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a b s t r a c t

For pipelines with vertical imperfection, upheaval buckling may occur if the axial compressive force
reaches the critical axial force of upheaval buckling. The critical axial force is sensitive to the pipeline
imperfection and previous researchers have suggested that there is no universal analytical solutions
for the critical axial force of upheaval buckling for imperfect pipelines. However with theory of dimen-
sional analysis, it was proved that there should be a general form of the approximation formulas of
the critical axial force, although the coefficients in the formulas are different for different imperfection
shapes. And most recently, Zeng et al. proposed approximation formulas of the critical axial force
accounting for the Out-of-Straightness (OOS) of the imperfection, while they haven’t considered the
influence of the imperfection size. In this paper, effect of the imperfection size on the critical axial force
was proved significant even when the OOS and shape of the imperfection are determined. To account for
this size effect, a parameter named the dimensionless imperfection length is proposed based on theory of
dimensional analysis. This parameter combined the effects of the imperfection length, the vertical dis-
tributed force and the pipeline bending stiffness. A formula of the critical axial force, covering the newly
proposed parameter and the OOS of the imperfection, is derived, and coefficients in the formula are deter-
mined with numerical results from the Vector Form Intrinsic Finite Element (VFIFE) simulations. Notably,
the coefficients in the formulas are not constants but assumed to change with the OOS and the dimen-
sionless imperfection length to account for the geometric nonlinearity of the initially curved pipeline.
The proposed formulas are proved more accurate than previous ones and applicable for pipes with differ-
ent cross-sectional properties and different buried conditions. They are also suggested within the error
range of ±5% in the dimensionless scope of the OOS from 0.001 to 0.01 and the dimensionless imperfec-
tion length from 0.89 to 4.95.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

When a pipeline is with vertical imperfection, it may buckle
vertically once the axial compressive force is larger than a value
called the critical axial force of upheaval buckling. The buckling
behavior may eventuate in local buckling or rupture of the pipe
wall and then cause severe economic losses and environmental
damage [1–3]. Fig. 1a and b show a buried pipeline with an initial
structural imperfection and an unburied pipeline laid on an uneven
seabed, respectively. They are both at the risk of upheaval buckling
if the pressure or temperature of the internal flow is high enough.
Because the upheaval buckling happens only when the axial
compressive force of the pipeline reaches the critical value, design-
ers could prevent its happening by keeping the axial force smaller
than the critical axial force of upheaval buckling. Therefore, one of
the key problem in pipeline design is to predict the critical axial
force of upheaval buckling with a great precision.

Many researches have been conducted to study the critical axial
forces of upheaval bcukling for pipelines with initial imperfections.
Tvergaard [4] proposed governing equation and gave analytical
solutions for upheaval buckling of pipelines with periodic sinu-
soidal imperfections. In the analysis, the buckling mode is assumed
to be growth of the initial imperfection. Yun and Kyriakides [5]
studied the upheaval buckling of buried pipelines through a large
deflection extensional beam nonlinear formulation. They found
the critical axial forces are sensitive to the pipeline imperfection.
Richards [6] studied the influence of imperfection shape on
upheaval buckling behavior and suggested that this influence is
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Fig. 1. Schematic diagram of (a) a buried pipeline, and (b) an unburied pipeline, with initial upheaval structural imperfections.
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significant. Croll [1,7] deduced analytical expressions of the upper
and lower bounds of the critical axial force, whilst the length and
height of the imperfection are separating in their equations. Mal-
tby and Calladine [8,9] and Taylor et al. [10–13] proposed analyti-
cal solutions of the critical axial forces of upheaval buckling and
suggested the great influence of the imperfection length L and
hight H on the ciritical axial force. Also, they assumed that the
buckling mode of a pipeline is the growth of the initial imperfec-
tion. Karampour et al. [14] proposed a tabulated analytical solution
in terms of the governing characteristic equations based on a long
heavy elastic beam resting on a rigid foundation. Critical axial
forces can be obtained by numerically solving the characteristic
equations, while only characteristic equations for several typical
imperfection shapes have been obtained. Actually, Zhang and Duan
[15] has suggested that although there have been already some
formulas to calculate critical axial force for some particular initial
imperfection shapes, there is no universal analytical solution to
express the effects of initial imperfection on the critical axial force.
The reason is that the critical axial force is strictly related to the
imperfection shape and until now researchers could only find out
analytical solutions for several imperfection shapes which could
be represented by some common functions. Wang et al. [16] con-
ducted perturbation analysis for upheaval buckling of imperfect
pipeline. They also pointed out that since the upheaval buckling
of submarine pipelines is an unstable nonlinear and localized prob-
lem, there is no universal analytical solution for this problem.

Nevertheless, Palmer et al. [17] proposed that there should be a
general form of the formulas for the critical force of upheaval buck-
ling. They pointed out that the general form of the formulas would
keep unchanging for different imperfection shapes, although the
coefficients in the formulas could be different for different imper-
fection shapes. This means that if the form of the formulas is
obtained with dimensional analysis, coefficients in the formulas
can be fitted with numerical or experimental data for pipelines
with different imperfections. Most recently, with the theory of
dimensional analysis and finite element analysis, Zeng et al. [18]
studied the influences of the Out-of-straightness (OOS) and the
imperfection shape and proposed approximation formulas of the
critical axial force. Also, they suggested that the forms of the crit-
ical axial force formulas for different imperfection shapes are the
same. The formulas of Zeng et al. [18] have the form of Eq. (1).

Pcr ¼ Cðq2EIÞ
1
3 H

L

� �b

ð1Þ

where Pcr is the critical axial force; H and L are the height and length
of the imperfection, respectively; q is the vertical distributed force;
EI is the bending stiffness of the pipeline; C and b are constants.

The above equation includes the influence of the imperfection
in the form of the OOS H/L and indicates that Pcr will keep unchang-
ing when EI, q as well as the shape and the OOS H/L of the imper-
fection is determined. The above equation considers the influence
of the Out-of-straightness H/L, which is the relative height of the
imperfection. However, it couldn’t reflect the influence of the
‘‘size” of an imperfection. For example, following Eq. (1), if EI, q
and shape of the imperfection are determined, a pipeline with a
large imperfection (e.g., L = 100 m and H = 0.1 m) and a pipeline
with a small imperfection (e.g., L = 10 m and H = 0.01 m) will have
the same critical axial force of upheaval buckling, since the two
imperfections have the same OOS = 0.001. However in our study,
it is found that for a typical imperfection shape, even when the
bending stiffness EI, the vertical distributed load q and the OOS
H/L are determined, the imperfection size could influence the crit-
ical axial force of upheaval buckling. Therefore, this study will
focus on this size effect and deriving more general formulas for
the critical axial forces of upheaval buckling.

In this paper, numerical simulations are conducted using the
Vector Form Intrinsic Finite Element (VFIFE) method. The results
are compared with those of conventional Finite Element Method
(FEM) and effect of the imperfection size is discussed. Subse-
quently, a new parameter named dimensionless imperfection
length is proposed by using theory of dimensional analysis.
Approximation formula of the critical axial forces is derived and
it covers the dimensionless imperfection length and the OOS. Coef-
ficients in the proposed formula are fitted with numerical results
for pipelines with three imperfection shapes. Moreover, the pro-
posed formulas are compared with numerical results of pipelines
with different cross-sectional properties and different buried con-
ditions. And finally, the dimensionless application scopes of the
proposed formulas are determined.
2. Numerical method and analysis

In this paper, the Vector Form Intrinsic Finite Element (VFIFE or
V-5) method is used to conduct numerical simulations. The VFIFE
method was proposed by Shih et al. [19] and Ting et al. [20,21].
It is not only a vector mechanics-based mathematical calculation
method for structures with large deformation, but also accurate
for small deformation problem [22]. In recent years, it was used
in analysis of pipelines and suggested to be a useful tool.

Yuan et al. [22] studied the damage of pipelines caused by sub-
marine landslides or debris flows using the VFIFE plane beam ele-
ment. Three-dimensional VFIFE beam element was used to
simulate submarine pipelines by Xu and Lin [23]. They worked
out a FORTRAN procedure with the VFIFE method and proved the
VFIFE method is as accurate as traditional FEM in simulating of
free-spanning pipelines. In the procedure, the VFIFE method was
integrated with the UWAPIPE model [24,25] to consider the com-
plicated pipe-soil interaction. For simulation of long-distance
pipelines, the computing amount is considerable. Therefore, Xu
and Lin [26] proposed a high-efficiency Message Passing Interface
(MPI) parallel scheme suitable for the VFIFE method and developed
the MPI-parallel VFIFE procedure. Using the procedure, they simu-
lated the configuration of a 10 km long-distance pipeline lying on a
real irregular seabed and proved the VFIFE model is a useful tool
for simulation of long-distance pipelines. To study the potential
failure positions and plastic deformation of pipelines subjected to
active faults, Liu et al. [27] developed the procedure by incorporat-
ing the VFIFE method with fiber element model. Furthermore, Xu
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and Lin [28] proposed a beam-shell coupling scheme based on the
VFIFE method to simulate local buckling of long-distance pipelines
crossing active faults. A MPI parallel procedure using the beam-
shell coupling scheme was also developed and numerical results
shows that the procedure is both efficient and accurate for analysis
of long-distance pipelines.

In the present research, the VFIFE procedure developed by Xu
and Lin [23,26] is used in the upheaval buckling simulation of pipe-
lines. The foundation is assumed to be rigid and the pipeline is ini-
tially in contact with the foundation. For the simulations in this
paper, the VFIFE method and the conventional FEM [15,18] are
both effective tools, while the VFIFE method might be more
promising in study of global buckling for long-distance pipelines
because its advantages in integration with different pipe-soil inter-
action models [23,26–28] and its high efficient in MPI parallel com-
puting [26,28].

In this section, the three-dimensional VFIFE beam element is
briefly introduced. Subsequently, pipelines with vertical imperfec-
tions are simulated using the VFIFE method. And the results are
compared with traditional FEM results.

2.1. The VFIFE method

The VFIFE method models the analyzed domain composed of
finite mass particles linked by elements. As shown in Fig. 2a, a
pipeline is decomposed of finite mass particles linked by 3D beam
elements. The mass of the pipeline is concentrated at the particles
and the elements are weightless. Shape and position of a solid
structure are described by tracing the particles’ motions. Note that
a mass particle is also called a node to conform to conventional
FEM. In Fig. 2b, ta and ti are the starting and ending time of a move-
ment, respectively. The time from ta to ti is discretized into a series
of small time steps divided by tb, tc, td, . . ., ti.

In the VFIFE method, the following assumptions are made [22]:
a) The deformation of the elements during each time step is so
small that the hypothesis of small deformation in the mechanics
of the material is always satisfied; and b) The material properties
and structural dimensions of the structure do not change in each
time step. For example, during the time step from ta to tb, the mate-
rial properties and structural dimensions are constant. This infor-
mation is updated only after the time step dt (at tb).

During one time step tc � t � td, the state at tc, instead of the
starting state at ta, is taken as the initial condition. Node movement
is computed according to the Second Newton’s Law as:

Ma
d2xa
dt2

ðtÞ ¼ PaðtÞ þ faðtÞ ða ¼ 1;2;3; � � � ;NÞ ð2Þ

Ia
d2ha
dt2

ðtÞ ¼ Q aðtÞ þmaðtÞ ða ¼ 1;2;3; � � � ;NÞ ð3Þ

where a is the node number and t is time;Ma is the mass matrix; xa
is the node position; P(t) is the external force; f(t) is the internal
force; Ia is the rotational inertia matrix; ha is the rotational vector;
Fig. 2. (a) Structural discretization, and (b) time d
Qa and ma are the external and the internal moments matrix,
respectively. Eqs. (2) and (3) illustrate that the VFIFE method is a
time-domain analysis method. Refer to Ting et al. [29] for details
about calculating the mass matrix and the rotational inertia matrix.

The external forces in Eqs. (2) and (3) may be either node forces
directly applied on the nodes or distributed force applied on the
elements. The equivalent forces and moments of the distributed
force can be determined according to the principles of static
equilibrium.

The VFIFE method is a combination of the theory of particle
dynamics and FEM. As shown in Fig. 2a, the nodes’ motion is gov-
erned by the theory of particle dynamics as shown in Eqs. (2) and
(3), whilst the interaction forces between neighboring nodes are
calculated out using FEM. The node inner forces in Eqs. (2) and
(3) are the summation of the forces from the linking elements.

Displacement of an element is composed of rigid motion and
deformation of the element [30]. In the VFIFE method, the rigid ele-
ment motion is eliminated with fictitious reversed movement and
the element inner forces are directly calculated out with the ele-
ment deformation. Details about calculating the inner forces of
the VFIFE 3D beam element are introduced in Ting et al. [29]. In
the VFIFE method, element deformation is obtained using the ficti-
tious reversed element motion, the formulas of which is difficult to
derive for high-order elements. As a result, only several types of
low-order VFIFE elements have been proposed so far [19–
21,29,31].
2.2. Verification of the VFIFE method

Zeng et al. [18] studied the buckling of imperfect pipelines
using the software package ABAQUS. For the sake of comparison
and assessing the accuracy of the proposed VFIFE method, the
same pipeline used by Zeng et al. [18] is simulated in this section.
Fig. 3a shows the analytical model of the studied pipeline system.
This model is similar to the ones used by previous researchers
[11,15,18], who conducted analysis of pipeline upheaval buckling
using FEM. In Fig. 4, the critical axial forces are compared to results
in Zeng et al. [18]. The difference is small and the maximum rela-
tive difference is about 3%. The VFIFE procedure is therefore sug-
gested as accurate as the conventional FEM in analysis of
pipeline upheaval buckling.

Sensitivity analysis has been carried out and the modeled pipe-
line length was proved to hardly influence the critical axial force of
upheaval buckling but to greatly influence the post-buckling
behavior. This is in accordance with the proposition of Zhu et al.
[32] that the length of the modeled pipeline will not influence
the critical condition of global buckling. Longer the modeled pipe-
line is, more dramatic the post-buckling behavior will be and more
accurate it will be to identify the onset of upheaval buckling.
Therefore, the overall length of the modeled pipeline is determined
as 4L, where L is the imperfection length.

The parameters of the studied pipeline are listed in Table 1. The
pipeline is initially in contact with the rigid foundation and all
iscretizations, of the VFIFE 3D beam element.
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Fig. 3. (a) Analytical model of the studied pipeline system, and (b) diagram of three typical imperfection shapes.

Table 1
Parameters of the studied pipe.

Property Value

The outer diameter, D (mm) 457
The thickness of the steel pipe wall, t (mm) 14.3
The Young’s modulus, E (GPa) 2.07
The Poisson’s ratio, t 0.3
The equivalent cross-sectional moment of inertia, I (m4) 4.88 � 10�4

The equivalent cross-sectional area, A (m2) 0.0199
The distribution load on pipelines, q (N/m) 1500
The coefficient of thermal expansion, CTE (/�C) 1.17 � 10�5
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upheaval buckling behaviors happen within the elastic limit range.
Since exact profile of the imperfection is not always available,
three different imperfection shape functions (f1 � f3) are assumed
to account for possible pipeline imperfections. The three functions
have been adopted by previous researchers [14,15,18] and are pre-
sented as follows.

Shape 1

f 1ðxÞ ¼
H
2

1þ cos
2px
L

� �� �
; � L

2
6 x 6 L

2
ð4Þ
Shape 2

f 2ðxÞ ¼
H 8

3
2x
L

� �2 þ 3 2x
L þ 1

� �
1� 2x

L

� �3
; 0 6 x 6 L

2

H 8
3

2x
L

� �2 � 3 2x
L þ 1

� �
1þ 2x

L

� �3
; � L

2 6 x < 0

8><
>: ð5Þ

Shape 3

f 3ðxÞ ¼
H 4 2x

L þ 1
� �

2x
L � 1

� �4
; 0 6 x 6 L

2

�H 4 2x
L � 1

� �
2x
L þ 1

� �4
; � L

2 6 x < 0

(
ð6Þ

where H and L are the height and length of the imperfection, respec-
tively; x is the coordinate in the longitudinal direction. The curves
corresponding to the above functions are drawn in Fig. 3b. The func-
tion f1 represents the fundamental buckling mode of a fix-ended
column and previous researchers generally used shape 1
[1,7,10,14,18]. Shape 1 is the most moderate one among the three
imperfection shapes, and shape 3 is more compacted than shape 2.

To verify accuracy of the VFIFE procedure in pipeline buckling
analysis, ten simulations with different OOS from 0.001 to 0.01
are performed for each imperfection shape. In each simulation,
the imperfection length L is 100 m and the modeled pipeline length
is 400 m. Both ends of the pipeline are fixed. The pipeline is uni-
formly discretized with element length of 1 m and the time incre-
ment is dt = 5.0 � 10�5 s. The loading time of the simulation is
300 s, which is long enough to ensure the pipeline is in quasi-
static condition before upheaval buckling occurs. In a structural
analysis, the damping ratio can significantly influence the dynamic
structural responses whilst hardly influences the quasi-static
structural responses. Since a pipeline is in quasi-static condition
before upheaval buckling, numerical results show that the damp-
ing ratio hardly influence the critical axial force of upheaval buck-
ling. Larger damping ratio means more stable post-buckling
responses of the pipeline. Therefore, a relatively larger structural
damping ratio of f = 0.1 is used in this research to obtain more
stable post-buckling behaviors of the pipelines.

In this paper, the critical axial force instead of the critical tem-
perature of upheaval buckling is concerned. Therefore, the change
of temperature is used to model the axial forces caused by change
of both the temperature and the internal pressure following Zhang
and Duan [15]. The internal flow temperature of the pipeline at ini-
tial time t = 0 s is 10 �C, and after a linear increase, it reaches 210 �C
at the ending of the loading process (at t = 300 s). The coefficient of
thermal expansion is CTE = 1.17 � 10�5/�C as listed in Table 1.
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Tomes et al. [33] indicated that for a given imperfection, the
critical axial force required to buckle the pipeline is independent
of the level of the axial seabed friction. Karampour et al. [14] also
pointed out the effect of axial seabed friction on pipeline global
buckling is only evident in post-buckling stage. In the present
research, sensitivity analysis was carried out and the seabed fric-
tion was suggested hardly influence the critical axial force of
upheaval buckling. Therefore, the friction ratio between the pipe
and the foundation was set to a constant of zero.

When the imperfection height H = 0.1 m, the vertical displace-
ment curve and axial force curve of each pipeline’s middle point
are plotted in Fig. 5a and b, respectively. Since the axial compres-
sive force and vertical displacement of the pipeline change sud-
denly when upheaval buckling occurs, onset of upheaval buckling
is defined as the stage at which the sudden change appears. The
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Fig. 6. The typical Von Mises stress and deformatio
corresponding axial force is called the critical axial force of uphea-
val buckling. As shown in Fig. 5, the critical axial forces are
7898 kN, 6086 kN and 3551 kN for the pipelines with shape 1,
shape 2 and shape 3, respectively. This indicates that the imperfec-
tion shape has a big influence on the critical axial force of upheaval
buckling. And the more compacted the imperfection is, the lower
the critical axial force will be.

The Von Mises stress and deformation of the pipeline for the
case with shape 1 is plotted in Fig. 6, where in order to show the
vertical deformation, the vertical coordinates of the pipeline and
the seabed are enlarged proportionally. Before upheaval buckling,
the stress uniformly reaches at about 400 MPa when temperature
rising DT reaches 164 �C. After upheaval buckling, the stress in
pipeline far away from the imperfection has a big decrease, while
the stress in the imperfection region increases dramatically
because of the severe pipeline deformation.
n contour plot (shape 1, H = 0.1 m, L = 100 m).
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As shown in Fig. 7, as the imperfection height increases, not
only the critical axial force decreases, but also the upheaval buck-
ling occurs more moderately. When the imperfection height
H = 1.0 m, the stress and deformation of the pipeline is shown in
Fig. 8. After upheaval buckling, the maximum Von Mises stress
and deformation of the pipeline increase moderately with the tem-
perature rising. This is different with what shown in Fig. 6, where
the pipeline has a sudden deformation when upheaval buckling
occurs.

3. Dimensional analysis

Based on the Euler buckling theory and previous researches on
pipeline upheaval buckling [10,17], Zeng et al. [18] indicates that
the critical axial force Pcr is related to EI, q and H/L and will keep
unchanging when the above parameters are determined. However,
the approximation formulas of Zeng et al. [18] haven’t included the
influence of the imperfection size on the critical axial force. Using
dimensional analysis in a physics problem requires careful selec-
tion of fundamental quantities so that no key quantities is missed.
In this paper, the critical axial force is determined as function of EI,
q, H and L:

Pcr ¼ f ðEI; q;H; LÞ ð7Þ
In Eq. (7), dimensions are [Pcr] = F, [EI] = FL2, [q] = F/L, [H] = L and

[L] = L. There are 5 physical quantities and 2 independent dimen-
sions (F and L), so there must be 3 independent dimensionless
quantities according to the Buckingham’s Pi-theorem [34].

The Euler’s formula for critical axial force of buckling of a com-
pressed straight column is a(EI/L2), where a is determined with the
ends’ constrains of the column. For the present problem, the criti-
cal axial force is different with but relative to that of a compressed
straight column. Therefore in this paper, the critical force Pcr of the
initially curved pipeline is normalized with the critical axial force
of buckling of a compressed straight column as shown in Eq. (8).

�Pcr ¼ Pcr

EI=L2
¼ PcrL

2

EI
ð8Þ
Fig. 8. The typical Von Mises stress and deformati
Eq. (8) represents the ratio between the critical forces of the
studied imperfect pipeline and a compressed straight column. Fol-
lowing previous researches [15,18], another dimensionless quan-
tity is defined as the OOS H/L. For an initially imperfect pipeline,
the critical axial force is influenced not only by the relative height
(OOS, H/L) of the imperfection, but also by the size of the imperfec-
tion. Normalize the imperfection length L with EI and q, the third
dimensionless quantity is obtained as

L ¼ L
q
EI

� �1
3 ð9Þ

The above quantity �L is named the dimensionless imperfection
length and has two physical meanings. On one hand, the dimen-
sionless imperfection length is the relative size of the imperfection
with respect to the pipeline stiffness and the vertical distributed
load. On the other hand, as shown in Eq. (10), qL is a stabilizing fac-
tor representing the vertical force applied on the imperfect pipe-
line and EI/L2 represents the critical force of a compressed
straight column. Therefore, the dimensionless imperfection length
could also represent the relative vertical force applied on the
imperfect pipeline.

L ¼
ffiffiffiffiffiffiffiffiffiffiffi
qL

EI=L2
3

s
ð10Þ

According to the Buckingham’s Pi-theorem[34], the above three
dimensionless independent quantities, namely the critical axial
force �Pcr, the OOS H/L and the dimensionless imperfection length
�L, can form definite relationship that reflect the substance of the
problem,

�Pcr ¼ f L;
H
L

� �
ð11Þ

For imperfection with different shapes, previous researchers
[17,18] suggested that there is a general form of the formulas of
the critical force of upheaval buckling. Tan [34] suggested that
when processing numerical results, independent variables can
on contour plot (shape 1, H = 1 m, L = 100 m).
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divide into different application ranges and a power formula can be
adopted in each application range. Therefore, Eq. (11) is assumed
to be the following function.

�Pcr ¼ CLa
H
L

� �b

: ð12Þ

where C, a and b are parameters which could be fitted with numer-
ical results. Substitute the dimensionless critical axial force Eq. (8)
and the dimensionless imperfection length Eq. (9) into Eq. (1),
and then Eq. (13) is obtained.
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Table 2
Critical axial force of upheaval buckling for cases with different OOS (unit = kN).

OOS Shape 1 Shape 2

L = 50 m L = 100 m L = 200 m L = 50 m L

0.001 4789 7898 15315 4158 6
0.002 2697 4096 7705 2340 3
0.003 1881 2813 5176 1626 2
0.004 1447 2153 3908 1248 1
0.005 1176 1748 3147 1011 1
0.006 992 1472 2640 851 1
0.007 856 1270 2274 734 1
0.008 753 1120 1999 646 8
0.009 675 999 1782 578 7
0.01 602 902 1608 523 7

Table 3
Critical axial force of upheaval buckling for cases with different imperfection length (unit

Length L(m) OOS H/L = 0.001

Shape 1 Shape 2 Shap

50 4789 4158 3348
60 5286 4404 3295
70 5874 4756 3310
80 6520 5161 3378
90 7199 5609 3455
100 7898 6086 3551
110 8612 6583 3662
120 9339 7089 3783
130 10100 7643 3923
140 10834 8173 4058
150 11576 8704 4202
160 12318 9243 4347
170 13067 9783 4491
180 13812 10332 4646
190 14564 10873 4800
200 15315 11422 4954
�Pcr ¼ CL2
H
L

� �b

: ð13Þ

The above equation indicates that the formula of Zeng et al. [18]
(Eq. (1)) is a typical case of Eq. (12) with the coefficient a = 2. As
indicated by previous researchers [17,18], the imperfection shape
only affects the coefficients of the critical axial force formulas, so
that the coefficients in Eq. (12) is unique for a particular imperfec-
tion shape. This implies that if the imperfection shape is deter-
mined, this function can be determined. And if this function is
determined, the critical axial force formula of a pipeline with a par-
ticular shape imperfection can be determined[18]. However, Eq.
(13) assumes the coefficient a is constant and doesn’t change with
imperfection shape, and this may introduce some errors.

Assuming that Y¼ lg�Pcr, X1¼ lg�L, X2 ¼ lgðH=LÞ, Eq. (12) trans-
forms into the following form.

Y ¼ lg Cþ aX1 þ bX2 ð14Þ
For a typical combination of dimensionless quantities in a small

dimensionless scope, a and b in Eqs. (12) and (14) can be assumed
to be constant and correspondingly, the above equation is a linear
function among Y, X1 and X2. However, since upheaval buckling of
imperfect pipeline is a geometric nonlinear problem, variation of a
and b with the dimensionless quantities should be considered if a
large application scope of the formula is desired. In this study coef-
ficients a and b are assumed to change with X1 and X2, and to be
linear function of X1 and X2.

a ¼ a0 þ a1X1 þ a2X2 ð15Þ
Shape 3

= 100 m L = 200 m L = 50 m L = 100 m L = 200 m

086 11422 3348 3551 4954
238 5778 1867 1965 2684
240 3903 1292 1352 1864
719 2963 991 1033 1426
395 2394 802 835 1155
173 2009 675 699 967
014 1734 582 602 837
88 1522 513 534 735
96 1362 458 475 658
18 1227 413 427 590

= kN).

OOS H/L = 0.01

e 3 Shape 1 Shape 2 Shape 3

602 523 413
653 550 401
712 585 399
771 625 405
834 669 416
902 718 427
970 767 442
1038 816 457
1106 864 472
1178 913 487
1246 966 507
1319 1019 521
1391 1072 541
1464 1121 556
1536 1174 575
1608 1227 590



L. Xu, M. Lin / Engineering Structures 147 (2017) 692–704 699
b ¼ b0 þ b1X1 þ b2X2 ð16Þ
where a0, a1, a2, b0, b1 and b2 are constants. Substitute Eqs. (15) and
(16) into Eq. (14) and then Eq. (17) is obtained.

Y ¼ C0 þ C1X1 þ C2X2 þ C3X
2
1 þ C4X

2
2 þ C5X1X2 ð17Þ

where C0 � C5 are constants and have values of C0 = lgC, C1 = a0,
C2 = b0, C3 = a1, C4 = b2, C5 = a2 + b1. Mathematically, the above
equation means that Y is assumed to be quadratic function of X1

and X2. Substitute Eqs. (15) and (16) into Eq. (12) and transform
the exponential terms, the following equation is obtained.

�Pcr ¼ CLC1þC3 lg L
H
L

� �C2þC4 lg H
Lð ÞþC5 lg L

ð18Þ
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Fig. 10. The critical axial force versus the OOS for cases with different imperfection
length: (a) shape 1, (b) shape 2, and (c) shape 3.
Apparently, Eq. (17) is the logarithmic form of Eq. (18). The
coefficients C0 � C5 will be fitted with the VFIFE results in this
paper. Note that earliest researches [1,7,10] gave critical axial force
formulas of Pcr/(EIq/H)1/2 and Zeng proposed formulas in the form
of Eq. (1). Compared with these previous formulas, Eq. (18)
includes influence of not only the OOS, but also influence of the
imperfection size and geometric nonlinearity by considering the
dimensionless imperfection length and variation of the coefficients
with the dimensionless quantities.

4. Results and discussion

4.1. Effect of imperfection size

In this study, totally 56 simulations are performed for pipelines
with each imperfection shape. Each simulation is represented by a
scatter point in Fig. 9. Parameters and the critical axial forces of all
the cases are listed in Tables 2 and 3. For shape 1, shape 2 and
shape 3, Zeng et al. [18] gave approximation formulas of the critical
axial force of upheaval buckling as Eqs. (19)–(21), respectively.

PZeng
cr1 ¼ 0:2204ðq2EIÞ1=3 H

L

� ��0:9215

ð19Þ

PZeng
cr2 ¼ 0:2581ðq2EIÞ1=3 H

L

� ��0:8606

ð20Þ

PZeng
cr3 ¼ 0:3407ðq2EIÞ H

L

� ��0:7495

ð21Þ
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Fig. 11. The critical axial force versus the imperfection length when (a) the OOS is
0.001, and (b) the OOS is 0.01.
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When the imperfection length L = 50 m, 100 m and 200 m, the
critical axial forces are shown in Fig. 10, together with the pre-
dicted values of the approximation formulas of Zeng et al. [18].
When the OOS H/L, q and EI are constant, the approximation for-
mulas of Zeng et al. [18] predicts constant critical axial force. This
implies that the formulas of Zeng et al. [18] couldn’t reflect the
influence of imperfection size on the critical axial force. However,
the results of the VFIFE analysis shows that the critical axial forces
diverge significantly when the imperfection length is 50 m, 100 m,
and 200 m even when the OOS is constant. Actually, in all simula-
tions of Zeng et al. [18], the imperfection length is 100 m and as a
result, the size effect hasn’t reflect in their study.
Fig. 12. Comparison between the approximation formulas and the VFIFE results of
the critical axial force for the studied pipeline with (a) shape 1, (b) shape 2, and (c)
shape 3.
Moreover, Fig. 10 shows that formulas of Zeng et al. [18] agree
better with shape 1 and shape 2 than with shape 3 when L = 100 m.
The reason might be that the coefficient a in Eq. (12) should change
with imperfection shape while formulas of Zeng et al. [18]
assumed that a is a constant equal to 2 as shown in Eq. (13). Addi-
tionally, Fig. 11 shows that the effect of the imperfection length is
the most dramatic for shape 1 and the least obvious for shape 3.
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Fig. 13. Comparison between the proposed approximation formulas and the ones of
Zeng et al. [18] when the dimensionless imperfection length is 2.4579.

Table 4
Parameters of the pipes used in application simulations.

Property Value

Double-walled
natural gas pipe

Single-walled
crude oil pipe

The outer diameter of the steel
pipe, D (mm)

522 385

The thickness of the steel pipe
wall, t (mm)

14.3 12.0

The thickness of the outer concrete
coating, to (mm)

40 0

The Young’s modulus, E (GPa) 2.07 2.07
The Poisson’s ratio, t 0.3 0.3
The equivalent cross-sectional

moment of inertia, I (m4)
1.10 � 10�3 2.22 � 10�4

The equivalent cross-sectional
area, A (m2)

0.0222 0.0136

The density of internal flow, q (kg/
m3)

149.0 800.0

The distribution load on pipelines,
q (N/m)

1296.4 (Unburied)
2587.9 (Buried)

699.3 (Unburied)
1651.8 (Buried)

The thermal expansion coefficient,
CTE (/�C)

1.17 � 10�5 1.17 � 10�5

Fig. 14. Cross-sections of (a) the double-walled natural gas pipe, and (b) the single-
walled crude oil pipe.
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4.2. Fitting formulas

Multiply linear regression method is adopted to determine the
coefficients C0 � C5 in Eq. (17). The critical axial forces of 56 cases
for each imperfection shape are used in the numerical fitting. The
coefficients of determination for shape 1, shape 2 and shape 3
are 99.99%, 99.97% and 99.93%, respectively. Substitute the coeffi-
cients C0 � C5 into Eq. (18), the approximation formulas of the crit-
ical axial forces are obtained and presented below.

For shape 1

�Pcr1 ¼ 0:0958L2:0847þ0:4948 lg L H
L

� ��1:0507�0:0302 lg H
Lð Þ�0:1192 lg L

ð22Þ

For shape 2

�Pcr2 ¼ 0:07L1:9873þ0:5904 lg L H
L

� ��1:1152�0:0426 lg H
Lð Þ�0:0917 lg L

ð23Þ

For shape 3

�Pcr3 ¼ 0:0347L1:7470þ0:6794 lg L H
L

� ��1:2870�0:0729 lg H
Lð Þ�0:0091 lg L

ð24Þ

Fig. 12 shows that the newly proposed approximation formulas
agree well with the numerical data, whilst the formulas of Zeng
et al. [18] diverge with the numerical results, especially when
the dimensionless imperfection length is large and the OOS is
small. For the pipeline studied in Zeng et al. [18] with imperfection
length of 100 m, the dimensionless imperfection length is equal to
2.4579 and the corresponding critical axial forces are shown in
Fig. 13. It is shown that the newly proposed formulas generally
agree with the ones of Zeng et al. [18] when the dimensionless
imperfection is 2.4579. However, Fig. 12 shows that formulas of
Zeng et al. [18] diverge with the numerical data and the newly pro-
posed formulas, because they haven’t included the size effect of the
imperfection. This indicates that the newly proposed formulas are
extending of the formulas of Zeng et al. [18], by considering the
size effect or the influence of the dimensionless imperfection
length.

The OOS is a destabilizing factor making the imperfect pipeline
easier to buckle. Therefore, the critical axial forces increase with
decreasing of the OOS. This is predicted by the approximation for-
mulas in both this paper and Zeng et al. [18]. The dimensionless
imperfection length �L is a stabilizing factor, and the critical axial
forces increase with �L. When an imperfection is relatively smaller,
the critical force of upheaval buckling is smaller and the pipeline is
more easily to have upheaval buckling. This effect is not predicted
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Fig. 15. OOS and dimensionless imperfection length of the application cases.
by the formulas of Zeng et al. [18] but by the formulas proposed in
this paper.

4.3. Application and error analysis

In this section, the proposed formulas are compared with
results from simulations for pipelines with different cross-
sectional properties listed in Table 4. Cross-sections of the two
pipes are shown in Fig. 14a and b respectively. One is a double-
walled natural gas pipe. The outer diameter and wall thickness of
the inner steel pipe are 0.522 m and 14.3 mm, respectively. Thick-
ness of the outer concrete coating is 40 mm. Another one is a
single-walled crude oil pipe with outer diameter of 0.385 m and
wall thickness of 12.0 mm. Density of the natural gas and the crude
oil are 149 kg/m3 and 800 kg/m3, respectively.

The unburied condition and the buried condition are consid-
ered. On the unburied condition, the pipelines are directly laid
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Fig. 16. Comparison between the VFIFE results and the approximation formulas: (a)
shape 1, (b) shape 2, and (c) shape 3.
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on the seabed and the submerged weight are 1296.4 kN/m and
699.3 kN/m for the doubled-walled natural gas pipeline and the
single-walled crude oil pipeline, respectively. On the buried condi-
tion, the pipelines are assumed buried in 1.5 m of dense sand and
the vertical distributed forces are 2587.9 kN/m and 1651.8 kN/m
for the double-walled natural gas pipeline and the single-walled
crude oil pipeline, respectively.

The application cases are divided into four groups: group 1,
group 2, group 3 and group 4. Group 1 and 2 correspond to the
unburied and buried double-walled natural gas pipeline, respec-
tively. Group 3 and 4 correspond to the unburied and buried
single-walled crude oil pipeline, respectively. For each group, three
values of imperfection length are considered and for each value of
imperfection length, four values of the OOS are considered. There-
fore, there are 48 application cases for each imperfection shape.
The simulations are plotted as scatter points in Fig. 15. They are
in the dimensionless scope of �H = 0.001–0.01 and �L = 0.89–4.95.

Fig. 16 illustrates that the VFIFE results agree well with the pro-
posed formulas for pipelines with different cross-sectional proper-
ties, buried conditions and imperfection shapes. The dimensionless
imperfection length is a parameter representing the combination
effects of the imperfection length, the vertical distributed force
and the cross-sectional properties. Therefore, results from different
numerical groups reflect the same change pattern in the dimen-
sionless form.

The critical axial forces of upheaval buckling are different for
pipelines with different cross-sectional properties and buried con-
ditions. For example, when the imperfection length is 100 m, the
imperfection height is 0.1 m and with imperfection shape 1, the
critical axial forces are 7225 kN, 13,785 kN, 3708 kN and 8530 kN
for the unburied (buried) double-walled nature gas pipeline and
Table 6
Critical axial forces for the cases in group 2 (the double�walled natural gas pipeline in th

H L Shape 1 Shape 2

Pcr
V e1 (%) e2 (%) Pcr

V

0.05 50 8698 1.58 69.58 7666
0.2 50 2619 �2.25 56.99 2285
0.35 50 1540 �0.61 59.41 1346
0.5 50 1096 0.18 61.25 944
0.1 100 13785 �0.01 7.00 10720
0.4 100 3805 �0.14 8.06 3052
0.7 100 2244 �0.77 9.40 1792
1 100 1587 �0.63 11.36 1274
0.2 200 26402 0.13 �44.13 19742
0.8 200 6795 2.04 �39.49 5172
1.4 200 3967 0.38 �38.12 3031
2 200 2805 �0.73 �37.00 2149

Table 5
Critical axial forces for the cases in group 1 (the double-walled natural gas pipeline in the

H L Shape 1 Shape 2

Pcr
V e1 (%) e2 (%) Pcr

V

0.05 50 5139 �2.08 81.04 4655
0.2 50 1522 �2.61 70.39 1360
0.35 50 895 �0.32 73.01 797
0.5 50 633 1.54 76.10 567
0.1 100 7225 1.44 28.77 5795
0.4 100 2041 0.65 27.06 1664
0.7 100 1201 0.90 28.93 974
1 100 845 2.01 31.92 693
0.2 200 13355 �1.73 �30.34 10054
0.8 200 3505 �0.15 �26.01 2698
1.4 200 2052 �1.39 �24.54 1579
2 200 1450 �2.00 �23.12 1127
the unburied (buried) single-walled crude oil pipeline, respec-
tively. The corresponding values predicted with the formulas of
Zeng et al. [18] are 9304 kN, 14,750 kN, 3616 kN, 6414 kN, respec-
tively. And the corresponding values (relative errors) predicted
with the newly proposed formulas are 7329 kN, 13,783 kN,
3657 kN, and 8379 kN, respectively. Relative errors between
approximation formulas and the VFIFE results are defined as:

e ¼ PF
cr � PV

cr

PV
cr

� 100% ð25Þ

where e is the relative error, PcrF is the critical force of the approxi-
mation formulas and Pcr

V is the critical force of the VFIFE simula-
tions. The relative errors of the formulas of Zeng et al. [18] are
28.8%, 7.0%, �2.5% and �24.8% for the unburied (buried) double-
walled nature gas pipeline and the unburied (buried) single-
walled crude oil pipeline, respectively. And the corresponding rela-
tive errors of the newly proposed formulas are 1.44%, �0.01%,
�1.38%, and �1.77%, respectively. The newly proposed formulas
are more accurate.

For all the application cases of each imperfection shape, the rel-
ative errors for the proposed approximation formulas and the for-
mulas of Zeng et al. [13] are listed in Tables 5–8, where e1 is the
relative error of the newly proposed formulas and e2 is the relative
errors of the formulas of Zeng et al. [18]. For all the application
cases, the relative errors of the newly proposed formulas are proved
within ±5%. In some situations, the relative errors of the formulas of
Zeng et al. [18] are acceptable, whilst in some cases the relative
errors can approach 81.04% (�49.24), 73.92% (�47.66) and 72.27%
(�25.87), for the cases with shape 1, shape 2 and shape 3, respec-
tively. The effect of the dimensionless imperfection length is proved
e buried situation).

Shape 3

e1 (%) e2 (%) Pcr
V e1 (%) e2 (%)

�0.18 47.95 6343 �1.42 9.56
�2.50 50.54 1864 �2.84 31.91
�1.43 57.88 1095 �3.10 47.62
0.41 65.62 768 �2.75 61.10
0.96 5.80 6505 �0.64 6.83
�0.63 12.71 1879 �0.74 30.85
�0.76 18.59 1102 �1.00 46.68
�1.25 22.72 777 �1.26 59.23
�0.80 �42.55 8807 0.73 �21.09
2.12 �33.49 2537 0.52 �3.08
0.62 �29.89 1482 0.50 9.07
�0.60 �27.25 1051 �0.44 17.72

unburied situation).

Shape 3

e1 (%) e2 (%) Pcr
V e1 (%) e2 (%)

�2.42 53.68 4117 0.89 6.47
�1.52 59.54 1198 0.55 29.46
0.60 68.19 698 1.16 46.07
1.35 73.92 499 �0.37 56.39
2.15 23.45 3849 1.52 13.89
0.96 30.39 1093 3.29 41.89
1.67 37.62 639 3.40 59.56
1.41 42.30 453 2.59 72.27
�1.84 �28.85 4892 �0.23 �10.40
�0.09 �19.58 1386 1.35 11.90
�0.92 �15.11 815 0.72 25.10
�2.44 �12.50 577 �0.02 35.25



Table 7
Critical axial forces for the cases in group 3 (the single-walled crude oil pipeline in the unburied situation).

H L Shape 1 Shape 2 Shape 3

PcrV e1 (%) e2 (%) PcrV e1 (%) e2 (%) PcrV e1 (%) e2 (%)

0.05 50 2239 1.70 61.55 1929 0.59 44.18 1547 �2.14 10.16
0.2 50 676 �3.08 49.14 583 �3.62 44.69 463 �5.34 30.22
0.35 50 397 �1.61 51.64 343 �2.64 51.93 269 �4.57 47.35
0.5 50 283 �1.16 53.13 242 �1.56 58.42 189 �4.23 60.53
0.1 100 3708 �1.38 �2.45 2859 �0.62 �2.72 1653 �1.48 3.10
0.4 100 1014 �1.27 �0.57 809 �2.12 4.27 485 �3.16 24.32
0.7 100 598 �2.18 0.67 478 �3.06 9.02 286 �3.96 38.59
1 100 426 �2.91 1.73 339 �3.45 13.09 199 �2.95 52.46
0.15 150 5407 �1.81 �33.10 4070 �2.19 �31.67 1956 �0.90 �12.87
0.6 150 1422 �0.72 �29.10 1099 �1.28 �23.25 572 �2.49 5.41
1.05 150 836 �2.48 �27.99 644 �2.31 �19.08 334 �2.43 18.68
1.5 150 598 �4.33 �27.53 459 �3.73 �16.48 240 �4.58 26.42

Table 8
Critical axial forces for the cases in group 4 (the single-walled crude oil pipeline in the buried situation).

H L Shape 1 Shape 2 Shape 3

PcrV e1 (%) e2 (%) PcrV e1 (%) e2 (%) PcrV e1 (%) e2 (%)

0.05 50 4690 2.15 36.78 3827 2.18 28.89 2772 �3.54 9.04
0.2 50 1387 �2.65 28.92 1163 �4.16 28.64 805 �3.98 32.84
0.35 50 825 �3.22 29.42 690 �4.64 33.95 476 �5.04 47.69
0.5 50 586 �2.95 31.16 483 �3.04 40.78 335 �5.07 60.63
0.1 100 8530 �1.77 �24.79 6442 �1.59 �23.43 3274 �1.23 �7.68
0.4 100 2252 �0.22 �20.60 1758 �1.07 �14.90 980 �4.98 9.12
0.7 100 1329 �2.01 �19.66 1039 �2.68 �11.04 566 �3.89 24.21
1 100 946 �3.19 �18.75 741 �4.00 �8.24 401 �4.71 34.19
0.15 150 12637 1.19 �49.24 9424 0.03 �47.66 4077 1.10 �25.87
0.6 150 3247 2.59 �44.93 2463 2.68 �39.26 1198 �1.15 �10.74
1.05 150 1890 0.94 �43.51 1442 1.05 �35.91 709 �2.46 �0.84
1.5 150 1343 �0.84 �42.77 1026 �0.65 �33.73 504 �3.62 6.77
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significant in the studied cases and neglecting this effect could
induce great errors for all the three imperfection shapes.
5. Conclusion

In this paper, the VFIFE method is used to study the critical axial
forces of upheaval buckling for pipelines with initial imperfections.
Accuracy of the VFIFE method is evaluated by comparing the
results with conventional FEM. Results with different imperfection
shapes and different values of imperfection height agree well with
previous publications.

The effect of the imperfection length L on the critical axial force
is found dramatic even when the OOS is constant. This size effect is
not considered in previous approximation formulas. To account for
this effect, a new parameter named dimensionless imperfection
length �L is proposed. Meanwhile, the dimensionless critical axial
force �Pcr is found dominated by the dimensionless imperfection
length and the OOS.

Subsequently, an approximate formula covering the two
parameters is derived, and coefficients in the formulas are fitted
with numerical results. To account for the geometric nonlinearity
of the initially imperfect pipeline, coefficients in the formulas are
assumed to change with the OOS and the dimensionless imperfec-
tion length. The proposed approximation formulas are suggested
more general and more accurate than the previous ones. In addi-
tion, they are applicable to pipelines with different cross-
sectional properties and buried conditions. Remarkably, relative
errors of the formulas are proved within the range of ±5% in the
application scope of �H = 0.001–0.01, �L = 0.89–4.95.

Three typical imperfection shapes are considered in this paper.
For a pipeline with an imperfection similar with the studied ones,
the proposed formulas can be used to calculate or estimate the crit-
ical axial force of upheaval buckling quickly. While an imperfection
shape is somewhat random in practical engineering and may be
quite different with the studied ones. In this case, the proposed for-
mulas is not applicable. Zhang and Duan [15] defined an imperfec-
tion shape parameter to express the differences of imperfection
shapes, whilst they haven’t considered the influence of the dimen-
sionless imperfection length. Therefore, further efforts may be paid
to include the imperfection shape parameter in the approximation
formulas proposed in this study.
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