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Abstract. The present paper follows our previous work [Yang et al., Phys. Rev. E,
90 (2014), 063011] in which the bending modes of a symmetric flexible fiber in viscous
flows were studied by using a coupling approach of smoothed particle hydrodynamics
(SPH) and element bending group (EBG). It was shown that a symmetric flexible fiber
can undergo four different bending modes including stable U-shape, slight swing, vi-
olent flapping and stable closure modes. For an asymmetric flexible fiber, the bending
modes can be different. This paper numerically studies the fiber shape, flow field and
fluid drag of an asymmetric flexible fiber immersed in a viscous fluid flow by using the
SPH-EBG coupling method. An asymmetric number is defined to describe the asym-
metry of a flexible fiber. The effects of the asymmetric number on the fiber shape, flow
field and fluid drag are investigated.

AMS subject classifications: 76M28, 76D99, 74S99

Key words: Fluid-structure interaction, asymmetric flexible fiber, drag force, smoothed particle
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1 Introduction

Trees, grasses and some animals have to withstand fluid forces such as aerodynamic
forces in air or hydrodynamic forces in water. They can change their shapes or postures
to adapt the fluid forces. This strategy can change the fluid forces imposed on them.
For example, a fish can get forward thrust and use environmental vortices by waving
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motion [1,2] and a plant can reduce fluid drag by reconfiguration [3,4]. For flexible struc-
tures such as most plants, some animals and flags, their shapes become a function of the
relative speed between the corresponding object and the ambient fluid. Thus dynam-
ics and flow patterns of the interactions of flexible structures and fluids are much more
complex than that of rigid structures and fluids [5, 6].

There have been a number of experimental, theoretical and numerical studies on the
dynamics of flexible structures interacting with fluid flows over the past decades. Vo-
gel [3, 7] experimentally studied the fluid drag and reconfiguration of broad leaves in
high winds. The experiments showed that some broad leaves rolled up into cone shapes
in strong winds and the drag on the leaves increases slower than the square of the wind
speed. Laura et al. [8] also studied the reconfiguration of broad leaves experimentally
and numerically. Gossellin et al. [9] investigated experimentally the drag reduction of
two flexible plates of different shapes in air. Alben et al. [10, 11] experimentally and nu-
merically studied the drag reduction of a flexible fiber immersed in a soap film. Yang et
al. [12, 13] numerically investigated the bending modes and drag reduction of a flexible
fiber immersed in a viscous flow using a coupling method of smoothed particle hydro-
dynamics (SPH) and element bending group (EBG).

Although a flexible fiber is a very simple structure, the dynamics of a flexible fiber
interacting with a viscous flow have not yet been thoroughly explored. Most previous
studies on drag reduction of flexible fibers in flows were focused on cases in which a
symmetric flexible fiber (fixed on its midpoint) is immersed in a viscous flow. However,
there are more frequent cases with asymmetric flexible fibers (fixed on points different
from its midpoint) interacting with viscous fluids and these can produce quite different
behaviors from symmetric fibers.

Due to the existence of moving interfaces and deformable boundaries, it is usually
a big challenge to model fluid-flexible fiber interaction, especially for cases with high
Reynolds numbers. As such, a numerical approach which can well treat moving inter-
faces and deformable boundaries would be appealing in modeling fluid-flexible fiber
interaction. Yang et al. [12, 14] developed a SPH-EBG coupling method to model the in-
teraction of a flexible fiber interacting with viscous fluids. The SPH method is used to
model fluid motion, while the EBG method is used to model fiber motion. Since both
SPH [15] and EBG [16] are Lagrangian particle methods, the coupling of these two meth-
ods does not lead to significant difficulties. The SPH-EBG coupling method was first used
to model red blood cell (RBC) deformation in a shear flow [17]. Later it was extended to
model a flexible fiber in a viscous flow [12,13] and dam-break flows impacting on flexible
structures [14].

In this paper, the SPH-EBG coupling method is further used to study the dynamics
of an asymmetric flexible fiber interacting with a viscous flow including the fiber shape
(bending modes), flow field, and drag force. Comparing to the simulation of symmetric
cases, there is no more numerical difficulty in simulating asymmetric cases. The numer-
ical method used for this work is nearly the same as the method used in [12]. In order
to make the flow field smoother and the method more stable, the artificial viscosity pro-
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posed by Monaghan [18] is used in this work. The details of the numerical method are
given in Section 2. The computational settings are given in Section 3. Numerical results
and discussions are given in Section 4. Finally, the conclusions are given in Section 5.

2 Numerical methodology

2.1 SPH method

SPH is a Lagrangian meshfree particle method, which was first proposed to model astro-
physical problems [19, 20]. In recent years, the SPH method was widely used to solve
many fluid flow problems such as free surface flows [21–23], viscous incompressible
flows [24, 25], and fluid-structure interactions [26, 27]. In the present study, the SPH
method is applied to simulate fluid flow. The Lagrangian form of the Navier-Stokes
(N-S) equations are used for viscous fluid

dρ

dt
=−ρ∇·u, (2.1a)

du

dt
=g−

1

ρ
∇p+

µ

ρ
∇2u, (2.1b)

where ρ is the fluid density, u is the fluid velocity, g is the body force acting on the fluid,
p is the fluid pressure, and µ is the dynamic viscosity of the fluid.

In SPH, the N-S equations can be written in the following form:

dρa

dt
=∑

b

mb(ua−ub)·∇aWab, (2.2a)

dua

dt
=ga−∑

b

mb

( pa

ρ2
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+
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)

∇aWab+∑
b
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ρaρb(r
2
ab+η)

(ua−ub), (2.2b)

where the subscripts a and b denote SPH particles, m is the mass of a SPH particle. W is
a kernel function.

Wab ≡W(ra−rb,h), ∇aWab ≡
dWab

drab

rab

rab
,

here h is a smoothing length used to control the width of the kernel. Π is an artificial
viscosity proposed by Monaghan [18]

Πab =











−αchuab ·rab

ρ̄ab(r
2
ab+η)

, uab ·rab <0,

0, uab ·rab ≥0,

(2.3)

where ρ̄ab =(ρa+ρb)
/

2. α is a parameter for controlling the strength of the artificial vis-
cosity.
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Eqs. (2.2a) and (2.2b) are closed by using the following equation of state [24]:

p= c2(ρ−ρ0). (2.4)

Here, c is a numerical speed of sound, ρ0 is a reference density of the fluid.

2.2 EBG method

The movement and deformation of a flexible fiber is modeled by using the EBG model,
which replaces the fiber with particles. The fiber particles can interact with neighboring
fiber particles and fluid particles. In the EBG model, the bending moment is transformed
to pairs of forces acting on particles [16, 17]. An EBG is made of two adjacent line seg-
ments connecting three neighboring particles (see Fig. 1).

 

 Mb 

c 

b 

a 

Mb 
 

  

Figure 1: An EBG element is made of two adjacent line segments connecting three neighboring particles. In
the EBG model, the bending moment is converted to pairs of forces acting on particles.

According to Newton’s second law of motion, the equation for a flexible fiber particle
can be written as follows

m
du

dt
=T+FB+FD+g, (2.5)

where T denotes the tension acting on a fiber particle from adjacent fiber particles, FB de-
notes the force due to EBG bending moment, FD denotes the fluid force from neighboring
fluid (SPH) particles.

The tension acting on particle b from its adjacent particle a is

Tba=EA

(

rab

r0
ab

−1

)

rab

rab
, (2.6)

where EA is the tensile rigidity of the flexible fiber, r0
ab is the reference distance between

particles a and b.
The bending force FB

ba acting on particle b from particle a is defined as

FB
ba=

Mb×rab

r2
ab

, (2.7)
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where Mb denotes the bending moment acting on particle b (see Fig. 1), which is defined
as

Mb =
EI
(

θb−θ0
b

)

rba+rbc
, (2.8)

where EI and θ is the bending rigidity and the deflection of the flexible fiber, respectively.
θ0

b is the reference deflection at particle b.

2.3 SPH and EBG coupling

For simulating a flexible fiber in a fluid flow, the SPH particles are used to model fluid
and the EBG particles are used to model flexible fiber. The interaction of the fluid and
the flexible fiber is simulated by the interaction of neighboring fluid (i.e., SPH) and fiber
(i.e., EBG) particles. As fluid and fiber particles are regarded as neighboring particles,
it is natural to include fiber particles when calculating forces acting on fluid particles.
In other words, for a fluid particle with both neighboring fluid and fiber particles, the
total number of particles in summation consists of the total number of neighboring fluid
particles and the total number of fiber particles. Therefore, the fiber particles can be
regarded as a special type of SPH particles for boundary (or interface) treatment. On
one hand, they can interact with regular SPH particles for fluids to render fluid-structure
interaction. On the other hand, they can interact with each other as EBG particles. More
details can be found in [12].

3 Computational settings

The computational settings for the interaction of fluid and flexible fiber is shown in Fig. 2.
The fiber is immersed in fluid. At the initial state, the fiber is a straight line in the direction
perpendicular to the channel. A point of the fiber is fixed in the midline of the channel.
The fixed point cannot move and rotate. The two ends of the fiber are free to move. In
order to study the dynamics of an asymmetric fiber, the fixed point of the fiber is not the
midpoint of the fiber in most cases. The system is initially at rest. The fluid is driven by

 

g 

Fiber 
x 

Inlet Outlet

L- 

L
+

 

y 

Figure 2: A sketch of the computational settings for fluid-flexible fiber interaction. The dashed line is the initial
position of the fiber, while the solid line is the illustration of a bended position of the fiber in the flow.
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Table 1: The length of fibers.

Case No. 1 2 3 4 5 6 7 8 9

L(cm) 3.0 3.0 3.0 3.0 4.0 4.0 4.0 4.0 4.0

L−(cm) 1.5 1.0 0.5 0 2.0 1.5 1.0 0.5 0

L+(cm) 1.5 2.0 2.5 3.0 2.0 2.5 3.0 3.5 4.0

e 0 1/3 2/3 1 0 1/4 1/2 3/4 1

a body force g. In order to let the flow speed increase slowly and linearly, the body force
is variable over time. Periodic boundary condition is used in the flow direction. In order
to remove the influence of the outlet flow on the inlet flow, a layer of porous media is
set in the inlet. In our simulations, the porous media is described by a drag term in the
governing equation [12, 27].

The channel is 0.4m in length and 0.09m in width. The density and dynamic viscosity
of the fluid are 1000kg/m3 and 0.004Ns/m2, respectively. The bending rigidity of the
fiber is 0.002Jm. The length of the fiber is 3cm and 4cm. The position of the fixed point is
from the midpoint to the upper end of the fiber. The details of the fiber lengths are shown
in Table 1.

In order to describe the asymmetry of the fiber, a non-dimensional parameter, asym-
metric number, is defined as

e=
L+−L−

L
, (3.1)

where L = L++L− is the total length of the fiber, L+ is the fiber length from the fixed
point to the longer end, and L− is the fiber length from the fixed point to the shorter end
(see Fig. 2). In this paper, the longer end is also the lower end in all the asymmetric cases.
According to definition equation (3.1), the asymmetric number e is in the range of 0 to 1:
e=0 is the symmetric case, while e=1 is the most asymmetric case.

4 Results and discussions

4.1 Fiber shape

Figs. 3-5 show the fiber shapes with the same fiber length L= 3cm but different asym-
metric numbers e= 0,1/3,2/3 and 1. In general, for the symmetric case (e= 0), the fiber
bends symmetrically, which means the two ends of the fiber bends nearly the same; for
the asymmetric cases (e= 1/3,2/3 and 1), the fibers bend asymmetrically, which means
the lower parts (longer ends) of the fibers bend more than the upper parts (shorter ends).
It is obvious that at the same flow velocity, a longer end undergoes a larger fluid force
than a shorter end does, thus a longer end is easier to bend in the same flow. It is also
shown in Figs. 3-5 that as the asymmetric number increases, the fiber shape becomes
more complex. When the asymmetric number e = 1, the fiber even bends like a flag at
high flow velocities.

https://www.cambridge.org/core/terms. https://doi.org/10.4208/cicp.OA-2016-0208
Downloaded from https://www.cambridge.org/core. Australian Catholic University, on 11 Aug 2017 at 09:31:54, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.4208/cicp.OA-2016-0208
https://www.cambridge.org/core


X. F. Yang and M. B. Liu / Commun. Comput. Phys., 22 (2017), pp. 1015-1027 1021

  

(a) (b)

Figure 3: Comparison of shapes of symmetric ((a) e= 0) and asymmetric ((b) e= 1/3) fibers with the same
fiber length L=3cm.

 

Figure 4: Fiber shapes with fiber length L=3cm
and e=2/3.

 

Figure 5: Fiber shapes with fiber length L=3cm
and e=1.

4.2 Flow field

Figs. 6 and 7 show the streamlines of the flow field around the flexible fibers of the same
length L= 3cm but different asymmetric numbers. It is shown in Figs. 6 and 7 that the
flow is symmetric around the symmetric fiber when the flow velocity is 0.5m/s, while
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u = 0.5 m/s 

u = 1 m/s 

u = 2 m/s 

u = 5 m/s 

Figure 6: The streamlines for the flexible fiber of length L=3cm but different asymmetric number e=0 (left)
and e=1/3 (right) at different flow velocities. The color shows the angular velocity of SPH particles.

the flow fields are asymmetric around the asymmetric fibers. However, as flow velocity
increases, the so-called Karman vortex streets appear behind all the fibers regardless of
their asymmetric numbers. Because of vortex shedding effects, all the fibers in the four
cases shown in Figs. 6 and 7 begin to flap. As the asymmetric number increases, the
longer end of the fiber flaps more and forms a more complex shape. We can see from
Figs. 6 and 7 that at flow velocity of 5m/s, the symmetric fiber (e=0) only bends around
the fixed point, however, besides the fixed points, the asymmetric fibers (e>0) also bend
around their free longer ends: for the fiber of e=1/3, there is one more bend on the free
longer end; for the fibers of e= 2/3 and 1, there are two more bends on the free longer
ends.
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u = 0.5 m/s 

u = 1 m/s 

u = 2 m/s 

u = 5 m/s 

Figure 7: The streamlines for the flexible fiber of length L=3cm but different asymmetric number e=2/3 (left)
and e=1 (right) at different flow velocities. The color shows the angular velocity of SPH particles.

4.3 Drag force

Fig. 8 shows the drag forces per profile length acting on the flexible fibers with the same
length L=3cm but different asymmetric numbers e=0,1/3,2/3, and 1. We can see from
Fig. 8 that when flow velocity is less than 1.5m/s, the drag forces on the symmetric fiber
(e = 0) is larger than the drag forces on the asymmetric fibers (e = 1/3,2/3 and 1). It is
observed that the fiber with a larger asymmetric number undergoes a less drag force. The
reason is that a longer end of a fiber is easier to bend and to form streamlined shapes at
low flow velocities, and a more streamlined shape led to a less drag. When the asymmet-
ric number increases, the length of the longer end of the fiber also increases, so the drag
force decreases, that is, a larger asymmetric number has a less drag. However, as the flow
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Figure 8: The fluid drag per profile length as a function of flow velocity for fibers of the same length L=3cm
but different asymmetric number e=0,1/3,2/3 and 1.
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Figure 9: Log-log plots of the fluid drag per profile length as a function of flow velocity for fibers of the same
length L=3cm but different asymmetric number e=0,1/3,2/3 and 1.

velocity increases, the drag forces on the asymmetric fibers increase faster than the drag
on the symmetric fiber. There are two possible reasons: 1) the effect of the short end of
the fiber increases as flow velocity increases; 2) at high flow velocities, the longer end of
the fiber flaps, which lead to large drag. Since the drag on an asymmetric fiber increases
faster than the drag on the symmetric fiber, the former is larger than the later when the
flow velocity is larger than a certain value as shown in Fig. 8, that is, the drag forces on
the fibers with e= 1/3,2/3, and 1 are larger than the drag force on the symmetric fiber
with e=0 when flow velocity is larger than about 1.8, 2.5, and 4.9m/s, respectively.

Fig. 9 shows the log-log plots of fluid drag for fibers with different asymmetric num-
bers. The data in Figs. 8 and 9 are the same except that Fig. 9 is used to show the drag
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Figure 10: The fluid drag per profile length as a function of flow velocity for fibers of the same length L=4cm
but different asymmetric number e=0,1/4,2/4,3/4, and 1.
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Figure 11: Log-log plots of the fluid drag per profile length as a function of flow velocity for fibers of the same
length L=4cm but different asymmetric number e=0,1/4,2/4,3/4 and 1.

scale. It is shown in Fig. 9 that at flow velocities lower than 0.4m/s, the drag scaling of
the flexible fibers is between U and U4/3. As flow velocity increases, the drags increase to
the scale of U4/3 to U2. Fig. 9 also shows that when the flow velocity is larger than 1m/s,
the drag scale increases as the asymmetric number increases.

Figs. 10 and 11 show the drag forces per profile length for the fibers of the same length
L=4cm but different asymmetric numbers. The effect of the asymmetric number on the
fiber of length L=4cm is very similar to that of the fiber of length L=3cm. The difference
is that there is a quick increase of drag on the symmetric fiber of length L= 4cm when
flow velocity is larger than 4m/s as shown in Fig. 10. This is caused by the flapping of
the fiber.
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5 Conclusions

In this paper, the dynamics of an asymmetric flexible fiber interacting with a viscous flow
is studied numerically using the SPH-EBG coupling method. To describe the asymmetry
of a flexible fiber, an asymmetric number is defined based on the lengths of the longer
and shorter ends of the fiber. A series of numerical simulations with fibers of different
asymmetric number from 0 to 1 were performed to study the effect of asymmetry on the
fiber shape, flow field and fluid drag.

From the numerical simulations, the following conclusions can be drawn:

1. For the asymmetric fibers in viscous fluid flows, the resultant fiber shapes and flow
fields are asymmetric. As flow velocity increases, Karman vortex streets are pro-
duced behind all the fibers regardless of the asymmetric numbers.

2. As the asymmetric number increases, the flexible fiber bends more on its longer free
end at high flow velocities.

3. As the asymmetric number increases, the drag force decreases at low flow veloci-
ties. However, as flow velocity increases, the drag on the fiber with larger asym-
metric number increases faster.
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