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a b s t r a c t 

The work by Greenwood and Williamson (GW) has initiated a simple but effective method 

of contact mechanics: statistical modeling based on the mechanical response of a single 

asperity. Two main assumptions of the original GW model are that the asperity response 

is purely elastic and that there is no interaction between asperities. However, as asperi- 

ties lie on a continuous substrate, the deformation of one asperity will change the height 

of all other asperities through deformation of the substrate and will thus influence subse- 

quent contact evolution. Moreover, a high asperity contact pressure will result in plasticity, 

which below tens of microns is size dependent, with smaller being harder. In this paper, 

the asperity interaction effect is taken into account through substrate deformation, while 

a size-dependent plasticity model is adopted for individual asperities. The intrinsic length 

in the strain gradient plasticity (SGP) theory is obtained by fitting to two-dimensional dis- 

crete dislocation plasticity simulations of the flattening of a single asperity. By utilizing 

the single asperity response in three dimensions and taking asperity interaction into ac- 

count, a statistical calculation of rough surface contact is performed. The effectiveness of 

the statistical model is addressed by comparison with full-detail finite element simulations 

of rough surface contact using SGP. Throughout the paper, our focus is on the difference of 

contact predictions based on size-dependent plasticity as compared to conventional size- 

independent plasticity. 

© 2017 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

1. Introduction 

The roughness of practical surfaces leads to the real contact area being only a small portion of the apparent contact area.

The friction force is usually written as F f = μF n , where μ is the friction coefficient and F n is the normal force, but it can

also be interpreted as F f = τA with τ being the contact interfacial shear strength and A being the real contact area. The

above two types of interpretations indicate a linear relation between F n and A , if it is assumed that both the interfacial

shear strength τ and the friction coefficient μ are constants. 

It is well accepted by now that the origin of the proportionality between real contact area and load resides in the random

nature of the asperities on real rough surfaces. For elastic materials with a fractal surface, Persson (2001) has developed a
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theory that is exact for complete contact, i.e. at high loads. Besides being dependent on the statistical properties of the

surface, the theoretical prediction of a linear relation between contact area and applied load relies on the fact that the long-

range interactions between contacting asperities are incorporated. So far, Persson’s theory has passed all critical tests for

elastic materials, e.g., Campana et al. (2008) , and has been successfully applied to study leakage of rubbers ( Persson, 2001 ).

An earlier, seminal work on contacting rough surfaces is that by Greenwood and Williamson (1966) (GW) who proposed

to represent a rough surface by a spatial distribution of hemispherical asperities with a constant radius of curvature, while

the summit height of the asperities follows a Gaussian distribution. While many surfaces do exhibit fractal roughness, a

description with Gaussian statistics is a well-accepted approximation of rough surfaces, see e.g. Li and Torrance (2005) .

Apart from the different statistics of the surface roughness, the GW model is built on numerous simplifying assumptions

and therefore has limitations in comparison with Persson’s theory. However, with a view on subsequent understanding of

static friction on metallic surfaces at low loads, a GW approach is appealing because it is designed for small contact areas.

Moreover, GW models have the simplicity that is needed for our purpose. 

After its inception in 1966, several assumptions in the GW model related to the asperity tip shape have been relaxed

by, notably, Bush et al. (1975) , Greenwood (2006) , Carbone and Bottiglione (2008) and Carbone (2009) . A key difference

with Persson’s theory ( Persson, 2001 ) is that the original GW model assumed that asperities deform independently from

each other. This assumption greatly simplifies the calculation of the contact force F n but ignores the fact that all asperities

share the same substrate. Deformation of contacting asperities will deflect the substrate and thereby shift down all other

asperities by an amount that depends on the distance to the contacting asperity and the response of the contacting asperity.

Ciavarella et al. (2008) have extended the GW model to incorporate such asperity interaction over a finite surface area by

treating the contact pressure as being uniformly distributed over the apparent contact area and the resulting deformation as

being uniform. Chandrasekar et al. (2013) introduced asperity interaction by making use of the Hertz solution, while Vakis

(2014) subsequently accounted for interaction between contacting asperities and their non-contacting neighbors through 

a statistical method. Song et al. (2014) re-visited the model and derived a modified theory in which the interaction effect

converges with increasing order of interaction and effectively reduces the contact force compared with the analysis in which

the interaction effect is absent. 

Noting that the peak contact pressure in asperities in all of these GW-type models exceeds the yield strength of metals

at small loads, Chang et al. (1987) introduced plasticity into the original GW model. Subsequent work by Kogut and Etsion

(2002) utilized the finite element method based on J 2 plasticity theory and developed curve-fitted force-vs-deformation

expressions for the contact between sphere and a rigid flat, which were then introduced into the GW model. 

Since real rough surfaces have asperities at various length scales, it is important to note that plasticity of small samples

of a crystalline material is size dependent below tens of microns, with smaller samples having a higher yield stress. There-

fore, size-dependent plasticity needs to be taken into account in rough surface contact problems. Jackson (2006) tried to

incorporate size-dependent plasticity into the GW model by direct application of the Nix-Gao relation ( Nix and Gao, 1998a )

for the indentation size effect. Though attractive this simple approach may be, it ignores the following fundamental issues:

(i) size-dependent plasticity strongly depends on the sample geometry and there is no proof that size effects in asperity

flattening are the same as in indentation; (ii) the plasticity size effect in asperity flattening cannot be fully captured by

only changing the yield stress (hardness): enhancement of the flow strength by the local plastic strain gradient is different

from an overall increase. The difference has been observed in Song et al. (2016) in the distribution of the contact pressure:

for J 2 plasticity, a change of the material yield stress will simply shift the distribution, while size-dependent plasticity also

changes the shape of the distribution. 

At a more fundamental level, two-dimensional (2D) discrete dislocation plasticity (DDP) simulations have successfully 

captured size effects in a variety of different problems, such as bending ( Cleveringa et al., 1999 ), indentation ( Widjaja et al.,

2005 ), and tension ( Deshpande et al., 2005 ). Recently, the method has been applied in contact and friction studies, such as

asperity flattening ( Sun et al., 2012 ) and asperity ploughing ( Song et al., 2015 ). The conventional mechanism-based strain

gradient plasticity theory (CMSGP) is a continuum theory that has been used to describe the indentation size effect ( Qu

et al., 2004; Zhang et al., 2006 ) and the effect of particle size in composite materials ( Xue et al., 2002 ). Recently CMSGP

has been applied to 3D rough surface contact ( Song et al., 2016 ), revealing a strong difference with the predictions by size-

independent J 2 plasticity. The FEM simulations involved, however, put a high demand on computational resources and time.

The model presented in this paper is the first to incorporate both size-dependent plasticity and asperity interaction in

a statistical approach to rough surface contact based on the response of individual asperities. The elastoplastic response of

a single asperity under contact is characterized by strain gradient plasticity (SGP). The intrinsic length in the SGP model

is fitted by comparison of DDP simulations of the flattening of idealized asperities of different size. Asperity interaction is

implemented through the method in Vakis (2014) and Song et al. (2014) . Finally, predictions by the statistical summation

model will be compared with a full-blown FEM simulation to verify the accuracy and effectiveness of the statistical model.

Throughout this work, the objective is to gain insight in the effect of the size dependence of asperity plastic deformation

on the overall contact response. 

2. Description of the problem 

A numerically generated random rough surface, see Fig. 1 , with nominal area of 10 μm × 10 μm is compressed by a rigid

flat surface. Given a value for the root mean square (rms) height and surface correlation length l s , an isotropic rough surface
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Fig. 1. Deformable rough surface on a substrate, contour color: blue—valley, red—peak. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 

Fig. 2. Sketch of a rough surface under contact with a rigid flat indicated by the blue bar. The distance from the rigid flat to the mean summit height is d , 

while z is the height of a particular summit relative to the mean summit height. The asperity interference is U = z − d. (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

with Gaussian statistics is generated by the numerical method described in Song et al. (2016) . The spectral moments of the

surface can be determined from the height profile (for isotropic surfaces) as in McCool (1987) , i.e., 

m 0 = AVG (z 2 (x )) , m 2 = AVG [(dz(x ) /dx ) 2 ] , m 4 = AVG [(d 2 z(x ) /dx 2 ) 2 ] . (1)

where AVG represents the arithmetic average and z ( x ) indicates a 2D trace of the surface heights along an arbitrary x -

direction of the 3D surface. These spectral moments define the average asperity tip curvature R , the areal asperity number

density η and the standard deviation σ s of summit heights as follows: 

R = 0 . 375(π/m 4 ) 
1 / 2 , η = (m 4 /m 2 ) / 6 π

√ 

3 , σs = (1 − 0 . 8968 /α) 1 / 2 m 

1 / 2 
0 

, (2)

where α = (m 0 m 4 ) /m 

2 
2 

( McCool, 1987 ). With the above parameters, the contact of the numerically generated rough surface

can be dealt with in a GW statistical method ( Greenwood and Williamson, 1966 ), as illustrated in Fig. 2 . 

The height of the rough surface follows a normal distribution with standard deviation σ . It is assumed that the summit

height also follows a Gaussian distribution, yet with a standard deviation σ s . The difference between σ s and σ is that the

former only includes information about the asperity tips while the latter also includes information on the valleys. According

to McCool (1986) , σ and σ s are related through 

σs = 

√ 

σ 2 − 3 . 717 × 10 

−4 

. (3)

η2 R 

2 
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Fig. 3. Contact between a single asperity and a rigid flat in DDP calculation. Three slip systems with orientations 0 °, 60 ° and 120 ° are used. The finite 

element is highly refined around the asperity to capture contact evolution precisely. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Mechanical response of a single asperity 

The mechanical response of a single asperity in existing GW-type statistical models was assumed to be either purely

elastic or size-independent elastoplastic. In this section, the size-dependent elastoplastic response of a single asperity in

contact is characterized by conventional mechanism-based strain gradient plasticity (CMSGP). The CMSGP theory is imple-

mented through ABAQUS user subroutine UMAT. Four-node axisymmetric full integration (CAX4) elements are used, and the

plastic strain gradients are computed at Gauss points by using the differentiation of shape functions. In CMSGP, the material

flow stress σ flow 

not only depends on the equivalent plastic strain εp but also on a scalar measure, ηp , of the plastic strain

gradient through 

σflow 

= σY 

√ 

f 2 (ε p ) + lηp . (4) 

Here, σ Y is the material initial yield strength, f ( εp ) describes the material strain hardening, and l is the intrinsic material

length. Details of the theory can be found in Huang et al. (2003) and Zhang et al. (2006) . 

One of the limitations of CMSGP is that the value of l can be different under different loading conditions as l reflects the

material micro-structure. Therefore, the value of l is usually determined by experiments for a specific problem; for example,

l is 4 μm in torsion of copper wires ( Fleck et al., 1994 ) while it is 12 μm for the indentation of annealed single crystal

copper ( Nix and Gao, 1998b ). As far as we know, no asperity contact experiments have been carried out to determine the

value of l . Thus, we make use of the idea of multiscale modeling in order to extract the parameter from a simulation at a

smaller length scale. 

3.1. Multiscale modeling of sinusoidal asperity flattening 

In continuum plasticity theories, such as J 2 flow theory and strain gradient plasticity theory, plasticity is described by

phenomenological parameters, such as the yield strength σ Y and the strain hardening function, etc. By contrast, discrete

dislocation plasticity (DDP) tracks all individual dislocations in an elastic background. Plasticity is described through the

generation, motion and annihilation of dislocations, and yield strength and hardening rate are outcomes of the computation.

In this section, we report on 2D sinusoidal asperity flattening simulations by DDP and CMSGP together to determine the

value of l . 

The model problem is shown in Fig. 3 . A sinusoidal asperity with wavelength w and height h , lies on a very large

substrate to exclude the finite size effect of the substrate. The asperity is compressed by a rigid flat. Discrete dislocation

plasticity in the asperity is investigated within the Van der Giessen and Needleman (1995) framework, where traction and

displacement boundary conditions are incorporated using superposition. The aspect ratio of the asperity is w/h = 5 as in Sun

et al. (2012) . The crystal is taken to have properties that are reminiscent of aluminum with Young’s modulus E = 70 GPa

and Poisson’s ratio ν = 0 . 33 . Three slip systems are used whose orientations (0 °, 60 ° and 120 °) are indicated in Fig. 3 . The

slip planes are spaced at 200 b , where b is the Burgers vector magnitude of 0.25 nm. Dislocation sources and obstacles

are randomly distributed over the slip planes with densities of 60 μm 

−2 and 120 μm 

−2 respectively. The sources mimic the

Frank-Read mechanism of dislocation generation in 2D, and are characterized by a strength and the time needed to generate

a new dipole ( Van der Giessen and Needleman, 1995 ). The strength of the sources to generate edge dislocations is selected

randomly from a Gaussian distribution with mean value τ̄nuc = 50 MPa, and 20% (10 MPa) standard deviation. The strength
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Fig. 4. Mean contact pressure versus asperity strain for different sizes of asperity carried out by DDP. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of the obstacles, τ obs , is taken to be 200 MPa. We assume the same loading rate ˙ U of 0.04 nm/ns as in earlier asperity

studies ( Song et al., 2015; Sun et al., 2012 ). Since source strength and position, as well as obstacle position are randomly

distributed, each case is repeated for 10 different realizations of strength and position to average out stochastic variations. 

The mean contact pressure p m 

is defined as 

p m 

= 1 /C 

∫ 
p(x 1 ) dx 1 , x 1 ∈ C (5)

where C is the contact area between the rigid flat and sinusoidal asperity. The contact area gradually evolves with increased

flattening displacement U which is imposed as a prescribed vertical displacement. We also define a strain-like measure for

the asperity ε asp = U/h . 

It can be seen in Fig. 4 that when the asperity size w < 32 μm, there is a strong size effect with smaller asperities having

higher mean contact pressure at the same asperity strain. 

When w ≥ 32 μm, the DDP results become size independent and therefore should also be captured by J 2 plasticity. For

J 2 plasticity theory, we assume exponential hardening in the form 

σ = σY 

(
1 + 

Eε p 

σY 

)n 

, (6)

where n is the hardening exponent. First, by looking at the point where the DDP result starts to deviate from the result of

the purely elastic model of asperity flattening, we determine the initial yield strength σ Y in the J 2 model. Then, with this

value of σ Y , the hardening exponent n can be determined by fitting the rest of the DDP result. 

Fig. 5 shows that the DDP prediction with dislocation properties specified by ρnuc = 60 μm 

−2 , ρobs = 120 μm 

−2 , τ̄nuc =
50 MPa, and τobs = 200 MPa is accurately captured by J 2 theory with an initial yield strength σY = 210 MPa and hardening

exponent n = 0 . 1 . 

Turning now to the smaller asperities with w < 32 μm, Fig. 6 shows that their size-dependent response as predicted by

DDP can be captured by the CMSGP model when the intrinsic length l is taken as 4.4 μm. This is similar to the intrinsic

length ( ∼ 5 μm) obtained from indentation experiments of aluminum ( Fuguo et al., 2014 ). The reason for the increasing

deviation between DDP and CMSGP results for smaller asperities in the small strain regime ( Fig. 6 (b) versus (a)) is that when

the asperity becomes smaller, the early stage of DDP is dislocation source limited, whereas the SGP model is a continuum

theory implying unrestricted availability of dislocation sources. 

3.2. Parameterized single-asperity response 

In order to relax the limitation to elastic asperities in the original GW model, Kogut and Etsion (2002) carried out FEM

simulations of the flattening of a half sphere using J 2 plasticity and parameterized the elastoplastic response (contact force

and contact area) as a function of asperity interference. Their results have been used in several subsequent elastoplastic

extensions of GW type statistical models, such as Chandrasekar et al. (2013) and Vakis (2014) . Following Kogut and Et-

sion (2002) , in this section, we propose a parameterized function for a single asperity response that takes size-dependent

plasticity into account. 

The model problem is the same as that in Kogut and Etsion (2002) : a hemisphere with radius R is compressed by a rigid

flat, see Fig. 7 . The contact between rigid flat and sphere is frictionless. Based on the ball indentation hardness test of Tabor



6 H. Song et al. / Journal of the Mechanics and Physics of Solids 106 (2017) 1–14 

Fig. 5. Comparison between DDP and J 2 plasticity: mean contact pressure versus asperity strain for the asperity size w = 32 μm . 

Fig. 6. Comparison between DDP and SGP plasticity: mean contact pressure versus asperity strain for the asperity size (a) w = 8 μm, (b) w = 4 μm. 

 

 

 

 

 

 

 

(20 0 0) , Greenwood and Williamson estimated that the limit of elastic deformation ( Greenwood and Williamson, 1966 ) is

reached when the maximum Hertz pressure is about 60% of the material hardness H . Kogut and Etsion (2002) adopted the

results of ( Chang et al., 1987 ) in which the maximum contact pressure at the inception of plastic deformation is generalized

as KH , where K is a coefficient defined as K = 0 . 454 + 0 . 41 ν and H = 2 . 8 σY . Therefore, the critical interference U c that marks

the transition from purely elastic to elastoplastic deformation is given by 

U c = 

(
πKH 

2 E 

)2 

R. (7) 

The corresponding critical contact force and contact area are 

F c = 

2 

3 

KHπRU c , A c = πRU c , 

respectively. Kogut and Etsion (2002) subdivided the entire elastoplastic response into four regimes and parameterized their

FEM results for contact force F and contact area A as functions of the interference in each regime through a power law: 

F /F c = b(U/U c ) 
m , A/A c = c(U/U c ) 

n . (8) 

where constants b, m, c, n are fit parameters. 

In this work, we parameterize the asperity response with different material’s plastic properties that are obtained in the

previous section ( J with strain hardening, SGP model). The elasto-perfectly plastic model which is used in the original
2 
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Fig. 7. Axisymmetric model to study the contact between a hemispherical dome and a rigid flat. The mesh used in the actual simulations is eight times 

finer than that shown here for clarity. 

Fig. 8. Response of a hemispherical asperity: (a) Dimensionless force versus dimensionless interference, (b) dimensionless contact area versus dimension- 

less interference. The jaggedness of the contact area is a numerical artifact of tracing nodes in contact: the contact area increases by at least the length of 

an element. Since the elements gradually become larger away from the summit of the asperity, the jumps in contact length grow as the contact increases. 

 

 

 

 

 

 

 

 

 

 

 

Kogut–Etsion (KE) model ( Kogut and Etsion, 2002 ) is also utilized to highlight the difference between different plasticity

models. Just like in Kogut and Etsion (2002) , the asperity response is subdivided into four regimes; the values of the fit

parameters b i , m i , c i , n i in Eq. (8) for the different models are summarized in Table 3 , see Appendix. Fig. 8 a shows the

normalized force-interference response for a few typical values of R that appear in the numerically generated random sur-

faces with different roughness. In contrast to J 2 plasticity, predictions by SGP reveal the typical size effect: smaller is harder.

Consistent with this, Fig. 8 b shows that compared with J 2 plasticity, size-dependent plasticity yields a smaller contact area.

For contact force as well as contact area, the effect of hardening (with hardening exponent n = 0 . 1 ) in J 2 plasticity is quite

small. 

4. Statistical analysis of rough surface contact 

After having characterized the mechanical response of a single asperity in contact, we use this single asperity response

in a rough surface contact analysis. For this, it is assumed that the summit height follows a Gaussian distribution with

standard deviation σ s . Following Kogut and Etsion (2002) , all length dimensions are normalized by the standard deviation

of the surface height distribution σ . Denoting non-dimensionalized quantities with a superscript ∗, the probability density
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function of summit heights takes the form 

ϕ 

∗(z ∗) = 

1 √ 

2 π

(
σ

σs 

)
exp 

[
−1 

2 

(
σ

σs 

)2 

(z ∗) 2 
]

. 

Thus, for a surface with nominal contact area A n and asperity density η, the number of asperities in contact is 

N c = ηA n 

∞ ∫ 
d ∗

ϕ 

∗(z ∗) d z ∗ . 

Knowing the mechanical response of a single asperity as a function of the local interference, F (z − d) , we can determine

the total force on the whole rough surface by summing all individual asperity contributions. The total contact force on the

surface can then be written as 

F sum 

= ηA n 

∫ ∞ 

d 

F (z − d) ϕ (z) d z , 

while the real contact area of the surface becomes 

A real = ηA n 

∫ ∞ 

d 

A (z − d) ϕ (z) d z . 

After normalization by the hardness H and insertion of the Kogut–Etsion relations (7) and (8) , the nominal contact pressure,

defined as F ∗ = F sum 

/A n , for the whole surface takes the form 

F ∗ = 

F sum 

A n H 

= 

2 

3 

πβKU 

∗
c 

∫ ∞ 

d ∗
b 

(
z ∗ − d ∗

U 

∗
c 

)m 

ϕ 

∗(z ∗) dz ∗ (9) 

where β = σRη. We remind the reader that b and m take different values for different regimes of the power-law fit in Eq.

(8) , see Appendix. This means that, in practice, the integral needs to be split into four parts. 

In the original KE model ( Kogut and Etsion, 2002 ), the material is assumed to be perfectly plastic and the material

hardness is defined as H = 2 . 8 σY . When the material exhibits strain hardening, H is not a constant; moreover, when strain

gradients are considered, H becomes size dependent. Henceforth, one might argue to just normalize stress by the initial

yield strength σ Y . Here however, we still use H = 2 . 8 σY to nondimensionalize the nominal contact pressure in keeping with

the original KE model. 

Similar to Eq. (9) , the ratio of the real contact area to the nominal contact area, A 

∗, can be calculated as 

A 

∗ = 

A real 

A n 
= πβU 

∗
c 

∫ ∞ 

d ∗
c 

(
z ∗ − d ∗

U 

∗
c 

)n 

ϕ 

∗(z ∗) dz ∗ . (10) 

Asperity interaction is incorporated by making use of the Hertz displacement field caused by an indenter of radius R in

an elastic medium (Vakis, 2014) . The effective shifting down � of the mean summit height as a function of distance from

the contacting asperity changes the summit height distribution into 

ϕ 

∗(z ∗) = 

1 √ 

2 π

(
σ

σs 

)
exp 

[
−1 

2 

(
σ

σs 

)2 

(z ∗ + �∗(d ∗)) 2 
]

. 

As the numerically generated rough surface has a finite surface area, the order of interaction is n max = 

√ 

A n η − 1 . Details of

asperity interaction formulations can be found in Vakis (2014) and Song et al. (2014) . 

As pointed out in Section 2 , given a rough surface with two roughness parameters (rms and correlation length l s ), such

as the one shown in Fig. 1 , the GW parameters ( R, η, σ s ) can be obtained from the spectral moments. For two generated

surfaces of different roughness, the GW parameters are listed in the following table. 

The predictions by the statistical model for different material properties are shown in Fig. 9 . We observe that the predic-

tions by J 2 theory, especially in the absence of hardening, is quite insensitive to surface roughness. This is consistent with

the findings in Song et al. (2016) and Pei et al. (2005) . It can be seen in Fig. 9 (a) that strain hardening results in a larger

contact force compared to perfect plasticity; when strain gradient plasticity is considered, the contact force is even larger.

For the roughest surface considered, the prediction of SGP deviates substantially from the predictions of J 2 plasticity. For the

SGP computation for a surface with roughness rms = 0 . 08 μm, the inset shows that interaction effect reduces the contact

force compared with the case when asperity interaction is absent (shown in symbols). 

Despite the mentioned variations in the force response, Fig. 9 (b) reveals a roughly linear relationship between the di-

mensionless contact area and dimensionless contact force for different plastic models and surface roughness. We emphasize,

however, that F ∗/ A 

∗ is only approximately a constant. It is known that this ratio in GW-type models is not strictly constant,

even in elastic contact ( Carbone and Bottiglione, 2008 ), while in Fig. 9 (b) we observe similar deviations in the case of elasto-

plastic contacts. The effect is largest in the SGP model showing an increase of up to +20% relative to the initial slope at

the highest loads considered here. These relatively large deviations reflect the deformation-induced nonlinear hardening in

strain gradient plasticity. Asperity interaction effectively shifts the mean summit height and delays contact, but it does not
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Fig. 9. Predictions by statistical model for the rough surface with roughness parameters rms = 0 . 08 μm, l s = 0 . 4 μm (solid line) and rms = 0 . 16 μm, 

l s = 0 . 4 μm (dashed line). (a) Dimensionless force versus dimensionless interference (force on a log scale is shown in the left-hand inset). The top right- 

hand inset shows the response with (solid line) and without (symbols) asperity interaction. (b) Dimensionless force versus dimensionless contact area. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

influence the relationship between contact force and contact area. Moreover, after noting that the slope indicates the di-

mensionless mean contact pressure, it bears emphasis that the mean contact pressure in the SGP model is much larger than

according to J 2 models. 

5. Comparison between FEM predictions and statistical model 

The statistical model makes several assumptions. In order to verify that the roughness-dependent influence of size-

dependent plasticity presented in the previous section is not an artifact, we now compare the results with full-blown FEM

computations for random rough surfaces. Details of the FEM simulation can be found in Song et al. (2016) . For a given set of

roughness parameters {rms, l s }, numerical generation of random rough surfaces yields different realizations; for each group

of roughness parameters, we therefore perform five simulations to average out this stochasticity. 

For a rough surface characterized by rms = 0 . 08 μm and l s = 0 . 4 μm, Fig. 10 (a) shows a clear difference between the

averaged contact forces according to the SGP and J 2 models. However, the FEM computations also reveal that the contact

force is very sensitive to the randomness of the surface topography, with the standard deviation increasing with continued

flattening. The contact area evolution shows a similar sensitivity, see Fig. 10 (b), with the average contact area obtained from

five FEM predictions with the SGP model being significantly larger than the statistical prediction. 

By contrast, Fig. 10 (c) reveals that the mean contact pressure F ∗/ A 

∗ is not sensitive to the randomness of the surface

topography as indicated by all plotted data points. This demonstrates that the near-linear relation between F ∗ and A 

∗ is

robust for any material model: it is the mean slope of F ∗ vs A 

∗ that depends on the material properties. The qualitative

trend that the mean contact pressure found in the SGP model is higher than with J 2 hardening which in turn is higher than

for perfect plasticity is consistent with those according to the statistical model, but the differences are smaller. 

A similar material-dependent ordering can be seen in the contact force and contact area, Fig. 10 (a and b), but due to

the large stochastic spread between the five realizations, these differences are not quantitatively significant, while the dif-

ferences in mean contact pressure are. These observations get amplified when the rms of the surface is twice as large. In

fact, according to Fig. 11 (a), the statistical prediction for SGP is no longer contained in the standard deviation of the FEM

results. According to Fig. 11 (b), also the deviation between statistical and FEM predictions of the true mean contact pressure

increases with increasing surface roughness. 

In search of an explanation for this mismatch, we observed that the results of the statistical analysis in Fig. 9 are not

very sensitive to the surface roughness parameters when using J 2 plasticity, but are quite sensitive for the SGP model. This

is not surprising when noting then that the strain-gradient dependence in the SGP model should make it more sensitive to

the curvature of the asperity tips. These observations suggest that the spectral moments analysis of GW parameters, cf. Eq

(2) , may underestimate R . Indeed, Refs. Kalin et al. (2016) , Pawlus et al. (2012) and Yu and Polycarpou (2004) point out that

the spectral moments analysis tends to yield a smaller value of R than a deterministic analysis. Therefore, we re-estimated

R for the two numerically generated rough surfaces using the classical definition of the radius of curvature of the height

profile z ( x ), R = (1 + ( d z/d x ) 2 ) 3 / 2 / (d 2 z/dx 2 ) . It is found that R = 0 . 5 μm and 0.36 μm for the surface with rms = 0 . 08 μm

and rms = 0 . 16 μm, respectively; these values are significantly smaller than those listed in Table 1 and used previously. The
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Fig. 10. Comparison of predictions between FEM model and statistical model for the rough surface with roughness parameters rms = 0 . 08 μm and l s = 

0 . 4 μm. (a) Dimensionless force versus interference, (b) dimensionless contact area versus interference, (c) dimensionless force versus dimensionless contact 

area where the symbols are raw FEM data (the difference in number of data points for different models is a consequence of adaptive loading increment in 

ABAQUS). 

 

 

 

 

 

 

comparison between statistical model predictions with these updated values of R and FEM simulations results are shown

in Fig. 12 . The other GW parameters ( η, σ ) have been left unchanged, as it has been shown previously in Vakis (2014) and

Song et al. (2014) that the GW model prediction is not very sensitive to these parameters for the values used in this paper.

For both roughnesses, a good agreement between statistical model predictions and FEM results is found for contact force

versus interference. However, the linear relationship between dimensionless force and area is still quite different for the SGP

model, shown in Fig. 12 (c). The real average contact pressure, i.e. the slope of the curve, is overestimated in the statistical
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Fig. 11. Comparison of predictions between FEM model and statistical model for the rough surface with roughness parameters rms = 0 . 16 μm and l s = 

0 . 4 μm. (a) Dimensionless force versus interference, (b) dimensionless force versus dimensionless contact area. 

Table 1 

GW parameters for rough surfaces with the same 

value of l s = 0 . 4 μm and different rms obtained 

from Eq. (2) . 

surface roughness R η σ

(μm) (μm) (μm 

−2 ) (μm) 

rms = 0 . 08 0.36 1.5 0.039 

rms = 0 . 16 0.18 1.5 0.069 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

model by roughly a factor of two. The results using J 2 plasticity and elasticity also changed somewhat, but within the spread

of the five FEM simulations. 

6. Discussion and conclusions 

The elastoplastic contact of a numerically generated 3D random rough surface was analyzed by both full-detail FEM

simulations and a recent modification of the GW model. The GW parameters were extracted through the surface spectral

moments of the roughness. The size-dependent elastoplastic behavior of a single asperity contact, which is needed in the

statistical analysis, was extracted from strain gradient plasticity simulations. In the spirit of a multiscale approach, the value

of the length scale in the strain gradient theory has been fit to 2D simulations of the same asperity problem by means

of discrete dislocation plasticity. While varying the asperity size, the fitting is performed for an isolated asperity. Elastic

interaction with asperities elsewhere on the rough 3D surface is incorporated by making use of the Hertz solution. The

current method does not account for plastic interaction between asperities, since its influence is not significant at the low

loads considered here. Recent work in Sun et al. (2015) suggests that elastoplastic interaction is relevant only between small

and closely spaced asperities. 

In terms of the cost of computational resources and time, the statistical model has a huge advantage over the 3D FEM

computations. Yet, it gives qualitatively similar results for the linear dependence between contact (normal) force and contact

area, and for the sensitivity of the contact response to surface roughness, material hardening and plastic strain gradient

effects. 

Quantitatively, the predictions of the statistical model agree with the FEM simulation results for J 2 plasticity (with or

without hardening) and pure elasticity when the stochastic variation in surface roughness of finite-size FEM samples is taken

into consideration. However, for SGP, the two model predictions for rougher surfaces do not match well, even when taking

into account the large stochastic spread in the FEM results. The reason is that for our numerically generated rough surfaces,

surface spectral moments underestimate the average radius of curvature R for the GW model. While this underestimation

does not have a great impact on the predictions with J 2 plasticity and pure elasticity, it does so for SGP model because of

the dependence of the asperity response on R . It is found that by using the classical definition of the radius of curvature
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Fig. 12. Comparison between FEM predictions and results of statistical model with R estimated from the numerical surface profile with different roughness 

parameters. (a) rms = 0 . 08 μm and R = 0 . 5 μm, (b) rms = 0 . 16 μm and R = 0 . 36 μm. In all cases, l s = 0 . 4 μm. (c) Dimensionless force versus dimensionless 

contact area for statistical and FEM model when using SGP. 

 

 

 

 

of a curve to estimate the average R of all surface asperities, the statistical model gives quantitatively similar results with

full-detail FEM simulations for contact force. However, the average contact pressure are still not captured accurately by the

statistical model. 

To summarize, the salient conclusions of the study are: 

• Discrete dislocation plasticity reveals a clear size-dependent behavior of small asperities in contact. When the asperity

width w is large enough (for the sample parameters used here, w > 32 μm), the behavior becomes size independent. For

the same parameter values, the intrinsic length in CMSGP theory is l = 4 . 4 μm. 
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Table 2 

Values of the force–contact area parameter κ = E ′ 
√ 

2 m 2 A/F for the var- 

ious surfaces and materials computed by the statistical model. E ′ = 

E/ (1 − ν2 ) is the plane strain elastic modulus and m 2 the second spec- 

tral moment of the surface roughness, cf. Eq. (1) . 

rms (μm) 

Material model 0.08 0.16 

Elasticity 2.4 2.0 

J 2 , no hardening 60 113 

J 2 with hardening 29 56 

CMSGP 11 6.5 

Table 3 

Fitted values of the parameters in Eq. (8) for the different curves in Fig. 8 . 

Perfectly plastic J2 with hardening 

i b m c n b m c n 

1 U / U c < 1 1 1.5 1 1 1 1.5 1 1 

2 1 ≤ U / U c ≤ 6 1 1.518 1 1.137 1 1.533 1 1.124 

3 6 ≤ U / U c ≤ 110 2 1.195 1 1.135 1.952 1.208 1 1.128 

4 U / U c > 110 5.09 1 1.173 1.1 2.562 1.15 1.302 1.07 

SGP R = 0 . 36 μm SGP R = 0 . 18 μm 

i b m c n b m c n 

1 U / U c < 1 1 1.5 1 1 1 1.5 1 1 

2 1 ≤ U / U c ≤ 6 1 1.587 1 1.036 1 1.593 1 1.043 

3 6 ≤ U / U c ≤ 110 1.5 1.345 1 1.052 1.4 4 4 1.397 1 1.033 

4 U / U c > 110 2.571 1.227 1.113 1.029 1.442 1.394 0.9558 1.042 

SGP R = 0 . 5 μm 

i b m c n 

1 U / U c < 1 1 1.5 1 1 

2 1 ≤ U / U c ≤ 6 1 1.578 1 1.048 

3 6 ≤ U / U c ≤ 110 2.034 1.263 1 1.06 

4 U / U c > 110 3.044 1.177 1.12 1.037 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• With size-dependent plasticity being incorporated through the CMSGP model, the statistical method is able to predict

the dependence of the surface response on the material’s plastic properties and on the surface roughness. The contact

force in a material exhibiting strain gradient plasticity is significantly larger than in J 2 solid, but at the same time, it is

much more sensitive to surface roughness. 

• The linear dependence of contact normal force on true contact area persists irrespective of the material’s plastic proper-

ties and the surface roughness. It is only the value of the force-to-area ratio that depends on the material response, with

size dependent plasticity giving a value that approaches the elastic value as the roughness increases. Table 2 summarizes

the values found by the statistical model as a function of material behavior and surface roughness. 

• When using spectral moments to estimate the average asperity radius curvature R , for moderately rough surfaces (when

rms/ l � 0.02 for the parameters used here), the statistical predictions of contact force and contact area using strain gradi-

ent plasticity agree reasonably well with FEM predictions, but the agreement becomes worse as the surface is rougher.

Better agreement is found when using the definition of the radius of curvature to estimate the average R . This also sug-

gests that when size-dependent plasticity is taken into account in the GW statistical model, special attention should be

paid on the calculation/measurement of GW roughness parameters, especially for rougher surfaces (smaller R , stronger

size dependence). However, even after accurate determination of R , the mean contact pressure is overestimated by the

statistical model. Since the strain gradient response of an asperity is sensitive to its size and shape, we attribute this dis-

crepancy to the difference between the shape of the asperities on the numerically generated surface and the hemi-sphere
that is input to the statistical model. 
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Appendix. Fit parameters as a function of dimensionless interference 

Just like in Kogut and Etsion (2002) , the flattening response of an individual semi-spherical asperity in terms of flattening

force F and contact area A as a function of interference U is fitted by four piecewise power laws of the form 

F /F c = b(U/U c ) 
m , A/A c = c(U/U c ) 

n , 

see Eq. (8) , where the subscript ‘c’ denotes the quantities at the onset of plasticity. The values of the fit parameters for each

region i = 1 , . . . , 4 are given in the following tables, considering three different asperity radii for the SGP results. 
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