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ABSTRACT 

Dissolutive wetting, i.e. dynamic wetting of a liquid droplet on dissolvable substrates, has been 

studied by molecular dynamics simulations. In dissolutive wetting, geometry and properties of 

the solid-liquid interface evolve with the solid dissolving into the droplet, meanwhile the droplet 

spreads on the receding solid surfaces. The droplets advance on dissolvable substrate following 

different dynamic laws, compared with spreading on non-dissolutive substrate. Based on 

molecular kinetic theory, we develop a theoretical model to reveal physical mechanisms behind 

the dissolutive wetting phenomena. We also find that solid particles are pulled by their hydration 

shells to dissolve into liquid, changing the flow field, the atomic structure and the hydrogen bond 

network in the droplet. Our findings may help to comprehend the dynamics of dissolutive 

wetting and assist future design in practical applications. 

 

KEYWORDS 

Wetting, Dissolution, Solid-liquid interface, Molecular dynamics 
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INTRODUCTION 

Dissolutive wetting, i.e. dynamic wetting of liquids on dissolvable solid surfaces, is a subject 

of significant interest in a broad class of natural and industrial processes, such as weathering of 

materials,1-2 alloy formation,3-5 erosion,6-8 drug release,9-11 biomedicine,12-13 self-propelling,14-16 

amongst other.17-18 To utilize dissolutive wetting in practical applications, the researchers have 

made efforts to explore and comprehend the dynamic dissolving behaviors.3, 12, 19-21 Recently, the 

very interesting works of utilizing the combination of “dissolvable wetting” and “coffee ring” to 

form surface structures have been approached experimentally.22-23 However, owing to the 

complexity of the coupling between the dissolution and the fluid flow, dynamics of dissolutive 

wetting is still far from being well understood. 

 

 

Figure 1. Illustrations of (a) the initial state of a droplet with radius of Ri on a solid, (b) non-

dissolutive wetting, and (c) dissolutive wetting. R, H and θ are the instant radius, height and 

contact angle, respectively. The subscript u and l represent upper and lower, respectively. LVγ , 

SVγ  and SLγ  are the liquid-vapor, solid-vapor and solid-liquid interface energies, respectively. G 

is the dissolving energy, which is perpendicular to the solid-liquid interface. 
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Wetting dynamics of liquids on inert solids has been well studied (Figure 1b).24-25 The liquid 

behaviors are governed by balance between driving energies (interface energies, gravity, electric 

field, etc.) and energy dissipation (viscous resistance, molecular friction, inertia, etc.) in the 

vicinity of the triple phase region.26-28 Dynamic properties of a wetting system could be 

characterized by the scaling exponent n, with spreading radius nR t∝  , where t is the spreading 

time.24 For examples: when driving force is surface tension and viscous resistance dissipates, 

n=1/10, known as Tanner’s law;29 surface tension versus molecular friction (see Theoretical 

Analysis - Molecular kinetic theory) leads to n=1/7;30 n varies from 0 to about 0.25 according to 

the electric field in electrowetting.26 However, scaling laws of dissolutive wetting, i.e. the 

general dynamic properties, are far from well understood. 

In dissolutive wetting (Figure 1c), controlled by dissolving and interface energies,31 the solid 

dissolves into the interface liquid and diffuses towards the bulk liquid, changing the liquid and 

interface properties, i.e. viscosity, interface energies and etc. In the meantime, geometry of the 

solid-liquid interface evolves and the droplet spreads on the receding solid surface. In order to 

apply dissolutive wetting in the application fields of energy, health, geology, etc., understandings 

of dynamics of dissolutive wetting are necessary.11 

In this article, dynamics of droplets on dissolvable solid surfaces has been studied using 

molecular dynamics (MD) simulations. Driven by the interface and dissolving energies, liquid 

with evolving properties advanced on receding solid boundary. Based on molecular kinetic 

theory (MKT), we analyzed the dynamics and the physical mechanisms in the wetting processes. 

Then, the details, i.e. hydration, flow field, pair distribution function (PDF), hydrogen bonds and 

etc., are revealed at the atomic level. Our findings may expand our knowledge of dynamics of 

dissolutive wetting and assist the future design in practical applications. 
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METHODOLOGY 

Large-scale MD simulations are carried out to explore dissolutive wettings using LAMMPS.32 

The simulation domain is illustrated in Figure 1: a liquid droplet with initial radius Ri of 3 nm is 

placed on a smooth solid surface in a simulation box of 25*25*25 nm3. The liquid is modeled as 

extended simple point charge (SPC/E) water with viscosity η =0.729 mPa·s,33 density ρ =994 

kg/m,3 surface tension LVγ =0.0636 N/m 34 close to those of real water at 300 K and 1 bar. In the 

SPC/E water model, the oxygen atoms were modeled as charged Lennard-Jones (LJ) particles 

(σO-O= 0.3166 nm, εO-O= 0.650 kJ/mol, qO= -0.8476 e), while the hydrogen atoms were charged 

but without considering LJ interactions between them (σH-H= 0.0 nm, εH-H= 0.0 kJ/mol, qH= 

0.4238 e). The total potential energy Eij between two atoms i and j separated by rij is the sum of 

LJ potential energy and Coulombic pairwise interaction: 

( ) ( )12 6

X-Y X-Y X Y4 +ij ij ij ij e ijE r r k q q rε σ σ = −  
, where ε is the depth of the LJ potential well, 

and σ the zero-crossing distance for the potential, the subscripts X and Y represent the types of 

atoms. The solid particles are set to be uncharged LJ particles with with σSS = 0.264 nm and σSL 

= 0.29 nm. The solid-liquid interaction SLε  is fixed to make the solid hydrophilic to the liquid 

with an equilibrium contact angle be about 70°. The NVT ensemble (constant number of atoms 

N, volume V and temperature T) is used. The Nosé-Hoover thermostat with a time-step of 1 fs is 

employed to regulate the temperature at 300 K. The evaporated water molecules quickly saturate 

the simulation domain, so the evaporation effect could be ignored. The instant configurations are 

recorded every 0.1 ns.  

If the substrate is non-dissolvable, the droplet spreads on a smooth solid surface (Figure 1b). If 

the substrate is dissolvable, the liquid spreads and erodes the solid surface, whilst the solid 

dissolves into the liquid (Figure 1c). The liquid above and below the solid surface are roughly 
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two spherical caps. So, we used two arcs with different radius to fit the cross-section of droplet. 

In this way, geometric parameters could be defined and obtained (figure 1c), which describe the 

tendency of the change of the interface shape. 

Follow the Noyes-Whitney equation,35 which describes kinetic law of dissolution, and 

previous works of de Gennes,36 we define a normalized quantity φ : φ =0 represents dissolution 

does not happen; φ =1 represents dissolution is saturated. The exponential relaxation towards 

equilibrium is ( )= 1 cd dt tφ φ− , which leads to ( )=1 exp ct tφ − − , where the characteristic time 

2
c et L D= , L the characteristic length and De the diffusion coefficient. In our cases, L=Ri, 

therefore tc~5 ns. 

For a solid particle at the solid-liquid interface, it feels attractions from both the surrounding 

liquid molecules and solid particles. If the total attraction force from the liquid is smaller than 

that from the solid, this solid particle is inert. If the total attraction force from the liquid is larger 

than that from the solid, this solid particle dissolves into liquid. These attraction forces from the 

liquid and solid depend on SLε  and SSε , respectively. Since the solid-liquid (SL) interaction SLε  

is fixed, dissolubility of the solid is controlled by the solid-solid interaction = SS SLε ε ε . When 

ε ≫1, the solid is non-dissolutive; when ε ~1, the solid is dissolutive. The smaller ε  is, the 

higher the solid dissolubility is. 

When changes of temperature T and pressure P could be neglected (just like cases in our 

simulations), the dissolving energy equals to chemical potential per unit area, i.e. variation of 

Gibbs free energy per unit area when one solid particle dissolves into the liquid. So, the unit of G 

is J/m^2. 
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SIMULATION RESULTS 

 

Figure 2. The processes of dissolutive wetting with (a) ε=0.48, (b) ε=0.65 and (c) ε=0.81. 

 

We simulate the wetting processes of the droplet on solid surfaces with different dissolubility. 

When ε =0.81 (Figure 2c), the solid-liquid interactions slightly overcome the solid-solid 

interactions, few solid particles dissolve into liquid. When ε =0.65 (Figure 2b), the spreading 

speed is slower than that in Figure 2c, because part of the driving work is dissipated to erode the 

solid and to form the lower spherical cap. When ε =0.48 (Figure 2a), the solid-liquid interactions 

exceed twice of the solid-solid interactions, the solid dissolve in water very fast and liquid sinks 

into solid. Because each figure in figure 2 is a snapshot of transient moment, fluctuations on the 

interfaces were caused by thermal fluctuations, which would eliminate when statistically 

averaged in long period. Then, the geometric parameters are measured and shown in Figures 3a 

and 4. The spreading velocity shown in Figure 3b derived from Figure 3a, and the Savitzky–

Golay method 37 has been used to filter the thermal fluctuations. 
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Figure 3. Evolution of (a) radius (log-log plot) and (b) spreading velocity of droplets in MD 

simulations of wetting on solids with different dissolubility. Black dash-dot and red dashed lines 

respectively represent scaling laws of r ~ τ1/7 and r ~ τ1/10 in (a). 

 

Figure 4. Liquid shape with respect to time in MD simulations (log-log plot). (a) height h, (b) 

upper height hu, (c) lower height hl, (d) contact angle θ, (e) upper contact angle θu, and (f) lower 

contact angle θl. The black dash-dot and red dashed lines represent scaling laws of r ~ τ-2/7 and r 

~ τ-2/10, respectively. 
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Evolutions of radius r=R/Ri, spreading velocity U, height h=H/Ri, contact angle θ, upper 

contact angle θu and lower contact angle θl with respect to time = ct tτ  for different dissolubility 

are plotted in Figures 3-4. In non-dissolutive wetting (black line in Figure 3 and black triangles 

in Figure 4), the liquid spreads with a fast-decayed velocity on the smooth solid surface. Since θl 

is zero, θ=θu decreases fast to its equilibrium value determined by the Young’s equation. The 

scaling law is 1 7~r τ . In dissolutive wetting, the liquid spreads slower than that in non-

dissolutive wetting (Figure 3b). Further, the spreading velocity decreases with the decrease of ε , 

because the liquid tends to erode and sink into the solid. Therefore, ~r ατ , where the scaling 

exponent 1/10<α<1/7 (Figure 3). hu decreases whilst hl increases, resulting in a slower decrease 

of the droplet height. When ε  is large (purple in Figures 3-4), h and θ decrease quickly to 

approach their equilibrium values. When ε  becomes smaller (blue, green, yellow and orange in 

Figures 3-4), dissolution becomes obvious: θu and hu still decrease quickly to approach their 

equilibrium values, while θl and hl gradually increase with speed negatively related to ε . The 

height of the droplet h first decrease and then slowly increases, and θ decreases slower than in 

non-dissolutive wetting, because θl and hl gradually increase with speed negatively related to ε . 

When ε  is small (red line in Figures 3-4), dissolution dominated the process, h first decreases 

and then slowly increases, while θ decreases in a different scaling law from the non-dissolutive 

cases. The dashed and dot lines in Figures 3-4 are eye guides for the power laws of these 

characteristic quantities of interface shape, which will be discussed in the next part. 

 

THEORETICAL ANALYSIS 

Molecular kinetic theory (MKT).
38 In Figure 3, the advancing of the contact line obeys the 

power law of r~τ
1/7 in non-dissolutive wetting, which is validated by previous simulations and 
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10

experiments.30 The scaling exponents of the dissolutive spreading range from about 1/10 to 1/7. 

To uncover the physical mechanisms of dissolutive wetting, we employ MKT to analyze the 

scaling laws. For a liquid molecule jumps between two adsorption sites separated by a distance λ 

with an equilibrium frequency 0κ , the spreading velocity follows ( )2
0 B2 sinh 2U w k Tκ λ λ= , 

where w is the driving work, kB the Boltzmann constant and T the absolute temperature. The 

adsorption and desorption of liquid molecules on adsorption sites dissipates energy, which is 

termed as molecular friction 3
B 0k Tζ κ λ=  (unit: Pa·s).38 0κ  is linked to viscosity η and the 

work of adhesion between solid and liquid Wa: ( ) ( )2
0 B Bexpmk T v Wa k Tκ η λ= − , where vm is 

the molecular flow volume.39 In dissolutive wetting, the ratio of driving work w to thermal 

energy kBT is of the order of 0.1~1, ( )2 2
B Bsinh 2 ~ 2w k T w k Tλ λ  would be a good 

approximation to simplify the advancing velocity, 

    
3 2

B

exp
m

w Wa w
U

v k T

λ λ
η η

   
= − ∝   

  
,    (1) 

which means spreading velocity is proportional to the driving work, and negative proportional to 

the viscosity. 

Driving work. In dissolutive wetting, a physical quantity ϕ , such as the solid-liquid interface 

energy SLγ , the liquid-vapor interface energy LVγ , the dissolving energy G, η and etc., evolves in 

the rule of ( ) ( ) ( )i f iϕ τ ϕ ϕ ϕ β τ= + − , where ( ) ( )1 expβ τ τ= − −  is an aging factor. The 

subscribe i and f represent the initial and final state, respectively. As shown in Figure 1c, the 

driving work is 

( ) ( ) ( ) ( ) ( ) ( ) ( )sin cos cos cos cosl LVf uf LV u SLf lf SL lw Gτ τ θ τ γ θ γ τ θ τ γ θ γ τ θ τ   = + − + −    .(2) 
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11

Since lθ  increases and uθ  decreases with the time, the 1st (dissolving energy) and the 2nd (liquid-

vapor interface energy) items promote the advancing of liquid. The 3rd item, which is the 

variation of the solid-liquid interface energy caused by the geometric change during dissolutive 

wetting, prevents the advancing of contact line. Therefore, for some liquid-solid pairs, increase 

of the dissolvability of the solid might enhance the spreading, while increase of the dissolvability 

of solid might hinder the spreading just like in our simulations. The spreading dynamics is 

determined by the competition among dissolving, liquid-vapor and solid-liquid interface 

energies, as well as the evolution of the interface shape. 

We adopt the lubrication approximation ~ H Rθ ≪1. Although it would introduce error into 

theoretical derivation using the lubrication approximation, this approximation would greatly 

simplify the derivation and make it easier to see the physical nature of dissolutive wetting. Later 

on we will show that our simulation results from MD can agree reasonably well with that from 

the lubrication theory. From Figure 4c, we assume that ( ) ( )~u aθ τ θ τ  and ( ) ( ) ( )~ 1l aθ τ θ τ−  

with a≤1. Because the constant terms do not contribute to the scaling analysis, some of them 

could be neglected in Equation (2). Therefore, 

  ( ) ( ) ( ) ( ) ( ) ( )( ) ( )2 221 1LV SLw G a a aτ τ θ τ γ τ γ τ θ τ ∝ − + + −  .  (3) 

Geometric relations. On one hand, the droplet volume V increases with the dissolved particles 

with volume v: ( ) ( )i fV V vnτ β τ= + , where nf is the final number of dissolved particles, Vi the 

initial volume of the droplet. On the other hand, ( )V τ ( ) ( ) ( )2 2
= 3

6 u uR H H
π

τ τ τ +   

( ) ( ) ( )2 2
3

6 l lR H H
π

τ τ τ + +  . Considering the lubrication approximation, 2
hH  and 2

lH  could be 
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neglected compared with 2R , so ( )V τ ( ) ( )2
2R Hπ τ τ≈ ( ) ( )3

2Rπ τ θ τ≈ . Therefore, 

( ) ( )i fV V vnτ β τ= + ( ) ( )3
2Rπ τ θ τ≈ . 

Scaling laws. Substituting geometric, physical and chemical conditions into Equation (1), we 

obtained the governing equation: 

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )

2 22

3

= 1 1

2

LV SL

i f

U R G a a a

V vn R

η τ τ η τ τ τ θ τ γ τ γ τ θ τ

θ τ β τ π τ

  ∝ − + + −  


  = + 

&

. (4) 

1) In non-dissolutive wetting, i.e. G=0, ( )=1β τ , and a=1, Equation (4) degenerates to the 

governing equation of non-dissolutive wetting: ( ) ( ) ( )
6

LV iR R Rτ γ η τ∝   
& , which leads 

to 1 7
iR R τ∝  and is validated by previous studies.30 Because the volume of the droplet is 

conserved, 2 1hr ≈ , 2 2 7
1 2+h r C C τ− −≈ ∝ , the scaling exponent is –2/7 before h approaches 

its equilibrium value, as shown of black dash-dot line in Figures 3-4. Therefore, 

1 7 3 7
1 2~ ~ +h r C Cθ τ τ− − , the scaling exponent varies between –3/7 and –1/7, and the curve 

before the equilibrium state can be fitted using the present scaling law. 

2) In dissolutive wetting, we vary the physical quantities [ ], 2LVf LVi LViγ γ γ∈ , 

[ ],5SLi LVi LViγ γ γ∈ , [ ], 2SLf SLi SLiγ γ γ∈ , [ ], 2f i iη η η∈ , [ ]0.1 ,10i LVi LViG γ γ∈ , [ ]0.1,1a∈  to 

take account of possibilities in the studied systems,40-41 and numerically solve Equation 

(4). The scaling law iR R ατ∝  has been used to fit the relation between R and τ . We find 

that the scaling exponent α ranges from 0.085 to 0.147, which agree with our observations 

in simulations (Figures 3). Because 2 1hr ≈ , 2 -2
1 2+h r C C ατ−≈ ∝ , the scaling exponent is –

2α. So, the data of h before its equilibrium value are between black dash-dot and red 
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dashed lines in Figures 4a-c, which represent the scaling laws of 2 7h τ −∝  and 2 10h τ −∝ , 

respectively. The total contact angle follows 3
1 2+h r C Cα αθ τ τ− −≈ ∝ , the scaling 

exponent varies between –α and –3α, which is also confirmed by our simulations. 

3) If the dissolving energy G is much larger than the interface energies, which is not the case 

in our simulations, Equation (4) could be simplified to the form: 

( ) ( ) ( ) ( ) ( )3

i fR R G V vnη τ τ τ τ β τ ∝ + 
& . Therefore, 1 4

iR R τ∝ . 

 

DISCUSSION 

Hydration. Five solid particles are labelled as S1-S5 to show how they interact with the 

contact line and dissolve in the liquid (Figure 5). When τ=0.04, the droplet gets in contact with 

the substrate with a fast spreading speed and quickly covers S2, S3 and S4. S4 dissolves into the 

liquid with a hydration shell, which consisted of about 20 water molecules. S2 and S3 are 

covered with part of their hydration shells. The hydration shell is composed of the closest water 

molecules around the dissolved particles, which is labeled by the first peak in the pair 

distribution function between water molecule and dissolved particle. When τ=0.08, S2 and S3 are 

pulled by their hydration shells towards the liquid, and the right liquid reaches S5. When τ=0.16, 

S2 is pulled into the liquid by its water cage. The liquid advances over S5 and drives it to 

dissolve. When τ=0.32, S3 and S5 almost dissolve, and the left liquid reaches S1. When τ=0.64, 

the 5 particles all dissolve into the liquid. Because S2 and S3 are close to each other, their 

hydration shells attract and get in touch with each other through hydrogen bonds. S1 dissolves 

into liquid and diffuses along the liquid surface because the spreading velocity at this moment is 

one order of magnitude slower than that before τ=0.08 (Figure 3b) and the self-diffusion 

coefficient of the surface liquid is higher than that of the bulk liquid (Figure 6).26 So, we can find 
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the difference in dissolution of S1 and S5, which is raised from the coupling of dissolution and 

spreading. When τ=1.28, the water cages of S2 and S3 keep in touch during the simulations. The 

hydration shells, i.e. flexible water cages composed of about 20 water molecules, play important 

roles in dissolutive wettings. Particles are pulled by their hydration shell into the water. Then, 

particle and its hydration shell form a dynamic cluster to interact with other clusters. 

 

 

Figure 5. The process of solid particles dissolving in a spreading droplet. The cyan balls 

represent the solid particles (ε =0.81). The red sticks and lines represent respectively the water 

molecules and the hydrogen bonds in the hydration shell of the solid particles. 

 

Flow field. When a droplet is deposited on the dissolvable solid, the solid particles began to 

dissolve into the droplet (Figure 6). The mobility of the water molecules is highest at the droplet 

surface and lowest at the solid-liquid interface.26 Therefore, the dissolving speed of the solid 

particles is fastest at the triple-phase line and is slowest where solid is immersed in the liquid.42 

Under the concentration gradient, the dissolved particles diffused along the droplet surface 
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towards lower concentration. At the meantime, the water molecules are driven by the surface 

tension to flow towards the solid and advance along the solid surface to decrease the contact 

angle. 

 

 

Figure 6. Flow field in dissolutive wetting (ε =0.48). The blue and gray solid lines show the 

velocity of water molecules and solid particles, respectively. The length of a line shows the 

strength of the velocity. The red and black dashed lines are guides for the eyes to show the 

general tendency. 

 

Pair distribution function (PDF). In non-dissolutive wetting, the structures of both liquid and 

solid do not change. In dissolutive wetting, the atomic structures of the solvent and solute depend 

on the solid-liquid interactions. PDF g(δ) describes the distribution of distances between pairs of 

molecules between pairs of molecules ( SLdδ σ= , d: the distance, SLσ : the zero-crossing 

distance between solid and liquid), and is a major descriptor for the atomic structure. In our 

simulations, the solid has a face-centered-cubic lattice structure and the liquid is water (Figure 

7a). Dissolved particles and their hydration shells compose clusters to interact with each other 

(inset in Figure 7b). Because of the increasing dissolved solids, g(δ)-SS increases with the 

decrease of ε : the 1st peak is heightened, and the 2nd and 3rd peaks became obvious (Figure 
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7b). g(δ)-LL decreases with the decrease of ε  (Figure 7c): the PDFs are flattened compared with 

that of bulk liquid. The first peak in Figure 7d labels the position of the nearest water molecules 

surrounding the solid particles, which composed the hydration shell and is distinct from the bulk 

water to a distance of about 3 layers. 

 

 

Figure 7. Pair distribution functions g(δ) (a) between bulk liquid molecules (red) and between 

bulk solid particles (blue), (b) between dissolved particles, (c) between liquid molecules, and (d) 

between dissolved solid particles and liquid molecules. The inset in (b) shows two particles 

interact through their hydration shells. The cyan, red and white balls represent the solid, oxygen 

and hydrogen atoms, respectively. The red lines represent the hydrogen bonds. 
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Figure 8. Evolution of the average number of hydrogen bonds (a) in the droplet, (b) formed 

between water molecules, and (c) formed between dissolved solid particles and water molecules. 

 

Network of hydrogen bonds (HBs). HBs makes liquid water exceptional. Geometric criterion 

were used to judge whether hydrogen bond formed.43 We specified a hydrogen bond between a 

water molecule and other molecule if the O-P distance was less than 3.5 Å, the angle O-H⋯P was 

greater than 120°, and the H⋯P distance was less than 2.5 Å, where O and H are oxygen and 

hydrogen atoms in one water molecule. P could be an oxygen atom in another water molecule or 

a dissolved solid particle. In non-dissolutive wetting, the average number of HB (NHB) of a water 

molecule remains about 3.6 (black lines in Figure 8), which is in good agreement with the 

literature.44 In dissolutive wettings, the average number NHB between water molecules decreases 

with the decrease of ε . When ε  is large, NHB between water molecules decreases to about 2.5 

(Figure 8b), while there are HBs between the dissolved particles and the water molecules (Figure 

8c). Hence, the total NHB is about 2.9 for solid with low dissolubility. When ε  is small, NHB 
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between water molecules greatly decreases, while NHB between water molecule and dissolved 

particles also decreases. Therefore, the total NHB significantly decreases for solid with high 

dissolubility. 

 

CONCLUSIONS 

In conclusion, the advancing of liquid on dissolvable solids depended on both the interface and 

the dissolving energies. The droplets spread on an evolving solid surface following a different 

dynamic law, compared with spreading on non-dissolutive surfaces. The scaling exponent α 

varies from 1/10 to 1/7 in dissolutive wetting, while α is 1/7 in non-dissolutive wetting. Contact 

line interacts with the receding solid surface through the hydration shells, pulling the solid 

particles to dissolve, varying the liquid/interface properties and changing the flow field in the 

droplet. Reflected by PDF analysis, the atomic structure of the liquid changes with the increasing 

dissolved particles. Consequently, the hydrogen bond is influenced by the coupled mass and 

momentum transport. Our findings may help to understand the dynamics of dissolutive wetting 

and assist future design in practical applications. 
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Dynamic wetting of a liquid droplet on a dissolvable substrate. 
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