 5, γ ∗ = 0.1, εm = 0.005, and R = 20b, 40b, 60b, respectively.

It is shown in all the three lines that �W ′
MEDD decreases firstly and then increases with the increase of p,

i.e., there is a saddle point when p = peq, at which �W ′
MEDD approaches its minimum value. More studies

a

b

Fig. 5 a Equilibrium separation peq/b versus the radius of the inclusion R/b and b nucleation energy for MEDD �W ∗
MEDD

versus the radius of the inclusion R/b, with various misfit strains εm for α = 5, γ ∗ = 0.1, νi = νm = 0.3 and r0 = 0.5b
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on the relationship between �W ′
MEDD and p with different parameter combinations also give similar curves

as shown in Fig. 4; thus, no more tautology is here. Therefore, the equilibrium separation peq of the extended
dislocations, reflecting the nucleation site of the leading partials, can be obtained by minimizing the nucleation
energy �W ′

MEDD (which is also adopted in [42])

∂�W ′
MEDD

∂p
= 0. (17)

Substituting p by peq in Eq. (17) gives the final form of the minimum energy for the MEDD to be nucleated,
denoted by �W ∗

MEDD. It should be noted that the MEDD with SF ribbon width of peq cannot always nucleate
if the minimum energy �W ∗

MEDD is still positive, which means that the energy barrier for nucleation cannot
be overcome. According to this rule, it is difficult for MEDD to nucleate spontaneously in nanocomposites
with inclusion size of 20b and νi = νm = 0.3, r0 = 0.5b, α = 5, γ ∗ = 0.1, εm = 0.005, while the nucleation
criterion is met for R = 40b and R = 60b.

It is evident that both the equilibrium separation peq of the extended dislocations and the correspond-
ing nucleation energy �W ∗

MEDD are related to the inclusion radius R, the misfit strain εm, the relative shear
modulus of the inclusion to the matrix α = μi/μm and the reduced SF energy per unit area γ ∗. How-
ever, such relationship cannot be explicitly obtained due to the strong nonlinear coupling among the above-

a

b

Fig. 6 a Equilibrium separation peq/b versus the radius of the inclusion R/b and b nucleation energy for MEDD �W ∗
MEDD

versus the radius of the inclusion R/b, with various α for εm = 0.005, γ ∗ = 0.1, νi = νm = 0.3 and r0 = 0.5b
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mentioned factors. Thus, the effects of these factors on the nucleation of MEDD will be numerically investi-
gated.

Figure 5a is plotted as the equilibrium separation peq/b versus the inclusion radius R/b and Fig. 5b is
plotted as the nucleation energy �W ∗

MEDD versus the inclusion radius R/b with various εm both for α =
5, γ ∗ = 0.1, νi = νm = 0.3 and r0 = 0.5b to investigate the influence of the misfit strain. From Fig. 5a it is
found that when other parameters are fixed, the equilibrium separation peq of the extended dislocations which
minimizes the nucleation energy increases with the increase of the inclusion radius R/b. Furthermore, as R/b
approaches about 30, peq tends to be saturated and will not increase any more with further increase of R/b.
Figure 5a also shows that lower misfit strain will lead to wider equilibrium separation peq. However, from
Fig. 5b we can see that the nucleation condition is satisfied only when the inclusion radius reaches a critical
value Rc. If the inclusion size is smaller than Rc, the nucleation energy �W ∗

MEDD is positive, and the MEDD
cannot nucleate spontaneously, which is consistent with the finding in Fig. 4. Thus, the equilibrium separation
peq minimizing the nucleation energy is not always the real SF ribbon width of the nucleated MEDD; the parts
of peq are shown in Fig. 5a with dot lines. Moreover, the higher εm is, the easier for the MEDD to be nucleated,
as shown in Fig. 5b, indicating that the misfit strain should be high enough for the MEDD to be nucleated,
which is in agreement with the earlier conclusion for a MSDD [13].

a

b

Fig. 7 a Equilibrium separation peq/b versus the radius of the inclusion R/b and b nucleation energy for MEDD �W ∗
MEDD

versus the radius of the inclusion R/b, with various γ ∗ for εm = 0.005, α = 5, νi = νm = 0.3 and r0 = 0.5b
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The influence of the relative shear modulus of the inclusion to the matrix α = μi/μm on the nucle-
ation of the MEDD is shown in Fig. 6. Figure 6a is plotted as peq/b − R/b and Fig. 6b is plotted as
�W ∗

MEDD − R/b with various α for εm = 0.005, γ ∗ = 0.1, νi = νm = 0.3 and r0 = 0.5b. Figure
6a shows a similar tendency as Fig. 5a, i.e., the equilibrium separation peq increases with the increase of
R/b and will be saturated when R/b ≈ 30; higher shear modulus ratio leads to wider peq. In Fig. 6b, it
is shown that the critical inclusion radius Rc decreases with the increase of the ratio of the shear modulus
α = μi/μm.

The relationships of peq/b− R/b and �W ∗
MEDD − R/b are plotted in Fig. 7a, b, respectively, with various

γ ∗ for α = 5, εm = 0.005 and νi = νm = 0.3. Figure 7a also shows the tendency that peq increases with the
increase of R/b until it reaches a saturation value at R/b ≈ 30, except for that of γ ∗ = 0.01, where a little
decline occurs after peq reaching the maximum. There also are some peq that are spurious for the MEDD to
be nucleated, shown as dot lines in Fig. 7a. Moreover, lower γ ∗ leads to wider peq, which is also in agreement
with the earlier statement [39]. In Fig. 7b, the critical inclusion radius Rc increases with the increase of the
reduced SF energy per unit area, indicating that it is easier for the material with lower SF energy to nucleate
MEDD.

a

b

Fig. 8 a Nucleation energy for MEDD or MSDD �W ∗ versus the radius of the inclusion R/b with various εm for α = 5, γ ∗ =
0.1, νi = νm = 0.3, and r0 = 0.5b; b nucleation energy for MEDD or MSDD �W ∗ versus the radius of the inclusion R/b with
various α for εm = 0.005, γ ∗ = 0.1, νi = νm = 0.3 and r0 = 0.5b
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In conclusion, it is found that once the nucleation criterion for the MEDD is satisfied, lower misfit strain
and intrinsic SF energy lead to wider peq, while higher shear modulus ratio leads to wider peq. Inspired by these
findings, the preferred nucleation of a wider SF width, which may eventually trigger the form of embryonic
twins serving as the potential strengtheningmechanism for nanocomposites, can be achieved through increasing
the inclusion radius and shear modulus ratio while lowering the SF energy and misfit strain.

4 The competitive nucleation between the MEDD and MSDD

In former sections, we have discussed the nucleation of two different defect configurations—MSDD and
MEDD in nanocomposites. It is noted that these two different kinds of defects could lead to contrary material
properties; therefore, it is necessary to investigate the competition between these two nucleation possibilities.

Misfit strain and modulus difference are the sources of the nucleation of the defects at the interface of
nanocomposites. Figure 8a, b is plotted as the nucleation energy of both the MEDD and MSDD versus the
inclusion radius R/b with various misfit strain εm and shear modulus ratio α, respectively, to investigate the
influence of these two parameters on the competitive nucleation relationship. Both of the two plots show that
with the parameters selected, the MEDD is easier to nucleate than the MSDD. It is noted that the nucleation
energy for MEDD �W ∗

MEDD increases with the further increase of SF energy γ ∗. Thus, the MSDD could be
easier to nucleate than MEDD if γ ∗ is larger than the specified value of γ ∗ = 0.1. This indicates that there
is a critical reduced SF energy γ ∗

c at which the preferred nucleation mechanism will transfer from MEDD to
MSDD. It is suspected that γ ∗

c could be affected by the misfit strain εm, shear modulus ratio α and inclusion
radius R; such influences will be systematically investigated in the following.

Misfit strain εm is the dominant source for the nucleation of defects, and its effect on the transition
of nucleation is investigated through the plot in Fig. 9, where the relationship between �W ∗ and γ ∗ is
shown with three different misfit strains εm = 0.005, 0.0075 and 0.01, while other parameters are taken as
α = 5, R = 100b, νi = νm = 0.3 and r0 = 0.5b. It is found that the nucleation energy for MEDD �W ∗

MEDD
increases nonlinearly with the increase of γ ∗ due to the influence of γ ∗ on the equilibrium ribbon width peq,
which also affects the nucleation energy.Moreover,�W ∗

MEDD has an intersection with the nucleation energy of
theMSDD�W ∗

D at a critical value γ ∗
c . Beyond this value,�W ∗

MEDD ≥ �W ∗
MSDD; thus, theMSDD is preferred

to nucleate, while the MEDD is easier to nucleate when γ ∗ < γ ∗
c . It is also found that γ ∗

c decreases slightly
with the increase of the misfit strain εm, indicating that lower εm will stimulate the nucleation transferring
from MSDD to MEDD for the matrix with specific stack fault energy (γ ∗ ≈ 0.6 for the investigated case
here).

The influence of the shear modulus ratio α is shown in Fig. 10 as �W ∗ − γ ∗ with three different shear
modulus ratios α = 5, 7.5 and 10 for εm = 0.005, R = 100b, νi = νm = 0.3 and r0 = 0.5b. The effect of

Fig. 9 Nucleation energy for MEDD or MSDD �W ∗ versus the stacking fault energy γ ∗ with various εm for α = 5, R =
100b, νi = νm = 0.3 and r0 = 0.5b
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Fig. 10 Nucleation energy for MEDD or MSDD �W ∗ versus the stacking fault energy γ ∗ with various α for εm = 0.005, R =
100b, νi = νm = 0.3 and r0 = 0.5b

Fig. 11 Nucleation energy for MEDD or MSDD �W ∗ versus the stacking fault energy γ ∗ with various R for εm = 0.005, α =
5, νi = νm = 0.3 and r0 = 0.5b

γ ∗ is similar to the results shown in Fig. 9. Moreover, γ ∗
c decreases slightly with the decrease of α, indicating

that larger shear modulus ratio is preferred for nucleation transformation from MSDD to MEDD for matrix
with specific stack fault energy (γ ∗ ≈ 0.7 for the investigated case here).

The variation in the nucleation energy versus the reduced SF energy is depicted in Fig. 11 at different
values of inclusion radius R = 100b, 150b and 200b for εm = 0.005, α = 5, νi = νm = 0.3 and r0 = 0.5b.
Similar intersection between the nucleation energy of the MEDD and MSDD is presented as shown in Figs. 9
and 10. The result also indicates that the critical value γ ∗

c for the transition between MEDD and MSDD is
almost not affected by R.

Therefore, conclusion can be given from Figs. 9, 10 and 11 that the reduced SF energy γ ∗ determines the
preferred nucleation between MSDD and MEDD, and the MEDD can nucleate more easily in the materials
with lower intrinsic SF energy; the misfit strain εm and the shear modulus ratio α will affect the competitive
nucleation between MEDD and MSDD for the matrix with specific stack fault energy, while inclusion radius
R has negligible effect on the competitive nucleation.
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5 Conclusion

Similar to the nucleation ofMSDD at the interface of nanocomposites, the nucleation ofMEDD is energetically
favorable when the inclusion radius approaches a critical value. The critical radius for the nucleation of
MEDD decreases with the increase of misfit strain and shear modulus ratio, while with the decreased SF
energy. Furthermore, the equilibrium SF width of the nucleated MEDD increases with the increase of radius
of inclusion and is wider for nanocomposites with lower misfit strain, higher shear modulus ratio and lower SF
energy. The intrinsic SF energy is the dominant factor affecting the competitive nucleation between MEDD
and MSDD, and MEDD is more preferable to nucleate for the matrix with lower SF energy. The critical SF
energy for the nucleation transferring fromMSDD to MEDD increases with the increase of the shear modulus
ratio and decrease of the misfit strain, while it is almost not affected by the inclusion radius. Nevertheless, as
mentioned above, the surface/interface effect and preferred dislocation location should also be considered for
approximating the real situation. Further research will take this into account and focus on the comparison of
the analysis displayed in this paper with some novel experiments. Moreover, other dislocation configurations
such as edge dislocation will also be studied in the future to systematize this work.
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