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Abstract
Several methods for determination of elastic–plastic parameters by instrumented spherical indentation tests have been presented in the past few
years. Each method was established according to a specific constitutive model. Identification of the constitutive models of new materials has
become an indispensable step in order to choose an appropriate indentation method to extract the elastic–plastic parameters. In the present
work, the half depth energy accumulation rate and Meyer’s index were related to the elastic–plastic constitutive models via qualitative and numer-
ical analyses. A method for identification of the elastic–plastic constitutive models by instrumented spherical indentation test was proposed.

Introduction
In recent studies, interest has been intensified in the develop-
ment of indentation-based methods extracting the elastic–plas-
tic properties. A number of theoretical and semi-theoretical
methods have been developed.[1–10] In most of these studies,
the linear elastic power-law hardening constitutive model was
generally adopted. In fact, however, the stress–strain behaviors
of many metals are better described by the linear elastic and
perfectly plastic constitutive model or the linear elastic linear
hardening constitutive model (see Fig. 1).

A general stress–strain relationship for the material can be
written as

s̃ = E1̃ (1̃ , 1y),
f (1̃)(1̃ ≥ 1y),

{
(1)

where s̃ and 1̃ are the equivalent stress and strain, respectively;
E is the elastic modulus; εy is the yield strain; the function f (1̃)
is the constitutive equation of material, which for perfectly
plastic materials takes the form,

s̃ = E1y, (2)

while for linear hardening materials, it can be written as

s̃ = Ep1̃+ (E − Ep)1y, (3)

and for power-law hardening materials, it can be written as

s̃ = E11−n
y 1̃n, (4)

where Ep is the hardening modulus for linear hardening mate-
rials, and n is the hardening exponent for power-law hardening
materials. These three forms of stress–strain relationship are
shown in Fig. 1. It should be pointed out that perfectly plastic
materials is included in linear hardening materials as a special
case (Ep = 0), and it is also included in power-law hardening
materials as a special case (n = 0). But it is usually considered
as a classical constitutive form. So they are discussed as three
separate forms in this paper.

It has been shown that the parameters of the typical consti-
tutive models of metals can be determined by instrumented
spherical indentation tests.[11] But the elastic–plastic constitu-
tive models of the metals must be known in advance in order
to choose the appropriate method. For a material with unknown
elastic–plastic constitutive model, it is difficult to decide which
method should be chosen. It has been shown that the stress–
strain relationships may not be uniquely determined from
indentation loading and unloading curves obtained using a con-
ical or pyramidal indenter.[12] In this paper, we will discuss the
feasibility of distinguishing the elastic–plastic constitutive
models by spherical indentation.

Methods to determine elastic–plastic
parameters for three typical elastic–
plastic constitutive models
In our previous work, methods to determine elastic–plastic
parameters for three typical constitutive models by instru-
mented spherical indentation had been developed.[9–11] Based
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on the spherically symmetric assumption in the expanding cav-
ity model (ECM)[13] (see Fig. 2) and the Lamé’s elastic solu-
tion, the equations of total loading work (Wt) and unloading
work (Wu) were derived.

[11]

There are two basic hypotheses for ECM: (1) the displace-
ment field produced by the indenter is approximately spheri-
cally symmetric; (2) the material under the indenter can be
divided into three parts, namely, a core zone (r < a), a plastic
zone (a < r < c), and an elastic zone (r > c), where a is the
radius of the core zone and c is the radius of the boundary
of the plastic and elastic zones. They can be confirmed by
the result of a popular finite-element method (FEM) modeling
(see Fig. 3).

In this model, seven parameters (radial displacement ur;
strain εr, εθ, and εφ; stress σr, σθ, and σφ) are taken into consid-
eration. Relationships about these parameters include the geo-
metric equations as

1r = dur
dr

,

1u = 1w = ur
r
,

⎧⎪⎨
⎪⎩ (5)

and the balance equation as

dsr

dr
+ 2

sr − su

r
= 0. (6)

Figure 1. Three typical stress–strain relationships. (a) Linear elastic and perfectly plastic, (b) linear elastic and linear hardening, and (c) linear elastic and
power-law hardening.[11] (© Materials Research Society, 2015, Reprinted with permission.)

Figure 2. Expanding cavity model in which the deformation area below the
indenter is divided into three parts. The effect of pile-up or sink-in is
equivalent to some fraction of hydrostatic core volume displaced by
indenter.[11] (© Materials Research Society, 2015, Reprinted with
permission.)

Figure 3. The result of a popular FEM modeling, which can confirm the two basic hypothesis of ECM: (a) the displacement distribution confirms that the
displacement field produced by the indenter is approximately spherically symmetric; (b) the mises stress distribution confirms the partition under the indenter.
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The equivalent stress and strain[14] are

s̃ = 1��
2

√
������������������������������������������
(sr − su)2 + (su − sw)2 + (sw − sr)2

√
= su − sr, (7)

1̃ =
��
2

√

3

����������������������������������������
(1r − 1u)2 + (1u − 1w)2 + (1w − 1r)2

√

= 2

3
(1u − 1r). (8)

Assuming materials are incompressible (viz. the Poisson ratio
ν = 0.5)[5], argued that radial displacement, ur, is related to
the volume of the materials excluded by the indenter, V. The
relationship can be written as

V = 2

3
p (r + ur)3 − r3
[ ] = 2

3
pur(3r2 + 3rur + u2r ). (9)

It is easy to obtain ur/r =
�����������������
3V/(2pr3) + 13

√
− 1. By consider-

ing the ratio of depth (h/R) as a constant 0.3,[7] ur/r is not larger
than 0.1 and decreases rapidly. It means that a small deforma-
tion assumption (ur≪ r) is reasonable and Eq. (9) can be sim-
plified into

V = 2purr
2, (10)

and ur can be written as

ur = V

2pr2
. (11)

Substituting Eq. (11) into Eq. (5) yields

1r = − V

pr3
,

1u = 1w = V

2pr3
.

⎧⎪⎨
⎪⎩ (12)

By substituting Eq. (12) into Eq. (8), the equivalent strain can
be written as

1̃ = V

pr3
. (13)

At the outer boundary of the plastic zone

1̃|r=c=
V

pc3
= 1y. (14)

By substituting Eq. (14) into Eq. (13), the relationship between
equivalent strain and radius is

1̃ = c3

r3
1y. (15)

The energy density can be written as

w =
∫
s̃d1̃. (16)

The equations of total loading work (Wt) and the unloading
work (Wu) can be obtained by integrating of Eq. (16).[11]

The similarity solution, Meyer’s index (m), was used to
solve the elastic–plastic parameters by combining with the
equations of total loading and unloading works.[7]

Finite-element analysis (FEA) was carried out using
ABAQUS to correct the equations.[7] The corrected equations
for calculating the total loading work (Wt) and unloading
work (Wu) for different constitutive models can be written as
follows.

For linear elastic perfectly plastic constitutive model,

Wt = k1pE12y
1

3
a3 + c3 2 ln

c

a
− c3

a3
1y + 2

3

( )[ ]
,

Wu = 3k2pE12ya
3 1

3
− ln

a

c

( )2

,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(17)

where E is the elastic modulus, a is the radius of the hemispher-
ical hydrostatic core, c is the radius of the hemispherical plastic
zone (see Fig. 2) and κ1, κ2 are the correction factors and given
as

k1 = −0.09822 log2(1y) − 0.2251 log(1y) + 1.136,
k2 = 0.1977 log2(1y) + 1.624 log(1y) + 3.694.

{
(18)

For linear elastic linear hardening constitutive model,

Wt=l1pE1
2
y

× 1

3

Ep

E

c6

a3
+1

3
1−Ep

E

( )
a3+2 1−Ep

E

( )
c3 ln

c

a

{

+c3
Ep

E

c3

a3
+ 1−Ep

E

( )[ ]
2

3
− c3

a3
1y

( )}
,

Wu=3l2pE1
2
ya

3 1

3

Ep

E

c3

a3
+ 1−Ep

E

( )
1

3
− ln

a

c

( )[ ]2
,

m= −7.807×106
Ep

E

( )3

+1.217×106
Ep

E

( )2
[

−8.186×104
Ep

E

( )
+7232

]
12y

+ −5003
Ep

E

( )3

+5136
Ep

E

( )2

−277.8
Ep

E

( )
−83.91

[ ]
1y

+ 1330
Ep

E

( )3

−302.6
Ep

E

( )2

+24.87
Ep

E

( )
+2.457

[ ]
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(19)

where Ep is the hardening modulus and λ1, λ2 are the correction
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factors and given as

l1= −321.9
Ep

E

( )3

+97.29
Ep

E

( )2
[

−8.627
Ep

E

( )
+0.07456

]
log2(1y)

+ −2037
Ep

E

( )3

+559.1
Ep

E

( )2
[

−45.16
Ep

E

( )
+0.3521

]
log(1y)

+ −2681
Ep

E

( )3

+704.2
Ep

E

( )2
[ ]

−54.80
Ep

E

( )
+1.616

]
,

l2= 942.8
Ep

E

( )3

−20.94
Ep

E

( )2
[

−20.54
Ep

E

( )
+0.8147

]
log2(1y)

+ 1189
Ep

E

( )3

+634.1
Ep

E

( )2
[

−146.0
Ep

E

( )
+3.939

]
log(1y)

+ −784.2
Ep

E

( )3

+1187
Ep

E

( )2
[

−191.0
Ep

E

( )
+5.918

]
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(20)

For linear elastic power-law hardening constitutive model,

Wt=h1pE1
2
y

2n

3(n+1)c
3− n−1

3(n+1)a
3

[

+ 2c3

3n(n+1)
c3n

a3n
−1

( )
+c3(n+1)

a3n
2

3
− c3

a3
1y

( )
,

Wu = h2

3n2
pE12ya

3 c3n

a3n
+n−1

( )2

,

m=(8306n2−2762n−1805)12y
+(−6.296n2−81.22n+71.78)1y
+(−1.222n2+2.724n+1.723),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(21)

where n is the hardening exponent and η1, η2 are the correction

factors and given as

h1=(0.2984n2−0.01787n−0.1293)log2(1y)
+(3.072n2−1.708n−0.3819)log(1y)
+(4.048n2−3.092n+0.9490),

h2=(1.804n2−1.364n+0.1134)log2(1y)
+(9.849n2−9.176n+1.271)log(1y)
+(10.78n2−10.541n+3.316).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(22)

Finite-element method
FEM was used to determine the accuracy of the analytical
expressions. Plastic parameters used in the FEM calculations
cover most of metal materials. Elastic modulus (E) is 210
GPa, which is approximately equal to the elastic modulus of
steel. To make these simulations consistent with reality, the
elastic modulus takes value of 210 GPa, Poisson’s ratio takes
value of 0.3, the yield strain ranges from 0.001 to 0.01, the
hardening slope Ep/E ranges from 0.02 to 0.10 (for linear hard-
ening) and hardening exponent n ranges from 0.1 to 0.5 (for
power-law hardening), which covers most engineering metals.
Interface friction is neglected to match the assumption in theo-
retical analysis.

Method to identify the elastic–plastic
constitutive models
The total loading and unloading works are chosen as analytical
parameters in the method to determine the elastic–plastic
parameters. It is easily known that the total loading and unload-
ing works are determined by the stress distribution at the end of
the loading. Due to the complexity of the stress distribution
under the indenter, different constitutive models (i.e. elastic–
plastic constitutive models) with particular material parameters
may lead to the same stress distribution. By analyzing the
deformation process for the three typical constitutive models
qualitatively, we found out that the deformation path to reach
the same stress distribution varies for different constitutive
models. Therefore, the analytical parameters chosen by the
method to distinguish the constitutive models should be able
to describe the deformation process of the material. Because
the linear elastic perfectly plastic constitutive model can be
considered as a special case of the other two constitutive mod-
els, it will not be discussed separately in the present work.

The Meyer’s index (m) is the slope of the logarithmic load-
ing curve, which is related to the loading process and is able to
describe the deformation path of the material. The Meyer’s
indices for linear elastic linear hardening and linear elastic
power-law hardening constitutive models with various plastic
parameters calculated from the finite element results were illus-
trated in Fig. 4. Because of the different ranges of the hardening
parameters (0.01≤ Ep/E≤ 0.1 for linear hardening and 0.05≤
n≤ 0.5 for power-law hardening), the normalization of the
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hardening parameters (10Ep/E and 2n) are adopted and used as
the coordinate point. The result shows that the Meyer’s indices
of the two constitutive models with the similar plastic parame-
ters are distinct, and the difference increases with the decrease
of the plastic parameters εy, 10Ep/E and 2n.

Considering the loading process, the differences of defor-
mation path resulted in different energy accumulation rates in
the different stages of loading. The ratio of loading work at
half-max depth (Whalf) and total loading work (Wt), which
will be referred as “half depth energy accumulation rate”
(Whalf/Wt), is analyzed. The correlations between half depth
energy accumulation rates and plastic parameters are shown
in Fig. 5. It is clear that the half depth energy accumulation
rates for linear hardening and power-law hardening deviate
from each other, and the discrepancy increases as the yield
strain and the hardening parameters decreasing.

From above analysis, m and Whalf/Wt can be correlated with
the deformation path, and the relationships between m and
Whalf/Wt are different for different constitutive models. They
can be used as the analytical parameters in the method to distin-
guish the stress–strain relationships.

m and Whalf/Wt can be expressed as a function of plastic
parameters, respectively.

m = f (1y,Ep/E), for linear hardening,
m = f (1y, n), for power − law hardening,

{
(23a)

Whalf/Wt = f (1y,Ep/E) for linear hardening,
Whalf/Wt = f (1y, n) for power − law hardening.

{
(23b)

Therefore, it can be deduced that there is a functional

relationship between m and Whalf/Wt

Whalf/Wt = f (m). (24)

The distribution of half depth energy accumulation rates with
Meyer’s indices is shown in Fig. 6, which was obtained by
the FEA. It is evident that the half depth energy accumulation
rate decreases linearly with the increase of Meyer’s index. The
distribution points for linear hardening and power-law harden-
ing can be clearly separated from each other by a dividing line
as shown in Fig. 6.

Fitting the dividing line using the least-squares method
leads to

Whalf/Wt = −0.0538m+ 0.3612. (25)

Figure 4. The relationship between Meyer’s indices and plastic parameters
with the different constitutive models of linear hardening and power-law
hardening.

Figure 5. The relationship between half depth energy accumulation rates
and plastic parameters with the different constitutive models of linear
hardening and power-law hardening.

Figure 6. The relationship between half depth energy accumulation rates
and Meyer’s indices with the different constitutive models of linear hardening
and power-law hardening.

Research Letter

MRS COMMUNICATIONS • VOLUME 7 • ISSUE 2 • www.mrs.org/mrc ▪ 225
https://doi.org/10.1557/mrc.2017.28
Downloaded from https://www.cambridge.org/core. Newcastle University, on 25 Jul 2017 at 17:08:32, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1557/mrc.2017.28
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


The result can be drawn from Fig. 6. IfWhalf/Wt >− 0.0538m +
0.3612, then the strain hardening model is linear hardening. If
Whalf/Wt <− 0.0538m + 0.3612, then the strain hardening
model is power-law hardening. Equation (25) can then be
used for identification of the elastic–plastic constitutive
model by instrumented spherical indentation. Whalf/Wt, m in
Eq. (25) can be obtained directly from the load–depth curves.

To facilitate subsequent discussion, Eq. (25) will be rewrit-
ten as Eq. (26), and denoted as a letterD. It can be called as “the
identification factor”. It is evident from Fig. 6 that the strain
hardening model is linear hardening for D > 0, and the strain
hardening model is power-law hardening for D < 0. This can
be used as an identification criterion for distinguishing the
strain hardening model.

D = Whalf/Wt + 0.0538m− 0.3612. (26)

Experiments and discussion
Instrumented spherical indentation tests were performed on
four materials, i.e. Brass C28000, Steel Gr. D, Ti Grade 5,
and Copper C11000, using a Nano Indenter XP (MTS) to val-
idate our method. The typical indentation load–depth curves for
Brass C28000, Steel Gr. D, Ti Grade 5, and Copper C11000
were shown in Fig. 7. The analytical parameters Whalf/Wt, m
obtained from the loading curve were listed in Table 1.

Substituting the analytical parameters Whalf/Wt, m into Eq.
(26), we get the identification factors DC28000 = 0.016 > 0
for Brass C28000, DGr. D =−0.0026 < 0 for Steel Gr. D,
DTi.G5 =−0.018 < 0 for Ti Grade 5, and DC11000 = 0.0012 > 0
for Copper C11000. According to identification criterion, we
can forecast that the strain hardening models of Brass
C28000 and Copper C11000 are linear hardening, and those
of Steel Gr. D and Ti Grade 5 are power-law hardening.

The elastic–plastic parameters of Brass C28000, Steel Gr.
D, Ti Grade 5, and Copper C11000 were determined using
both methods for linear hardening (Eqs. 3 and 4) and power-
law hardening (Eqs. 5 and 6). Table 2 lists two groups of elas-
tic–plastic parameters for each material determined by two
methods.

Each group of material parameters are substituted into the
corresponding elastic–plastic constitutive models to predict
the stress–strain curves. The curves are compared with the con-
ventional uniaxial tensile results,[7] as shown in Fig. 8. The
result shows that for Brass C28000 and Copper C11000, it
matches better using the method for linear hardening; and for
Steel Gr. D and Ti Grade 5, it matches better using the method
for power-law hardening. It thus demonstrates thatD > 0 can be
used as the criterion to identify the linear elastic linear harden-
ing constitutive model and D < 0 can be considered as the cri-
terion for identification of the linear elastic power-law
hardening constitutive model.

Figure 7. The typical load–depth (F–h) curves of the four materials tested by instrumented spherical indentation. (a) Brass C28000, (b) Steel Gr. D, (c) Ti Grade
5, (d) Copper C11000.
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Table 1. Analytical parameters of the four materials obtained by instrumented spherical indentation tests.

Materials Wt (×10−7 J) Whalf (×10−7 J) Wu (×10−7 J) m

Brass C28000 3.58 0.860 0.146 2.55

Steel Gr. D 7.01 1.68 0.256 2.21

Ti Grade 5 10.3 2.28 0.948 2.27

Copper C11000 4.51 1.04 0.196 2.45

Table 2. Material parameters determined by the two methods of linear hardening and power-law hardening.

Materials Linear hardening Power-law hardening

E (GPa) εy (%) Ep/E E (GPa) εy (%) n

Brass C28000 106.5 0.185 0.01 109.1 0.06 0.348

Steel Gr. D 173.8 0.337 −0.002 201.7 0.175 0.154

Ti Grade 5 104.8 1.05 −0.0007 121.6 0.751 0.057

Copper C11000 126.5 0.253 0.007 129.6 0.082 0.244

Figure 8. The typical stress–strain curves predicted by different constitutive models and compared with the conventional uniaxial tensile tests. (a) Brass
C28000, (b) Steel Gr. D, (c) Ti Grade 5, (d) Copper C11000.
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Conclusion
A method to distinguish the elastic–plastic constitutive models
is developed based on instrumented spherical indentation tech-
nique. Through qualitative analysis, half depth energy accumu-
lation rate and Meyer’s index are chosen as the analytical
parameters. FEA shows that an approximate linear relationship
exists between the half depth energy accumulation rate and
Meyer’s index. There is a clear dividing line between the
data points for different constitutive models (see Fig. 6).
Fitting the dividing line to develop the method for distinguish-
ing the elastic–plastic constitutive models, and put forward the
concept of the identification factor. The experimental results of
Brass C28000, Steel Gr. D, Ti Grade 5, and Copper C11000
confirm the validity of the newly proposed method. The signif-
icance of this paper is combining the forward analysis and the
inverse analysis to improve the reliability of the test results.
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