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Abstract: This paper presents a spring-fiber bundle model used to describe the failure process
induced by energy release in heterogeneous materials. The conditions that induce catastrophic failure
are determined by geometric conditions and energy equilibrium. It is revealed that the relative
rates of deformation of, and damage to the fiber bundle with respect to the boundary controlling
displacement ε0 exhibit universal power law behavior near the catastrophic point, with a critical
exponent of −1/2. The proportion of the rate of response with respect to acceleration exhibits a linear
relationship with increasing displacement in the vicinity of the catastrophic point. This allows for the
prediction of catastrophic failure immediately prior to failure by extrapolating the trajectory of this
relationship as it asymptotes to zero. Monte Carlo simulations are completed and these two critical
scaling laws are confirmed.
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1. Introduction

Material damage and fracture has attracted a large amount of theoretical and experimental interest
owing to their relationship to many failure phenomena occurring in naval, aeronautics, and space
industries [1], as well as the damage occurring due to earthquakes [2–4]. The underlying microscopic
mechanism of failure is so complex that it is far from being well understood.

Localization is a common phenomenon appearing in the evolution of strain (or damage)
that ultimately induces material failure and it is a significant factor in the complexity of fracture.
After localization, a sample will bifurcate into a two-part continuum consisting of a less-deformed
zone plus a highly-deformed (damage) band called a localized zone [5–8]. The localized zone is
mechanically and physically distinct from the surrounding zones. This implies that when the eventual
macroscopic failure occurs, the scale governing the macroscopic failure is much smaller than that of
the sample size [8,9]. Catastrophic failure occurs when the energy released from either the testing
system or from outside the localized zone (or both) can compensate for the required fracture energy of
the localized zone [8–10].

Analyzing the precursors to failure has been a long-standing problem and has been widely
accepted as a significant way to predict material failure [5,11–16]. Voight [12,13] proposed a materials
failure law to describe the accelerating precursory immediately prior to failure. The Materials Failure
Forecasting Method (FFM) [5,14–18], which is based on the accelerating precursors, has been proposed
for the prediction of natural disasters such as volcanic eruptions, earthquakes and landslides.

In materials science and engineering, the well-known fiber bundle models (FBM), which is a class
of simple models, has been widely used [18–21] to explain the failure mechanism of materials ever
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since Peirce [22] first developed this model to study the strength of cotton yarn. This model has proven
to be very effective in practical applications and various aspects of failure in composite materials
such as fiber reinforced composites and other disordered materials [18,23–26]. Because a study of the
strength properties of certain materials usually needs to involve considerations fundamentally similar
to those arising in fiber bundle theory [19,22], this model has been increasingly used to explain failure
processes in many other heterogeneous materials [21,27].

In this paper, a model composed of an elastic spring and a fiber bundle oriented in series is
developed to describe the catastrophic failure of a material induced by the energy release from the
system. The conditions for catastrophic failure are derived based on energy equilibrium. An asymptotic
analysis is used to derive the critical scaling laws near the catastrophic point. Monte Carlo simulations
are performed to verify two critical scaling laws describing the failure.

2. Model Description

In order to demonstrate the catastrophic failure induced by the energy release, a system consisting
of a linear elastic spring and a damageable part oriented in series, as shown in Figure 1, is put
under focus. In this paper, the boundary displacement and the deformation of the damageable part are
denoted by U and u, respectively. The spring of stiffness ks can be analogous to an elastic environment
(such as the load apparatus or the zones outside the localized zone). The damageable part consists of N
parallel fibers with a linearly elastic constitutive behavior. A global load-sharing criterion [20,21,23,24]
is chosen for the load redistribution following the break of one or more of the fibers. From this form,
some closed analytic results can be obtained. All the fibers are assumed to have the same stiffness
until they break. A fiber breaks when it reaches its strength, and thus no longer carries any load.
The surviving fibers equally share the force released by the broken fibers.

Figure 1. Sketch of the spring-fiber bundle model. f 0: Normalized resulting force; U: Boundary
displacement, ε0 = U/l; u: Deformation of the fiber bundle, ε = u/l.

Before it breaks, a fiber follows a linearly elastic constitutive behavior, given as:

kd u = p (1)

where p is the force on a fiber element and kd denotes the stiffness of the individual fiber element.
The strain is given by ε = u/l where l is the length of a fiber. Equation (1) is then rewritten as:

ε = f , (2)

where f 0 = p/(lkd) is the dimensionless true force on an individual intact fiber element. The resulting
force on the system is F = Np, which is normalized as f 0 = F/(Nlkd).

The resulting force acting on the spring can also be expressed as F = ksus, where us is the
deformation of the elastic spring. The geometric condition of Figure 1 implies that the deformation of
the elastic spring can be written as us = U − u, resulting in:
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f 0 = k(ε0 − ε), (3)

where ε0 = U/l is the normalized boundary displacement. k = ks/(Nkd) represents the initial stiffness
ratio of the elastic spring to that of the damageable part. At a certain strain ε for the fibers in the
damageable part, the true load on every surviving fiber is f = f 0/[1 − D(ε)], where D(ε) = Nd/N
represents the damage fraction of damageable part and Nd is the number of broken fibers. It is clear that
the damage fraction, D, ranges from zero to unity. The force-deformation relation of the damageable
part can then be written as:

f 0 = [1 − D(ε)]ε (4)

For the system to be in the equilibrium, Equations (3) and (4) must be equal, such that:

k(ε0 − ε) = [1 − D(ε)]ε (5)

The damage fraction is widely described by a Weibull distribution of the form
D(ε) = 1 − e−εm

[11,17–19], where m is the Weibull index.

3. Critical Condition that Induces Catastrophic Failures

The equilibrium of the spring-fiber bundle system becomes unstable when the work needed for
further deformation of the damageable part (∆Wc) can be fully provided by the energy release of the
spring (∆Ws) without any external work, thus allowing for breaking (or deformation) to continue
spontaneously and uncontrollably. In other words, the equilibrium is stable if:

∆Ws < ∆Wc (6)

The work done by the elastic spring during virtual deformation ∆εs is:

∆Ws = (f 0 + 1/2∆f 0)·∆εs, (7)

where εs represents the normalized deformation of the spring.
The energy required to impose a similar deformation (∆Wd) by an increment of ∆ε on the

damageable part is:
∆Wd = (f 0 + 1/2∆f 0)·∆ε (8)

Substituting Equations (7) and (8) into Equation (6) gives:

−∆εs = ∆f 0/k < ∆ε = ∆f 0/(df 0/dε) (9)

The negative value of ∆εs implies that the elastic spring undergoes a deformation recovery process.
Expression (9) leads to k > −df 0/dε. Therefore, the critical condition that induces catastrophic failure is:

k = −df 0/dε (10)

From Equations (4), (5) and (10), the critical condition can also be expressed as:

(dε0/dε)f = 0 (11)

Thus, no macroscopic failure occurs when k > kc = −(df 0/dε)min, where (df 0/dε)min represents
the minimum value of the tangent slope of the f 0-ε curve of the fiber bundle. The deformation can be
analytically derived as ε = (1 + 1/m)1/m through a Weibull distribution by setting d2 f0/dε2 = 0 at the
point of (df 0/dε)min, resulting in kc = me−(1+1/m).

As examples, Figure 2 illustrate the change in force and deformation with increasing boundary
displacement (ε0) for k < kc and k > kc. In these two cases, the Weibull index m equals 2, resulting in
a kc value of about 0.446. It can be seen that when k = 0.2 (that is, k < kc), the catastrophic failure occurs
following the peak force (Figure 2a). In contrast, when k = 0.5 (that is, k > kc), the stress decreases
continuously to zero and the failure is not catastrophic but gradual, as shown in Figure 2b.
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Figure 2. Analytical results of force and deformation versus displacement for k > kc and k < kc when
m = 2, N = 104 and kc = 0.446. (a) k = 0.2 (i.e., k < kc). The catastrophic failure occurs following the
peak force; (b) k = 0.5 (i.e., k > kc). The force continuously decreases to zero and thus no catastrophic
failure occurs during the loading process.

4. Critical Scaling Law near the Point of Catastrophic Failure

An asymptotic analysis of the area in the vicinity of the catastrophic point to demonstrate the
critical scaling law is not presented. The geometric Equation (5) implies that the boundary displacement
ε0 can be expressed as a function of the deformation ε such that ε0 = [1 − D(ε)]ε/k + ε. The expansion
of ε0 as a function of ε in the vicinity of the catastrophic point ε0f is then performed. That is:

ε0 ≈ ε0f +

(
d ε0

dε

)
f

(
ε f − ε

)
+

1
2

(
d2ε0

dε2

)
f

(
ε − ε f

)2
(12)

Substituting Equation (11) into Equation (12), we get:

ε ≈ ε f −
[
−1

2

(
d2ε0/dε2

)
f

]− 1
2
(ε0f − ε0)

1
2 (13)

By performing the first differentiation on Expression (13) with respect to ε0, the following relation
is obtained:

dε/dε0 ∼ (ε0f − ε0)
1
2 . (14)

Therefore, the deformation rate of the damageable part increases under a power law behavior
with an exponent of −1/2 near the catastrophic point.

Furthermore, by performing the first and second differentiation on Expression (13) with respect
to ε0 and rearranging, the following relation is obtained:

dε

d ε0

(
d2ε

d ε02

)−1

= 2(ε0f − ε0) (15)

An analogous procedure may be applied to calibrate in terms of damage D by noting that the
deformation can be expressed as a function of D. For example, ε = [− log(1 − D)]1/m for a Weibull
distribution. Then, similar expressions can be deduced as:

dD/dε0 ~ (ε 0f − ε0)−1/2 (16)

and:
d D
d ε0

(
d2D
d ε02

)−1

= 2(ε0f − ε0) (17)
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To examine Relations (14), (15), (16), and (17), the first and second derivatives of damage D
and strain ε are calculated with respect to the controlling variable ε0 resulting in dε/dε0 (or dD/dε0)
and d2ε/dε0

2 (or d2D/dε0
2) for m = 2. Based on the observed linear dependence (the left part of the

curves in Figure 3a), the increase in deformation near the catastrophic failure point conforms to the
power law relations given in (14) and (16). The linear relationship with a slope of 2 between d2ε/dε0

2

(or d2D/dε0
2) and ε0 in the vicinity of the catastrophic failure point shown in Figure 3b,c confirms

the veracity of Relations (15) and (17). Based on Relations (15) and (17), the catastrophic point can be
predicted as the intersection point of the abscissa axis with the linear extrapolation of the curve of
dε/dε0(d2ε/dε0

2)−1 (or dD/dε0(d2D/dε0
2)−1) against ε0 to zero.

Figure 3. Critical scaling laws in the vicinity of the catastrophic point for the case shown in
Figure 2b. (a) Critical power law behaviors of dε/dε0 ~(ε0f − ε0)−1/2 and dD/dε0 ~(ε0f − ε0)−1/2.
A straight line of slope −1/2 is drawn to guide the eye. Relationship of (b) dε/dε0 (d2ε/dε0

2)−1 and
(c) dD/dε0(d2D/dε0

2)−1 to displacement ε0 near the catastrophic failure point. The approximately
linear relationship in the vicinity of the catastrophic point ε0f (with a slope of 2) verifies the relationship
dε/dε0 (d2ε/dε0

2)−1 = 2 (ε0f − ε0) and dD/dε0 (d2D/dε0
2)−1 = 2 (ε0f − ε0).

5. Numerical Analysis

To further examine the critical behaviors near the catastrophic failure point, Monte Carlo
simulations of the failure process were performed. Simulations of the failure process proceeded
as follows: as the displacement on the system with a fiber bundle of N fibers monotonically
increased, (1) fiber breaking thresholds were randomly chosen according to the Weibull probability
distribution with the thresholds then arranged in increasing order; (2) The load process was performed
quasi-statically with a displacement of ε0 applied at each step as the minimum required to break the
next fiber. After the breakage of a single fiber, the nominal force f 0 on the system and consequently the
deformation ε of the fiber bundle were recalculated. This process was repeated until the load on all
surviving fibers was less than that of their individual thresholds; (3) The system is then loaded again
and the process is repeated until the material fails in its entirety. During step 2, the break of an element
may induce secondary failures which may in turn trigger more failures, and so on. If this occurs, this
process will lead to a catastrophic failure.

Figures 4–7 illustrate the simulation results for three samples for different k values. As shown
in Figure 5, damages and deformation for all samples exhibit common critical power law behaviors
of dε/dε0 ~(ε0f − ε0)−1/2 and dD/dε0 ~(ε0f−ε0)−1/2 with a critical exponent of −1/2. In all
simulations, ∆ε/∆ε0(∆2ε/∆ε0

2)−1 and ∆D/∆ε0(∆2D/∆ε0
2)−1 exhibit a common linear relationship

under a displacement of ε0 near the catastrophic failure point (see Figures 6 and 7), even though their
failure displacements are different (see Figure 4). In the discrete cases of simulations, the discrete
derivative operator is denoted “∆”, as opposed to the continuous notion of derivative “d”.



Materials 2017, 10, 515 6 of 10

Figure 4. Simulation results of f 0 − ε0 curves with m = 2.

Figure 5. Critical power law behaviors in the vicinity of the catastrophic failure point for the case
shown in Figure 2b. (a) k = 0.15; (b) k = 0.18; (c) k = 0.25. The straight line of slope −1/2 is drawn to
guide the eye.

Figure 6. Critical relationship between dε/dε0(d2ε/dε0
2)–1 and displacement ε0 near the catastrophic

failure point for the cases shown in Figure 4. (a) k = 0.15; (b) k = 0.18; (c) k = 0.25. An almost linear
relationship between dε/dε0(d2ε/dε0

2)–1 and ε0 was exhibited by all samples in the vicinity of the
catastrophic failure point.
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Figure 7. Critical relationship between dD/dε0(d2D/dε0
2)−1 and displacement ε0 near the catastrophic

failure point for the cases shown in Figure 4. (a) k = 0.15; (b) k = 0.18; (c) k = 0.25. An almost linear
relationship between dD/dε0(d2D/dε0

2)−1 and ε0 was exhibited by all samples in the vicinity of the
catastrophic failure point.

6. Discussion

6.1. Models of Catastrophic Failure Induced by Energy Release

In the laboratory tests of the heterogeneous materials, a sample is usually loaded by monotonically
increasing the displacement of the testing machine crosshead [7,28,29]. The loading apparatus deforms
associated with the deformed sample and thus stores the elastic strain energy. The loading apparatus
will release the stored energy through the recovery of the deformation during the strain-softening
phase after the peak force. When the energy release of the loading apparatus can compensate for
the fracture energy of the sample, the failure becomes self-sustaining without the need of additional
external work, and thus becomes catastrophic [7,28,29].

Many catastrophic events such as the instability of pillars in mining engineering [30], earthquakes,
rock outbursts, and avalanches are driven by mechanisms similar to those discussed in this paper,
and are explained by models [28,30–33] similar to the elastic-damageable part model presented in
this paper. The elastic spring has always been used to represent tributary zones such as a loading
apparatus, the zones outside the localized zone, and the rock mass surrounding faults and pillars.
A famous example is the spring-slider model that is used to demonstrate the stick-slip mechanism of
faults [31–33].

6.2. Critical Scaling Laws and their Application in Failure Prediction

The accelerating precursory signals near the material failure point represent a practical basis
for the application of failure forecasting models. Many catastrophic events, such as the collapse of
engineering structures, natural catastrophes and abrupt weather changes, all share similar critical
scaling laws [1,2,15,16]. In many current models for precursory acceleration, the rate of an observable
quantity Ω is usually described by an empirical relationship [1–4,11–16,20–26]:

.
Ω = C(t f − t)−β (18)

where tf is the failure time, C is a scaling parameter, and β is the critical exponent.
Equation (18) is obtained mainly based on empirical analyses of creep deformation under

constant load. However, in practical engineering, materials are usually subject to different loading
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conditions besides creep deformation. In considering that creep is not the dominant factor of material
failure, Kilburn [34] proposed a model to extend analyses to deformations under increasing stress
by accommodating changes with stress. He suggested an alternative expression to describe how
precursory time series can be determined from a relation between fracturing and stress. Hao et al. [28]
introduced a response function as the change in the deformation of the sample with respect to the
crosshead displacement of a testing machine and found that the response function showed a critical
power-law singularity at the failure point. In the tests, the crosshead displacement is a combination of
the deformations of both the loading apparatus and the deformed sample.

The empirical Equation (18) is usually restricted to describe stress-rate-dependent material failure
resulting in precursory rates being measured with respect to time. For a “stress-rate independent”
material, which is defined as the case where stress in the material is independent of the strain rate,
the conditions for material failure are not immediately evident from using time variations alone.
The deformation and damage primarily depend on the controlling variable such as, for example,
the boundary displacement shown in the present model in this paper. For these kinds of materials,
the relative change of measurable responses such as damage and strain, with respect to the controlling
variable, are most useful in its application. Hao et al. [11] proposed a similar precursory relation
by defining the response function as the relative change of measurable responses (such as damage
and strain) with respect to the controlling stress when the material is subject to a monotonically
increasing stress.

Equation (1) is of widespread interest as a forecasting tool and has been extensively applied to
material failure phenomena. Equations (14) and (16) are equivalent to the relation given in (18) if the
boundary displacement ε0 is increased at a constant rate with respect to time such that dε/dε0 (dD/dε0)
∝ dε/dt (dD/dt). This result may suggest that the time-derivatives given in Relation (18) might be
a subset of a more general expression connecting the controlling variable derivatives.

In application, Equations (14) and (16) would be rewritten into a linear form, given as:

(d R/d ε0)
−1/β = k−1/β(ε0f − ε0), (19)

where R represents a corresponding response variable (such as the strain and damage discussed
in this paper). The failure point can then be determined by linearly extrapolating the curve of
(dR/dε0)–1/β against ε0 to zero. In comparison, the prediction made by using Relations (15) or (17)
does not have the benefit of knowing in advance the value of the exponent β. The failure time can be
estimated by linearly extrapolating the curve of the proportion of the signal rate on the acceleration
against the controlling variable, the boundary displacement ε0, to zero. In the application of these
two methods, it is both feasible and preferable that the two methods are used together in order for
each one to verify the trend given by the other.

It should be mentioned that for the present method (Equations (15) and (17)), the signal has to be
differentiated with respect to the boundary displacement and then inverted. These calculations will
inevitably induce large fluctuations and thus pose an important limitation in terms of real-time
operational usage. Two methods for point data and continuous deformation data, respectively,
were suggested by Bell et al. [35,36] to diminish such a limitation by the use of a likelihood function
and a Global Linearized Model (GLM) of the unprocessed signal rate.

7. Conclusions

A model of a spring-fiber bundle oriented in series is proposed to describe material failure.
Two failure processes are observed. The first process is the gradual failure characterized by a continuous
force that decreases to zero. The second is a catastrophic failure characterized by a violent avalanche
of fibers. A critical condition inducing the catastrophic failure is reached when the stiffness of the
elastic spring is equal to the negative tangent slope of the force-deformation curve of the fiber bundle.
Thus, the catastrophic failure will not occur at any point during the loading process if the stiffness of
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the spring is larger than the −(df 0/dε)min of the minimum slope of the force-deformation curve of the
damageable part.

Two critical scaling laws work as the precursors of catastrophic failure. The deformation rate of
the damageable part increases according to the power law behavior dε/dε0 ∼ (ε0f − ε0)

−1/2 near the

catastrophic failure point. dε
d ε0

(
d2ε

d ε0
2

)−1
(or d D

d ε0

(
d2D
d ε0

2

)−1
) presents a linear relationship with (ε0f − ε0).

This suggests that the catastrophic point ε0f can, potentially, be predicted by a linear extrapolation of

the curve of dε
d ε0

(
d2ε

d ε0
2

)−1
(or d D

d ε0

(
d2D
d ε0

2

)−1
) against ε0 to zero.
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